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SUMMARY

In agriculture and allied subjects, the treatment applied to one
experimental plot may affect the response on neighbouring plots as well as
response on the plot to which it is applied. The tall varieties may affect the
other crops grown on the neighbouring plots by their shades. These effects
are variously called neighbour effects or competition effects or interface
effects. This paper is concerned with the study of one sided neighbour effect
only. The merits and demerits of the designs are also discussed. Table and
methods of applications for different designs are also presented.

Key words : One-sided neighbour effects, Border plot, Neighbour-
balanced. ,

1. Introduction

In agriculture and allied subjects, the treatment applied to one experimental
plot may affect the response on neighbouring plots as well as the response on the
plot to which it is applied. In cereal crops or sunflowers, tall varieties may shade
the plot on their North side ([13], [21]). In pesticide or fungicide experiments,
part of the treatment may spread to the plot immediately downwind; so may
spores from untreated plots [11]. These are both examples of one-sided effects.
In plants with an important root system, such as potatoes, varieties v* -h
germinate earlier will establish their roots and take nutrients from adjoining
plots on both sides if the crop is grown in linear ridges [22], or on all sides if the
crop is grown in a two-dimensional area with no gaps. Similar effects are
reported on oil-seed rape [3], on field beans [4], in anti-feedants [20], in forestry
[16] and in horticulture [8]. These effects are variously called neighbour effects
or competition effects or interference effects.

This paper is concerned only with the first type of effect, the one-sided
neighbour effect.

if the plots form a single long line, with plots numbered from 1 to n,
assume that the neighbour effect is from plot j to plot j + 1. Denote by T(j) the
treatment on plot j. With a one-sided neighbour effect, the response on plot j
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depends both on T(j) and T(j — 1). Some suitable designs for this situation have
been given by Finney and Quthwaite [10], Dyke and Shelley {9] and Lewis [17].

However, it is more common to arrange the plots in separated linear
blocks. Assume that there are b blocks of size k, and v treatments. Now denote
by T(i,j) the treatment on plot j of block i, and by Yij the response on that plot.

2. Models and Effects
The simplest model for a one-sided neighbour effect is
E(Yy) =B; + Trg.j + 1, j-1) (1)
and
Cov(Y) =01

where By, ...,P, are (unknown) block effects, t,,...,T, are (unknown) direct
effects of the treatments, o,,..., 0, are (unknown) neighbour effects of the -
treatments, and G is the (unknown) variance per plot.

Some more complicated models for E(Yij) have been proposed. One is that
B, + Tra, p t %1, j-n i TG =T -1

Bi + Trep if TG, )=TG j-1

This is tantamount to saying that each treatment has no neighbour effect onl
itself. For example, it may be argued that tall sunflowers shade shorter varieties
_.but not other sunflowers of the same height. However, photosynthesis occurs in

all the leaves of a plant, so a plant growing next to another plant of the same
variety can clearly make less use of the sun than a plant with no shading.

E( Yij )= { (2)

What the experimenter usually seeks to find is the overall effect of a
treatment when it is grown throughout a field ([5], [12]). If treatment x is
applied to every plot in block i then, under model (1)

E(Y;) =B, + ¢,

where ¢, =1, +0,. We call ¢, the rotal effect of treatment x. I think that
those who have proposed model (2) have confused 1, with ¢,.

A further model ([15], [21]) which may confuse the direct and total
effects is

cp e - 3

E(Yij) = {

Inthiscase ¢, =1, +Y,
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More complicated still is the model which allows for full interaction
between a treatment and its neighbour ([12], [22])

E(Yy) =B; + Trq, j + %16, j-1 * B16, )16, 5-1) “4)
In this case ¢, =7, + 0, +3,,

There is a large literature on designs for the estimation of direct effects .
For example, Philippeau et al. [19] recommend that, if model (1) is appropriate,
then it is efficient to use a neighbour-balanced design (to be defined in Section
3) and analyse for the simple model with no neighbour effects. Kunert and
Stufken [15] assume model (3) and recommend designs in which the ¥y

parameters are not estimable.

However, the aim of the experiment is surely to estimate the total effects
0. If model (2) or (3) or (4) holds, then the o parameters (and & parameters, if

any) are of no interest but the y parameters (if any) are important. In this

situation the only sensible way to conduct the experiment is to apply treatments
to large areas such as whole fields, with guard areas in between. This is likely to
be much more expensive, have smaller true replication, and have larger
variability than an experiment in smaller plots.

If model (1) holds then we can still conduct an experiment in small plots in
linear blocks. There is a difficulty about plot 1 of each block, because there is
apparently no neighbour effect to apply to it. However, we should really include
a parameter O, for the effect of ‘no neighbour’. Rather than fit this extra

parameter, an alternative that is often recommended is to have a border plot
before plot 1 of each block i. A treatment T(i, 0) is applied to this plot but its
response is not measured. It is convenient if T(i, 0) = T(i, k), because then each
neighbour effect occurs the same number of times in block j as its corresponding
direct effect. A bordered block design with this property is called circular.

There is now a design dilemma. To estimate T, + o, well, we need many

adjacent pairs of plots that both have treatment x. On the other hand, to allow for
block effects efficiently, we do not want any treatment to occur more than once
in any block, if k <v. However, adjacent plots are always in the same block if

blocks are well separated.

Bailey and Druilhet [4] sought to resolve this dilemma by finding circular
block designs which are optimal for estimation of the total effects ¢. They

showed that if no treatment is ever adjacent to itself then circular block designs
which are binary (no treatment occurs more than once in a block), balanced (in
the usual sense that every pair of distinct treatments is in the same number of
blocks) and neighbour-balanced, are optimal for the estimation of total effects.
Azais et al. [2] gave a table of such designs forb=v,k=v~1landb=v-1,
k = v, with instruction for their use.
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Bailey and Druilhet also showed that if b if large then designs with self-
neighbours are better than those without, if k >5. They describe a class of

optimal designs which can certainly be realised if b = v!, which is usually too
large for practical use. The remainder of this paper gives optimal designs for the
smallest possible value of b, for given small values of k and v.

3. Properties of the Designs
Each design is balanced in the sense that there is an integer p such that
every pair of distinct treatments has concurrence u. Here the concurrence of

treatments X and y means the number of pairs of plots in the same block with
one receiving treatment x and the other receiving treatment y. Each design is
also neighbour-balanced in the sense that there is an integer A such that every
treatment is followed by each other treatment A times.

Bailey and Druilhet [4] give the optimal number s of treatments to put in
each block, for each block size k with 3<k <16. Part of this information is

reproduced in Table 1. When k = 4 there are three values of s, all optimal. Of the
s treatments in any block , n, occur m times and n, occur m + 1 times, where m

is the integer part of k/s, n, = k —~ sm and n, = s - n,. Each block contributes
6/2 to the sum of the concurrences, where

8 =n,(n, - hm? +n,(n, ~1)(m + 1)> + 2n;n,m(m + I)
=sm(m + 1) + k(k - 2m ~- 1)

Hence
b8 =v(v-Du 5)

Bailey and Druilhet [4] show that all occurrences of any one treatment in
any one block must be in a single sequence of adjacent plots (possibly including
both the last plot and the first plot), so each block contributes s to the sum of
neighbour adjacencies. Hence

bs = v(v—-DA )]
Table 1. When the blocks have size k, then s treatments should appear in each block,
with n, appearing m times and n, appearing m + 1 times, so each
block contributes 6 to the sum of the concurrences

k 3 4 4 4 5 6 7 8 9
s 3 2 3 4 3 3 4 4 4
m 1 2 1 1 1 2 1 2 2
n, 3 2 2 4 1 3 1 4 3
n, 0 0 1 0 2 0 3 0 1
6 6 § 10 12 16 24 36 48 60

Note that if 6 and s are coprime then b must be a multiple of v(v - 1).
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4. The Tables, and How to Use Them

Tables 3-6, supplemented by the text in Section 5, give the smallest
designs with the properties in Section 3, for the range 3<k <9 and s<v<10.

Apart from the exceptions mentioned in Section 5, each given design has the
parameters which are the smallest solutions to Equations (5) and (6).

To use these, first choose one of the designs for the appropriate values of v
and k. If k = 4 there may be a choice of design. In the tables, the blocks are
shown as columns, to save space. Randomly allocate the columns of the chosen
design to the actual blocks. In each block independently, randomly choose a
number 1 between 1 and k inclusive, and move the treatment on plot i to plot
i + 1 modulo k. Finally, in each block, put the treatment on plot k onto the border
plot before plot 1.

For example, if v = k = 5 then start with the design in Table 5(a), which
has 20 blocks. Randomization can produce the layout in Table 2, where the
blocks are shown as rows, with the border plot at the left-hand end.

Table 2. One layout obtained by randomizing the design in Table 5(a)

[slefvfafafs] [s]efu]s[s]a] [sf2]2[3]s5[s]
[212[4]4]5]2] [31e[2[3]3]5] [2l2[2[5[5[¢]
(3lif2]a]s]3] [1]aaf2fafu] [afu]a]s[s]1]
Lslsfifasfs] [s]s[afafuefs] [3falefr]3]3]
[203[3fafaf2] [sIs[a[3]2]s] [2]2]1]1]3]2]

[l if2fafalo] [afssf2fu]r] [s3]s]2[2]4]3]
[afals]s[sfa] [3]1]r]afa]3]

5. Tables of Designs

5.1 Block Size Three

When k = 3 then s = 3 and the designs are just Mendelsohn triple systems
[18]. As Colburn and Rosa [7] show, there is a design corresponding to the
smallest integer solutions of Equations (5) and (6) except when v = 6. These are
given in Table 3. The second smallest solution for v = 6 corresponds to the
design in Table 3(d).
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Table 3. Designs for blocks of size 3 (k=3,5=3, 8 =6)

11
23
32
()v=3,b=2, u=2,A=1

3412

1234

2143
(b)vz4,b=4,u=2,l=l

131415141515242525335

22222233334433334444

31415141515142525253
(©)v=5b=20 L =6 A =3

12345123456666651234
23451345122345134512
66666512341234512345

(d)v=6b=20, h=4 A =2

12345674567123

23456712345671

45671231234567
(@v=7b=14, B =2 A =1

1234567888888888888888888888

4567123712345671234567123456

27345671123456723456714567123

12345671234567123456712345¢67

3456712234567167123455671234

$5671234345671223456712345671
Hv=8b=56U=6A=3

134679172839192738182937

225588445566556644664455

316497718293917283819273
(g)v=9,b=24,]i=2,}»=1

147000000000172839192738182937

258564231897445566556644664455

369456123789718293917283819273
(hyv=10,b=30, L =2, A =1
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5.2 Block Size Four

When k = 4 then s may be 2 or 3 or 4. If s = 2 then each block has the
cyclic pattern (x, X, y, y). Using one such block for each unordered pair {x, y} of
treatments gives a design with b = v(v — 1)/2. The designs in parts (a), (c), (f),
(h), (j) and (1) of Table 4 have this form . If s = 3 then Equations (5) and (6) give
10b = v(v - )i and 3b = v(v — 1)A, whose smallest integer solution has
b =v(v- 1), so these designs are no improvement on those with s = 2 and
therefore none are shown in Table 4.

When s = 4 the designs are known as oriented balanced incomplete-block
designs or perfect Mendelsohn designs {18], and are related to directed Whist
tournaments [1]. Now Equations (5) and (6) give w=3A and 4b = v(v - DA.
Table 4 includes designs for the smallest integer solutions to these equations
except for v = 4 (when trial and error quickly shows that there is no solution
with b = 3), and v = 8 (where [6] shows that there is no solution with b = 14),

Table 4. Designs for blocks of size four (k = 4)

112
112
233
233
(aA)v=3,5=2,b=308 =8,u=4,}»=1

111222

234144

342431

423313
(b)v=4,s=4,b=60 =12, L =6, A =2

111223

111223

234344

234344
©)v=4,5=2b=60=8 u=421A=1

12345

23451

45123

34512
(dv=55=4b=50=12, p=3A=1
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666666666622223
112352344544515
231145435253154
344511252331431

(@) v=6,s=4,b=1506=12, 4 =6, A =2

111112222333445
111112222333445
234563456456566
234563456456566
Hv=6,5s=2,b=150=8, =4, A =1

712345671234567123456
123456712345672345671
3456712456712367123435
234567134567124567123
(gv=75s=4,b=21,8=12, 0 =6, A =2

111111222223333444556
111111222223333444556
234567345674567567677
234567345674567567677
hv=7s=2,b=21,0 =8, u =4, =1

7123456888888845671232345671
1234567123456723456716712345
2345671671234512345671234567
4567123234567171234568888888
(v=85=4,b=28, 0=12, 4 =6, A =2

1111111222222333334444555667
1111111222222333334444555667
2345678345678456785678678788
2345678345678456785678678788

()v=8s=2,b=28,0=8 pu=4A=1

564231897231897564
645312978456123789
978645312312978645
897564231789456123
(k)v=9,5=4,b=18,0=12, u =3, A =1
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111111111222222223333333444444
111111111222222223333333444444
234567890345678904567890567890
234567890345678904567890567890

$555556666777889
5555566667778889
678907890890900
678907890890900
MHv=10,5=2,b=45,6=8, u =4, A =1

123456789123456789123456789
234567891345678912456789123
678912345234567891912345678
456789123789123456678912345

0000000000C000000C00O
123456789123456789
2345678919123456738
456789123789123456
(mv=10,5=4,b=450=12, u =6, A =2
5.3 Block Size Five
When k = 5 then s = 3, so Equations (5) and (6) give 16b = v(v - 1) and
3b = v(v - 1)A, so b must be a multiple of v(v - 1). If v=3, 4,7, 9 or 10 then
Table 3 gives a design with s = k = 3 and b = v(v — 1)/3. Replace each block of

the form (x, y, z) by the three blocks (x, y, y, z, 2), (x, X, ¥, Z, 2) and (X, X, ¥, ¥,
z). Designs for v =5, 6 and 8 with b = v(v - 1) are given in Table 5.

"Table 5. Designs for blocks of size five (k=4,5=3, 8 = 16) : see text for other numbers

of treatments
12345234513451245123
23451451231234534512
23451451231234534512
34512123454512323451
34512123454512323451
(@v=5b=20,u =16, A =3
666661234523451512344512345123
2345134512512346666634512512314
234513451251234666663451251234
123454512366666234515123434512
123454512366666234515123434512
b)v=6b=30,u =16, A =3
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5.4 Block Size Six

When k = 6 then s = 3 and every block has the form (x, X, v, ¥, z, z). Use
the design from Table 3 for the appropriate value of v, and double the
occurrences of each entry. For example, if v = 7 then the first block is (1,1, 2, 2,
4, 4). Note that, after randomization, there are six possibilities for this block,
including

(2lafafifrj2]2fandfafaj1]1]2]2[4]

5.5 Block Size Seven

When k = 7 then s = 4, so Equations (5) and (6) give n=9A and
4b = v(v —- 1} A. Also, every within-block contribution to concurrence is either 4
or 2, so u is even and hence A is even. Each block has a single unrepeated

treatment, so, to maintain symmetry, b must be a multiple of v. Table 6 shows
the smallest design forv=4,6,7,8and 9.

When v = 3, use the design in Table 4 with s = 4 and replace each block of
the form (w, X, vy, z) by the four blocks (w, X, X, ¥, ¥, 2, 2), (W, W, X, ¥, ¥, Z, 2),
(w, W, X, X,¥,z,z)and (W, W, X, X, ¥, ¥ ,Z).

When v = 10 the smallest solution to the equations has b = 90 A design
with 90 blocks of 7 plots each is probably too large for practical purposes, so no
design is tabulated.

5.6 Block Size Eight

When k = 8 then s = 4 and every block has the form (w, w, X, X, v, ¥, Z, 2).
Use the design from Table 4 for the appropriate value of v with s = 4, and
double the occurrence of each entry.

5.7 Block Size Nine

When k = 9 then s = 4 and again we find that 4b = v(v - 1)A, A is even
and v divides b. Use the designs for k = 7 and replace each block of the form
(W, X, %, 9,9, 2, 2) by the block (w, w, w, X X, ¥,¥,22).
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Table 6. Designs for blocks of size seven(k =7, s =4, 6 =36): see text for other

numbers of treatments

123423311244
214331234412
214331234412
341212442331
432144123123
432144123123

(@yv=4,b=12,9 =36, A =4

644523632556153413161224263514
435236344345564635624152312323
435236344345564635624152312323
352665425214636154256415621241
352665425214636154256415621241
566452263451311341512641135132
566452263451311341512641135132

(byv=6,b=30, u =36, A =4

71234561234567712%456
123456745671232345671
123456745671232345671
345671234567126712345
345671234567126712345
234567171234564567123
234567171234564567123

(©)v=7,b=21, p =18 A =2

(d) v=8,b=156, p =36,

7123456123456723456714567123
1234567234567112345672345671
1234567234567112345672345671
2345671456712371234561234567
23456714567123712345612345617
4567123712345645671237123456
4567123712345645671237123456

123456767123452345671
671234512345676712345
671234512345676712345
234567188888881234567
234567188888881234567
888888234567 18888888
88888823456718888888R
A=4
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123789456456123789123789456645312978
231897564123789456645312978231897564
231897564123789456645312978231897564
564231897231897564231897564978654312
564231897231897564231897564978654312
456123789564231897978645312123789456
456123789564231897978645312123789456
(€ v=9,b=36 U =18 A =2

[2]

{3]

[4]

(5}

(6]

{7]

(8]
9]
[10]
(11}

[12]

[13]

{14]
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