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SUMMARY 

In agriculture and allied subjects, the treatment applied to one 

experimental plot may affect the response on neighbouring plots as well as 

response on the plot to which it is applied. The tall varieties may affect the 

other crops grown on the neighbouring plots by their shades. These effects 

are variously called neighbour effects or competition effects or interface 

effects. This paper is concerned with the study of one sided neighbour effect 

only. The merits and demerits of the designs are also discussed. Table and 

methods of applications for different designs are also presented. 


Key words : One-sided neighbour effects, Border plot, Neighbour­

balanced. 


1. Introduction 

In agriculture and allied subjects, the treatment applied to one experimental 
plot may affect the response on neighbouring plots as well as the response on the 
plot to which it is applied. In cereal crops or sunflowers, tall varieties may shade 
the plot on their North side ([13], [21]). In pesticide or fungicide experiments, 
part of the treatment may spread to the plot immediately downwind; so may 
spores from untreated plots [11]. These are both examples of one-sided effects. 
In plants with an important root system, such as potatoes, varieties ,,,1- - -h 
germinate earlier will establish their roots and take nutrients from adjoining 
plots on both sides if the crop is grown in linear ridges [22], or on all sides if the 
crop is grown in a two-dimensional area with no gaps. Similar effects are 
reported on oil-seed rape [3], on field beans [4], in anti-feedants [20], in forestry 
[16] and in horticulture [8]. These effects are variously called neighbour effects 
or competition effects or interference effects. 

This paper is concerned only with the first type of effect, the one-sided 
neighbour effect 

If the plots form a single long line, with plots numbered from I to n, 
assume that the neighbour effect is from plot j to plot j + L Denote by TO) the 
treatment on plot j. With a one-sided neighbour effect, tbe response on plot j 
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depends both on TO) and T(j - 1). Some suitable designs for this situation have 
been given by Finney and Outhwaite [10], Dyke and Shelley [9] and Lewis [17]. 

However, it is more common to arrange the plots in separated linear 
blocks. Assume that there are b blocks of size k, and v treatments. Now denote 
by T(i,j) the treatment on plot j of block i, and by Yjj the response on that plot. 

2. Models and Effects 

The simplest model for a one-sided neighbour effect is 

E{Yij) =~; + "CT(i.]) + a T(;,] _I) 	 (1) 

and 

Cov(Y) (j21 

where ~1' ... , ~b are (unknown) block effects, "C1, ... , "C are (unknown) directv 

effects of the treatments, 0.1,,,,, a are (unknown) neighbour effects of thev 

treatments, and (j2 is the (unknown) variance per plot. 

Some more complicated models for E(Y ) have been proposed. One is that ij

_ {~i + "CT(i, j) + aT(i, j _I) if T(i. j) ;t: T(i, j -1) 
E(Yij ) - r.t 'f T(' .) T(' , 1) (2)

Pi + "CT(i.j) 1 1, J == 1, J-

This is tantamount to saying that each treatment has no neighbour effect on 
itself. For example, it may be argued that tall sunflowers shade shorter varieties 

.	but not other sunflowers of the same height. However, photosynthesis occurs in 
all the leaves of a plant, so a plant growing next to another plant of the same 
variety can clearly make less use of the sun than a plant with no shading. 

What the experimenter usually seeks to find is the overall effect of a 
treatment when it is grown throughout a field ([5], [12]). If treatment x is 
applied to every plot in block i then, under model (1) 

E(Yij ) =~i +-Px 

where -Px == "Cx+ ax' We call -Px the total effect of treatment x, I think that 

those who have proposed model (2) have confused "Cx with -Px' 

A further model ([15], [21]) which may confuse the direct and total 
effects is 

E(Y. ) = {~i + "CT(i. j) + aT(i, j -I) if T(i, j) ;t: T(i, j 1) 
(3) 

IJ ~i + "CT(i,j) + YT(i,j) if TO, j) =T(i, j -1) 

In this case -Px == "Cx+ Yx 
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More complicated still is the model which allows for full interaction 
between a treatment and its neighbour ([12], [22]) 

E(Y.,)Ij =~,1 + 'tT(,I,j') + a T(,I,j'-1) + OT(' ') T('I,j'-1) (4)
I,j, 

In this case <Px = 'tx + ax + Oxx 

There is a large literature on designs for the estimation of direct effects 't, 

For example, Philippeau et aI, [19] recommend that, if model (1) is appropriate, 
then it is efficient to use a neighbour-balanced design (to be defined in Section 
3) and analyse for the simple model with no neighbour effects, Kunert and 
Stutken [15] assume model (3) and recommend designs in which the y 

parameters are not estimable. 

However, the aim of the experiment is surely to estimate the total effects 
<P, If model (2) or (3) or (4) holds, then the a parameters (and 0 parameters, if 

any) are of no interest but the y parameters (if any) are important. In this 

situation the only sensible way to conduct the experiment is to apply treatments 
to large areas such as whole fields, with guard areas in between. This is likely to 
be much more expensive, have smaller true replication, and have larger 
variability than an experiment in smaller plots. 

If model (1) holds then we can still conduct an experiment in small plots in 
linear blocks. There is a difficulty about plot I of each block, because there is 
apparently no neighbour effect to apply to it. However, we should really include 
a parameter aD for the effect of 'no neighbour'. Rather than fit this extra 

parameter, an alternative that is often recommended is to have a border plot 
before plot 1 of each block i. A treatment T(i, 0) is applied to this plot but its 
response is not measured. It is convenient if T(i, 0) = T(i, k), because then each 
neighbour effect occurs the same number of times in block j as its corresponding 
direct effect. A bordered block design with this property is called circular. 

There is now a design dilemma. To estimate 'tx + ax well, we need many 

adjacent pairs of plots that both have treatment x. On the other hand, to allow for 
block effects efficiently, we do not want any treatment to occur more than once 
in any block, if k ~ v. However, adjacent plots are always in the same block if 

blocks are well separated. 

Bailey and Druilhet [4] sought to resolve this dilemma by finding circular 
block designs which are optimal for estimation of the total effects <p. They 

showed that if no treatment is ever adjacent to itself then circular block designs 
which are binary (no treatment occurs more than once in a block), balanced (in 
the usual sense that every pair of distinct treatments is in the same number of 
blocks) and neighbour-balanced, are optimal for the estimation of total effects. 
Azais et al. [2] gave a table of such designs for b = v, k = v-I and b = v - I, 
k =v, with instruction for their use. 

-------_.. -_. __... --_.------------------­
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Bailey and Druilhet also showed that if b if large then designs with self­
neighbours are better than those without, if k ~ 5. They describe a class of 

optimal designs which can certainly be realised if b =v!, which is usually too 
large for practical use. The remainder of this paper gives optimal designs for the 
smallest possible value ofb, for given small values ofk and v. 

3. Properties ofthe Designs 

Each design is balanced in the sense that there is an integer Il such that 

every pair of distinct treatments has concurrence Il. Here the concurrence of 

treatments x and y means the number of pairs of plots in the same block with 
one receiving treatment x and the other receiving treatment y. Each design is 
also neighbour-balanced in the sense that there is an integer ).. such that every 
treatment is followed by each other treatment).. times. 

Bailey and Druilhet [4] give the optimal number s of treatments to put in 
each block, for each block size k with 3:5 k :516. Part of this information is 

reproduced in Table 1. When k =4 there are three values of s, all optimal. Of the 
s treatments in any block, n occur m times and n occur m +" 1 times, where m 

1 2 

is the integer part of k/s, n =k - sm and n =s - n • Each block contributes 
2 1 2 

e/2 to the sum of the concurrences, where 

e=n1(n l -1)m2 + n2 (n2 -1)(m + 1)2 + 2nln2m(m + 1) 

= sm(m + 1) + k(k - 2m -1) 

Hence 

be = v(v -1)1l (5) 

Bailey and Druilhet [4] show that all occurrences of anyone treatment in 
anyone block must be in a single sequence of adjacent plots (possibly including 
both the last plot and the first plot), so each block contributes s to the sum of 
neighbour adjacencies. Hence 

bs =v(v -I)).. (6) 

Table 1. When the blocks have size k, then s treatments should appear in each block, 
with n1 appearing m times and n

2 
appearing m + 1 times, so each 

block contributes e to the sum of the concurrences 

k 3 4 4 4 5 6 7 8 9 
s 3 2 3 4 3 3 4 4 4 

m 1 2 1 1 1 2 1 2 2 
n l 3 2 2 4 1 3 1 4 3 

n2 0 0 0 2 0 3 0 1 

e 6 8 10 12 16 24 36 48 60 

Note that if e and s are coprime then b must be a multiple ofv(v - 1). 
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4. The Tables, and How to Use Them 

Tables 3-6, supplemented by the text in Section 5, give the smallest 
designs with the properties in Section 3, for the range 3 S; k S; 9 and s S; v S; 10. 

Apart from the exceptions mentioned in Section 5, each given design has the 
parameters which are the smallest solutions to Equations (5) and (6). 

To use these, first choose one of the designs for the appropriate values of v 
and k. If k =4 there may be a choice of design. In the tables, the blocks are 
shown as columns, to save space. Randomly allocate the columns of the chosen 
design to the actual blocks. In each block independently, randomly choose a 
number I between I and k inclusive, and move the treatment on plot i to plot 
i + I modulo k. Finally, in each block, put the treatment on plot k onto the border 
plot before plot I. 

For example, if v = k = 5 then start with the design in Table 5(a), which 
has 20 blocks. Randomization can produce the layout in Table 2, where the 
blocks are shown as rows, with the border plot at the left-hand end. 

Table 2. One layout obtained by randomizing the design in Table 5(a) 
1511111212151 1311111513131 1512121315151 

I212 I4 I4 I5 I 2 I I 5 I 4 I4 I3 I 3 I5 I I 4 I 2 I 2 I5 I5 I4 I 

I 4 I 4 I 2 I 2 I 

15151 1313151 1515141411151 1314111113131 

1213131414121 1515131312151 1212111 13121 

1111121414111 1115151211111 1313121214131 

1414151513141 1311111414131 

5. Tables ofDesigns 

5.1 Block Size Three 

When k =3 then s =3 and the designs are just Mendelsohn triple systems 
[18]. As Colburn and Rosa [7] show, there is a design corresponding to the 
smallest integer solutions of Equations (5) and (6) except when v =6. These are 
given in Table 3. The second smallest solution for v =6 corresponds to the 
design in Table 3(d). 
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Table 3. Designs for blocks of size 3 (k =3, s=3, e =6) 

1 1 

2 3 
3 2 

(a) v =3, b =2, f.l. ::: 2, I.. ::; 1 

3 4 1 2 

1 2 3 4 

2 143 


(b) v =4, b ;: 4, J.L =2, A =1 

1 3 1 4 5 I 4 1 5 524 2 5 2 5 3 5 
2 2 2 2 2 2 3 3 3 3 443 3 3 344 4 4 
314 1 5 141 5 1 5 142 5 2 5 253 

(e) v =5, b;: 20, J.L = 6, A == 3 

12345 123 4 5 6 6 6 6 6 5 1 234 

234 5 134 5 1 223 4 5 1 345 1 2 

6 6 6 6 6 5 1 234 1 234 5 1 2 3 4 5 


(d) v = 6, b = 20, J.L :: 4, A ::: 2 

1 2 3 4 5 6 7 4 5 6 7 123 

2 3 4 5 671 2 3 4 5 671 

4 5 6 7 123 1 2 3 4 ~ 6 7 


(e)v=7,b=14, J.L =2, A =1 

123 4 5 6 7 8 8 8 8 8 8 8 8 8 8 888 8 8 8 8 8 8 8 8 
456 7 1 237 1 2 345 6 7 123 4 5 6 7 1 2 345 6 
2 3 4 5 671 1 2 345 6 7 2 3 4 5 6 7 1 4 5 671 2 3 
1 2 3 4 5 6 7 1 2 345 6 7 1 2 3 4 5 6 7 I 234 567 
34567 1 2 2 3 4 5 6 7 167 1 234 5 5 6 7 1 234 
567 1 2 3 4 3 4 5 6 7 1 2 2 3 4 5 6 7 I 234 5 671 

(f) v =8, b =56, J.L ::: 6, A ::: 3 

1 3 4 6 7 9 1 7 2 8 3 9 1 927 3 8 1 829 3 7 
225 5 8 844 5 5 665 5 664 4 664 4 5 5 
3 1 649 7 7 1 829 3 9 1 728 3 8 1 927 3 

(g) v ::: 9, b =24, J.L ::: 2, A ::: 1 

1 4 7 0 0 0 0 0 0 0 0 0 1 7 2 8 3 9 1 927 3 8 1 829 3 7 
258 5 642 3 1 897 445 5 665 5 6 6 4 4 6 6 4 4 5 5 
3 6 9 4 5 6 1 2 3 7 8 9 7 1 829 3 9 1 7 283 8 1 927 3 

(h) v =10, b =30, J.L ;: 2, A = 1 

---- .. _._... _._...~~-
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5.2 Block Size Four 

When k =4 then s may be 2 or 3 or 4. If s =2 then each block has the 
cyclic pattern (x, x, y, y). Using one such block for each unordered pair lx, y} of 
treatments gives a design with b =v(v - 1)/2. The designs in parts (a), (c), (0, 
(h), (j) and (I) of Table 4 have this form. If s =3 then Equations (5) and (6) give 
lOb = v(v-I) jJ. and 3b = v(v-I) A., whose smallest integer solution has 

b =v(v - 1), so these designs are no improvement on those with s = 2 and 
therefore none are shown in Table 4. 

When s =4 the designs are known as oriented balanced incomplete-block 
designs or perfect Mendelsohn designs [18], and are related to directed Whist 
tournaments [1]. Now Equations (5) and (6) give jJ. =31.. and 4b =v(v - 1)1... 

Table 4 includes designs for the smallest integer solutions to these equations 
except for v =4 (when trial and error quickly shows that there is no solution 
with b =3), and v =8 (where [6] shows that there is no solution with b =14). 

Table 4. Designs for blocks of size four (k = 4) 

112 

1 1 2 

233 

233 


(a) v =3, s =2, b =3, e =8, jJ. =4, A. =1 

1 1 1 222 

23414"4 

3 4 243 1 

423 3 1 3 


(b) v = 4, s = 4, b =6, e =12, jJ. = 6, A. = 2 

111223 

1 1 122 3 


2 3 4 3 4 4 

2 3 4 3 4 4 


(c) v =4, s =2, b = 6, e = 8, jJ. = 4. A. =1 

1 2 345 

2 3 451 

4 5 123 


34512 

(d) v =5, s = 4, b =5, e =12, J.l =3, A =1 

_ ....__...... _--­
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6 6 6 6 6 6 6 6 6 6 2 2 2 2 3 

1 123 5 2 3 4 4 5 445 1 5 

231 1 4 5 4 3 5 2 5 3 154 

34451 125 233 143 1 


(e) v = 6, s = 4, b = 15, e= 12, 1.1. =6, A = 2 

1111'1222233"3445 

1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 

2 3 4 5 6 3 4 5 645 6 5 6 6 

2 345 634 5 645 6 5 6 6 


(f) v = 6, s =2, b =15, e =8, 1.1. =4, A =1 

7 1 2 3 4 5 6 7 1 2 345 6 7 1 234 5 6 

1234567 1 2 345 6 723 4 5 6 7 1 

3 4 5 6 7 1 2 4 5 67 1 2 3 6 7 1 2 3 4 5 

234 567 I 3 4 5 6 7 1 245 6 7 123 


(g) v =7, S =4, b == 21, e =12, 1.1. = 6, A = 2 

1 1 1 1 1 I 222 2 2 333 3 444 5 5 6 

111 I I I 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6 

2 3 4 5 6 7 345 6 7 4 5 6 7 5 6 7 677 

234 5 6 7 345 6 7 4 5 6 7 5 6 767 7 


(h) v = 7, S = 2, b = 21, e = 8, 1.1. = 4, A = 1 

7 1 234 5 6 8 8 8 8 8 8 845 6 7 123 2 3 4 5 671 
1 2 3 4 5 6 7 1 234 567 234 567 167 1 2 345 
2 3 4 5 6 7 1 6 7 1 2 3 45 1 2 3 4 5 6 7 1 2 3 4 5 6 7 
4 5 6 7 1 2 3 2 3 4 5 6 7 1 7 I 2 3 4 5 6 8 8 8 8 8 8 8 

(i) v =8, s =4, b = 28, e = 12, 1.1. == 6, A =2 

1 1 1 I 1 I I 2 2 2 222 3 3 3 3 3 4 4 4 455 5 667 
111 1 1 1 122 2 2 223 3 3 3 3 4 4 4 4 5 5 5 667 
2 3 4 5 6 7 8 3 4 5 6 7 845 6 7 8 5 6 7 8 6 7 8 7 8 8 
2 3 4 5 6 7 8 3 4 5 6 7 845 6 7 8 5 6 7 867 8 7 8 8 

U) v =8, S =2, b = 28, e =8, 1.1. = 4, A = 1 

56423 1 897 2 3 1 897 5 6 4 

645 3 I 297 8 4 5 6 I 2 3 7 8 9 

9 7 8 6 4 5 3 123 129 7 864 5 

897 5 6 4 2 3 I 7 8 9 4 5 6 1 2 3 


(k) v =9, S = 4, b = 18, e = 12, J.l. == 3, A = 1 

-----_....__...... 
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1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 444 

1 1 1 1 1 1 1 1 1 222 2 2 2 223 3 3 3 3 3 3 444 4 4 4 

2 3 4 5 67'89 0 3 45 67 8 9045 6 7 8 905 6 7 890 

2 3 4 5 6 7 8 9 0 3 4 5 6 7 8 904 5 6 7 8 905 6 7 890 


555 5 5 6 6 6 6 7 7 7 8 8 9 

5 5 5 5 5 666 6 7 7 7 8 8 9 

6 7 8 907 890 8 9 0 9 0 0 

6 7 8 9 0 7 890 8 9 0 9 0 0 


(I) v = 10, s =2, b = 45, e = 8, /l = 4, A. = 1 

1 2 3 4 5 6 7 8 9 I 2 3 4 5 6 7 8 9 1 2 3 ,4 5 6 7 8 9 

2 345 6 7 8 9 I 345 6 7 8 9 I 245 6 7 891 2 3 

6 7 891 2 3 4 5 2 3 4 5 6 7 8 9 I 9 1 2 3 4 5 678 

4 5 6 7 8 9 1 2 3 7 891 2 3 4 5 667 8 9 1 2 3 4 5 


000 0 0 0 000 0 0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 9 123 4 5 6 7 8 9 

2 3 4 5 6 7 8 9 I 9 I 2 3 4 5 678 

4 5 6 7 8 9 1 2 3 7 8 9 1 2 3 456 


(m)v=IO,s=4,b=45, e =12, /l =6, A. =2 

5.3 Block Size Five 

When k = 5 then s =3, so Equations (5) and (6) give 16b =v(v - I) J! and 

3b = v(v - 1)/.., so b must be a multiple of v(v - O. If v =3, 4, 7, 9 or 10 then 
Table 3 gives a design with s =k =3 and b =v(v - 1)/3. Replace each block of 
the form (x, y, z) by the three blocks (x, y, y, z, z), (x, x, y, z, z) and (x, x, y, y, 

z). Designs for v =5, 6 and 8 with b =v(v ~ I) are given in Table 5. 


Table 5. Designs for blocks of size five (k =4, s =3, e =16) : see text for other numbers 

of treatments 

123 4 5 2 3 4 5 1 345 1 245 123 

2 3 4 5 145 123 I 2 3 4 5 345 I 2 

2 3 4 5 I 4 5 123 123 4 5 345 1 2 

345 1 2 123 4 5 4 5 123 2 3 451 

345 I 2 123 4 5 4 5 123 2 3 4 5 I 


(a) v = 5, b = 20, /l = 16, A. = 3 

66666 I 2 345 2 3 4 5 I 5 123 445 123 4 5 123 

2 3 4 5 134 5 125 I 2 3 4 6 6 6 6 6 3 4 5 125 1 234 

2 3 4 5 I 345 125 1 2 3 4 6 6 6 6 6 3 4 5 125 123 4 

1234545 123 6 6 6 6 6 2 3 4 5 1 5 123 4 3 4 5 1 2 

I 2 3 4 5 4 5 1 2 3 6 6 6 6 6 2 3 4 5 1 5 1 234 345 1 2 


(b) v = 6, b = 30, /l = 16, A. = 3 
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2 3 4 5 671 1 2 3 4 5 6 7 8 8 8 8 8 8 8 7 123 456 
1 2 3 4 5 678 8 8 8 8 8 8 7 1 234 5 645 6 7 123 
1 2 3 4 5 6 7 8 8 8 8 8 8 8 7 123 4 5 645 6 7 123 
4 5 6 7 123 7 123 4 5 623 4 5 6 7 1 8 8 8 8 8 8 8 
4 5 6 7 123 7 123 4 5 6 2 3 4 5 6 7 I 888 8 888 

34567 122 345 6 7 I 6 7 1 2 3 4 5 567 1 234 
567 123 4 3 4 5 6 7 122 3 4 5 6 7 123 4 5 671 
567 1 2 343 4 5 6 7 I 2 2 3 4 5 6 7 123 4 5 671 
1 2 3 4 5 6 7 123 4 5 6 7 1 2 3 4 5 671 2 3 4 5 6 7 
I 234 5 6 7 I 2 3 4 5 6 7 123 4 5 671 2 3 4 5 6 7 

(c) v =8, b =56, J.1 =16, A. =3 

5,4 Block Size Six 

When k =6 then s =3 and every block has the fonn (x, x, y, y, z, z). Use 
the design from Table 3 for the appropriate value of v, and double the 
occurrences of each entry. For example, if v =7 then the first block is (I, I, 2, 2, 
4, 4). Note that, after randomization, there are six possibilities for this block, 
including 

, 2 4 , 4 , 1 1 2 2 land' 4 4 I 1 2 2 4I I I I I I I I I I I 

5.5 Block Size Seven 

When k = 7 then s = 4, so Equations (5) and (6) give J.1 =9A and 

4b =v(v - 1)A. Also, every within-block contribution to concurrence is either 4 
or 2, so J.1 is even and hence A is even. Each block has a single unrepeated 

treatment, so, to maintain symmetry, b must be a multiple of v. Table 6 shows 
the smallest design for v =4, 6, 7,8 and 9. 

When v =5, use the design in Table 4 with s = 4 and replace each block of 
the fonn (w, x, y, z) by the four blocks (w, x, x, y, y, z, z), (w, w, x, y, y, z, z), 
(w, w, x, x, y, z, z) and (w, w, x, x, y, y ,z). 

When v = 10 the smallest solution to the equations has b =90. A design 
with 90 blocks of 7 plots each is probably too large for practical purposes, so no 
design is tabulated. 

5.6 Block Size Eight 

When k = 8 then s =4 and every block has the fonn (w, w, x, x, y, y, z, z). 
Use the design from Table 4 for the appropriate value of v with s 4, and 
double the occurrence of each entry. 

5.7 Block Size Nine 

When k =9 then s = 4 and again we find that 4b = v(v - I)A, A is even 
and v divides b. Use the designs for k =7 and replace each block of the form 
(w, x, x, y, y, z, z) by the block (w, w, w, x ,x, y, y, z, z). 

--~-....-------... -~~-.... 
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Table 6. Designs for blocks of size seven (k =7, s =4, () = 36) : see text for other 
numbers of treatments 

123 423 3 I I 244 

2 143 3 1 234 4 1 2 

2 143 3 I 2 344 1 2 

3 4 1 2 I 244 2 3 3 1 

432 144 123 123 

432 144 1 2 3 123 


(a)v 4,b= 12, a =36. A =4 

6 4 4 5 2 3 6 3 2 5 561 534 1 3 1 6 1 224 2 6 3 5 1 4 

435 2 3 6 3 4 4 345 5 646 3 5 624 I 523 1 232 3 

435 2 3 6 3 4 4 345 5 646 3 5 624 1 523 1 2 3 2 3 

3 5 266 542 5 2 1 463 6 I 5 4 2 5 6 4 I 562 1 241 

35 2665·425 2 146 3 6 1 542564 1 562 I 24 1 

5 664 5 2 2 6 345 131 134 1 5 1 264 1 135 132 

5 6 6 4 5 2 2 634 5 131 134 1 5 1 264 1 135 132 


(b) v = 6, b =30, I.l =36, A =4 

71234561234567712~456 

I 2 3 4 5 6 7 4 5 6 7 1 2 3 234 5 671 

1 2 345 6 7 4 5 671 2 3 2 3 4 5 671 

34567 1 234 5 6 7 I 267 I 2 345 

34567 1 234 5 6 7 I 267 I 2 3 4 5 

2 3 4 5 6 7 I 7 I 2 3 4 5 645 6 7 123 

2 345 6 7 I 7 I 234 5 6 4 5 6 7 123 


(c) v = 7, b =21, I.l =18, A = 2 
7 I 2 345 6 I 2 345 6 7 2 345 6 7 145 6 7 123 
I 2 345 6 7 2 3 4 5 671 1 2 3 4 5 6 7 2 3 4 5 671 
1 2 3 4 5 6 7 2 3 4 5 671 123 4 5 6 7 2 3 4 5 671 
2 3 4 5 6 7 145 6 7 1 237 1 2 3 456 1 2 3 4 5 6 7 
234 567 145 6 7 1 237 I 234 5 6 1 2 345 6 7 
4 5 6 7 I 237 1 2 3 4 5 6 4 567 I 237 123 456 

4 5 6 7 1 237 1 2 3 4 5 6 4 567 123 7 I 2 3 456 


8 8 888 8 8 I 234 5 6 7 6 7 I 2 3 4 5 2 3 4 5 671 

123456767 I 2 345 1 2 3 4 5 6 7 6 7 I 2 345 

123456767 1 2 3 4 5 1 2 3 4 5 6 7 6 7 I 234 5 

6 7 I 2 345 2 3 4 5 6 7 1 8 8 8 8 8 8 8 1 2 3 4 5 6 7 

6 7 1 2 3 4 5 2 3 4 5 6 7 1 8 8 8 8 888 123 4 5 6 7 

234 5 6 7 I 8 8 8 8 8 8 8 2 3 4 5 6 7 1 888 8 8 8 8 

234 5 6 7 I 8 8 8 8 8 8 8 2 3 4 5 6 7 1 8 8 8 8 8 8 8 


(d) v = 8, b:::: 56, I.l = 36, A = 4 

-----.......-----~--......... -------- ­
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I 237 8 9 4 5 6 4 561 2 3 7 8 9 123 7 894 5 664 5 3 129 7 8 
231 897 5 6 4 I Z 3 7 894 5 6 645 3 I 297 8 2 3 I 897 564 
2 3 189 7 5 6 4 I 237 894 5 664 5 3 129 7 8 2 3 1 897 564 
56423 1 89723 I 89756423 18975649786543 12 
5 6 4 2 3 I 897 2 3 189 7 5 6 4 2 3 I 897 5 649 7 8 654 3 I 2 
456 I 237 895 6 4 2 3 I 8 9 797 8 645 3 121 2 3 7 894 5 6 
456 I 237 895 6 4 2 3 I 8 9 797 8 645 3 I 2 I 2 3 7 8 9 4 5 6 

(e) v = 9, b = 36, J..L = 18, ').. ::: 2 

REFERENCES 

[I] 	 Anderson, 1. (1997). Combinatorial Designs and Tournaments. Oxford 
University Press, Oxford. 

[2] 	 Azais. 1M., Bailey, R.A. and Monod, H. (1993). A catalogue of efficient 
neighbour-designs with border plots. Biometrics, 49, 1252-1261. 

[3] 	 Azais, J.M., Onillon, J. and Lefort-Buson, M. (1986). Une methode d'etude de 
phenomenes de competition entre genotypes. Application au colze (Brassica 
napus L.). Agronomie, 6,601-614. 

[4] 	 Bailey, R.A. and Druilhet, P. Optimality of neighbour-balanced designs for 
total effects. Ann. Statist., in press. 

[5]' 	 Besag, J. and Kempton, R. (1986). Statistical analysis of field experiments 
using neighbouring plots. Biometrics, 42, 231-251. 

[6] 	 Bennett, F.E., Zhang, X. and Zhu, L. (1990). Perfect Mendelsohn designs with 
block size 4. Ars Combinatoria, 29, 65-72. 

[7] 	 Colburn, CJ. and Rosa, A. (1992). Directed and Mendelsohn triple systems. 
In: Contemporary Design Theory: A Collection of Surveys (eds. J.H. Dinitz 
and D.R. Stinson), John Wiley and Sons, New York, 97-136. 

[8] 	 David, O. and Kempton, R.A. (1996). Designs for interference. Biometrics, 52, 
597-606. 

[9] 	 Dyke, G.V. and Shelley, C.F. (1976). Serial designs balanced for effects 
neighbours on both sides. J. Agri. Sci., 124,335-342. 

[10] 	 Finney, DJ. and Outhwaite, A.D. (1956). Serially balanced sequences in 
bioassay. Proc. Roy. Soc., B145, 393-507. 

[II] 	 Jenkyn, J.F. and Dyke, G.V. (1985). Interference between plots in experiments 
with plant pathogens. Aspects ofApplied Biology, 10,75-85. 

[12] 	 Kempton, R.A. (1997). Interference between plots. In : Statistical Methods for 
Plant Variety Evaluation (eds. R.A. Kempton and P.N. Fox), Chapman and 
Hall, London, 101-116. 

[13] 	 Kempton. R.A.. Gregory. R.S., Hughes, W.G. and Stoehr, PJ. (1986). The 
effect of interplot competition on yield assessment in triticale trials. Euphytica, 
35,257-265. . 

[14] 	 Kempton, R.A. and Lockwood, G. (1984). Inter-plot competition in variety 
trials of field beans (Vicia faba L.). J. Agri. Sci., 293-302. 

-------------~~~ ....................--------------- ­



314 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS 

[IS] 	 Kunert, 1. and Stufken, J. (2002). Optimal crossover designs in a model with 
self and mixed carryover effects. J. Amer. Statist. Assoc., 97,898-906. 

[16] 	 Langton, S. (1990). Avoiding edge effects in agroforestry experiments; the use 
of neighbour-balanced designs and guard areas. Agroforestry Systems, 12. 173­
185. 

[17] 	 Lewis, C. (2000). One-dimensional neighbour effects. Ph. D. thesis, University 
of London. 

[18] 	 Mendelsohn, E. (1996). Mendelsohn designs, Section IV, 28. In : The CRC 
Handbook ofCombinatorial Designs (eds. CJ. Colbourn and J.H. Dinitz), CRC 
Press, Boca Raton, 388-393. 

[19] 	 Philippeau, G., David, O. and Monod, H. (1996). Interplot competition in 
cereal variety trials. In : XVIll International Biometric Conference Invited 
Papers, 107-116. 

[20] 	 Smart, L.E., Blight, M.M., Pickett, 1.A. and Pye, BJ. (1994). Development of 
field strategies incorporating semiochemicals for the control of the pea and 
bean weevil (Sitona lineatus L.). Crop Protection, 13, 127-135. 

[21] 	 Speckel, D., Vincourt, P., Azais, J.M. and Kobilinksy, A. (1987). Etude de la 
competition interparcellaire chez Ie toumesol. Biometrie-Praximetrie. 27, 21­
43. 

[22] 	 Welham, SJ., Bailey, R.A., Ainsley, A.E. and Hide, G.A. (1996). Designing 
experiments to examine competition effects between neighbouring plants in 
mixed populations. In ; XVlll International Biometric Conference Invited 
Papers, 97-105. 


