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SUMMARY 

This article investigates the robustness of Youden square and Latin 
square designs against missing data. The robustness has been investigated 
against the loss of any t(~l) observations in a column/row and for the loss of 
any two observations in the design as per connectedness criterion. The 
robustness has also been investigated as per the A-efficiency criterion. 
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1. Introduction 

The loss of data in field experiments is a common phenomenon, which at 
times leads to some serious problems. Firstly, the residual design may become 
disconnected and it may not be possible to make all possible paired comparisons 
through the design. Secondly, although the residual design may be connected, 
the loss of efficiency may be so high that even an optimal design may render to 
be less efficient. A design that is capable of absorbing such shocks after the loss 
of data is called a robust design, An experimenter will prefer a design that 
remains connected even after the loss of any t(~l) observations (hereafter called 
as Criterion I robustness studied by Ghosh [5]). The experimenter may further 
prefer that the A-efficiency of the residual design, as compared to the original 
design, is not too small (hereafter called as Criterion 2 robustness studied by 
John [11], Gupta and Srivastava [8] and Dey [2]). 

The robustness of incomplete block designs against missing data has been 
investigated in the literature from different angles (see e.g. Hedayat and 
John [10], John [11], Ghosh ([5], [6], [7]), Baksalary and Tabis [1], Dey and 
Dhall [4], Srivastava et al. ([16], [17], [18]), Gupta and Srivastava [8], Mukerjee 
and Kageyama [14], Dey [2], Dey et al. [3] and Lal et al. [13]). The robustness 
of Latin square designs (LSD) against missing data has been studied by 
Ghosh [6] as per Criterion 1. It has been shown that a Latin square design of size 
v ~ 4 is robust against the loss of any v-I observations. Srivastava et al. 
([16], [17]) observed that Youden square designs (YSD), obtainable through 
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symmetrical balanced incomplete block (BIB) designs listed in Raghavarao [15], 
are almost robust against the loss of all observations in one column as per 
Criteria I and 2. 

This article gives further results on robustness of You den square designs, 
as per Criteria I and 2 against the loss of any t(~l) observations in a columnl 
row and for the loss of any two observations in the design pertaining to same or 
different treatments. YSDs obtained from symmetric BIB designs and LSDs 
have been identified for robustness against the loss of any t(~I) observations in 
a column/row and any two observations in the design. Srivastava et al. ([16], 
[17]) studied particular case when t == p, where p is column size. 

Throughout the present investigation we shall deal with real matrices and 
vectors. Denote an n-component vector of all unities by In, an identity matrix of 
order n by In and m X n matrix of all ones by J m x n , J m x m is simply denoted by 

Jm. Further, A', A-and A+ will respectively denote the transpose, a 
generalized inverse (g-inverse) and the Moore-Penrose inverse of a matrix A. 

2. Condition for Robustness 

2.1 Some Preliminaries 

We consider the usual homoscedastic, additive, fixed effects linear model 
under two blocking systems as 

M == {y, X a, crIn } (2.1) 

where X==[ln a' D~ D;], a==[J.t T' \If' x'J', T (Tl, ... , Tv)' is a 

v x 1 vector of treatment effects, \If = (\Ifh ... , \lfp)' is a p x 1 vector of row 

effects, X=(X" •.. , Xq)' is a q x 1 vector of column effects, y is n X I vector of 

observations, Il is the general mean, a' is n x v design matrix of observations 

vs treatment effects, D; is n x p design matrix of observations vs row effects, 

D; is n x q design matrix of observations vs column effects and 

e (e" ... , en)' is an n x 1 vector of non-observable random variables, each 

distributed with mean zero and constant variance (P. Our interest is in estimating 
the parameter vector T. Partition a as a == (a~: a; )', where a, == T and 

a 2 := [Il \If' X']' and X = [XI: X2] with Xl and X2 are nx v and 

n x (p + q + 1) matrices, respectively. 

Also a'lv = D; 11' == D; lq = In. Let r = a1n = (rl , ... , rv)" 

k, == Dlln=(kll, ... ,klp)' and k2 = D21n = (k21 , ... ,k2q )' denote respectively, the 

vector of replications, the vector of row sizes and the vector of column sizes and 
let R= M' =diag(r1, ... ,rv ), Kl=D1D~ diag(k", ...,k1p ) and K2=D2D; 

=(k 21 , ... , k2q ). Also let N, =AD; be the v x p treatments vs rows incidence 
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matrix, N2 = W; be the v x q treatments vs columns incidence matrix and 

W = D)D; be the px q rows vs columns incidence matrix. We then have 

Wlq= k! =N;ly. W'lp;::: k2= N;ly, N)lp;::: r N2 1qand r'ly = k~lp 

;::: k;lq n. The information matrix for obtaining the best linear unbiased 

estimators (BLUE) of the estimable parametric functions of 't, after eliminating 
the other nuisance parameters. is 

C, ;::: APxzA' (2.2) 

where Px2 ;::: I - X2 (X;X2 )-X; 

I-DiK[IDt (DiK[IW D;)F-(W'K[IDI-D2 ) 

F = K2 - W'K[tW 

It is easy to verify that Px 1=0 
2 

We assume that the design d considered here is connected and 
Rank (C,) v -1. Suppose now that any t(;:::I) observations are lost in d. Let dt 

be the residual design and we consider the model of t missing observations as 

Mt {Ay,AXe,O'2A} (2.3) 

where A = 1- U. U = [uJ, U2 , ••. , un] and Uj = (0, 0, ... , lUth
), 0, 0, .... 0)' is an 

n-component vector with a 1 in the jib position if Jh observation is lost and ° 
elsewhere, j 1, ... , n. Under this model usual C-matrix simplifies to 

C,(t) AAA'-AAX2 (X;AX2 )-X;AA (2.4) 

We consider now another model in which we devote an extra parameter to 
each missing observation as 

Mz == {y, Z 0 , 0'2 In } (2.5) 

where Z =[X U], 0 = [e' yT (2.6) 

It can be easily verified that the C-matrix derived from model Mz is 
identical to the matrix given in (2.4) (see. Lal et al. [13]). Henceforth, we shall 
use the model Mz for studying the robustness. The following relationship 
between C, and C,(I) is known (Lal et al. [13]). 

Lemma 2.1. C" =C,(t) +VC;V'. where C. =UPX1U is non-negative 

definite and V =APX1 U. 

2.2 Conditions for Robustness 
In this section we present the condition for robustness of two-way 

heterogeneity design d under the model (2.1) against missing data. For 
robustness against the loss of any t(;:::I) observations as per Criterion 1, the 
following result is due to Lal et al. [13]. 

------~ ...~.-..--­
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Lemma 2.2. The design d is Criterion 1 robust against the loss of any t 

observations if the smallest eigenvalue of C, is strictly greater than the largest 

eigenvalue of VC;V'. 

Once it is known that a design is Criterion 1 robust it is of interest to 
examine the efficiency of the residual design relative to original design and 
decide robustness on the basis of Criterion 2. The A-efficiency of residual 
design with respect to original design is given by 

E = Sum of reciprocal of non - zero eigen values of C, = tracer C~] 
(2.7) 

Sum of reciprocal of non - zero eigen values of C,(t) trace [C~(t)] 

Now using Theorem 2 of Dey [2], we have 

C+ =C+ + C+VC-1/2 [I - C-1/2V'C+VC-1/2]-1 C-1/2V'C + (2.8)
,(t) , , • n • ,. • , 

so trace[C~(t)] = trace[C~] + g( a) (2.9) 

where g(a) =trace [C~VC;1/2(ln - C;1/2V'C~VC;1/2)-1 C;1/2V'C~] 

=trace[(l - C;1/2V'C~VC;I/2)-1 C;1/2V'C~C~VC;1/2] (2.10)n 

-1 

E = trace[C~] = 1+ g(a)Thus (2.11) 
trace[C~]+g(a) [ trace[C~] ] 

Let the design be variance balanced and 11 is the unique non-zero 

eigenvalue of C, with multiplicity v-I, then C~ = ..!.Iv. (2.12) 
11 

For computing efficiency, we need to calculate the eigenvalues of 

C;1I2V'VC;I/2 . Since the non-zero eigen values of C;I/2V'VC;I/2, VC;V' 

and C;V'V are same, we work out the eigenvalues of VC;V' or 

C;V'V instead of C;1I2V'VC;1I2 . 

Let el ~ e2 ~ ... ~ em are the m(:S;t) positive eigenvalues of VC;V' or 

C;lV'V, where t(~I) is the number of observations lost, then for a variance 

balanced design we have 

(2.13) 
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3. Applications 

In Section 2 we have given some conditions for robustness of a design d 
for a general two-way heterogeneity setting in which all the classifications are 
possibly non-orthogonal. Although these conditions are applicable to any 
connected design for a two-way heterogeneity setting, further simplifications are 
possible to identify robust designs if we restrict our attention to specific designs. 

3.1 You den Square Designs 

A row-column design is a two-way heterogeneity design with rows vs 

columns classification orthogonal i.e. W", k,k; . In the class of row-column 
n 

designs the simplest one are Latin square designs with v treatments, v rows and 
v columns (p = q =v) and Youden square designs with prows, q (= v) columns 
and v treatments. In Y ouden design p x q array has one observation in each cell , , 

D t D, D2 Dz I ni.e. W =Ipq and PX2 =I -- - --- + -, n =pq 
q p n 

Without any loss of generality, we suppose that the n observations are 
arranged in such a way that the first p observations come from first column, the 
next p observations come from second column and so on, and the last p 
observations come from the qlh column. Then we have D; =Iq ® Ip, 

D; =Iq ® Ip and P
X2 

=$p ® $q =$q ® $p (if we change the order of 

observations of rows and column), where ® stands for Kronecker product of two 

matrices and $p = I _"!"J p and <Pq = 1- ..!..Jq. 
p q 

Similarly we partition &' as &' = [&t &z ... &q]', where &j is a 

p x v (0 - 1) matrix for treatments; j = 1, 2, ... , q. Thus C-matrix can be written 

as 

(3.1) 

A Youden square design can always be constructed from a symmetrical 
BIB design. Also Latin square is a particular case of Youden square design 
when p = v. The non-zero eigenValues of C-matrix of a Youden square design 

and a Latin square design are pv(p -1) and pv, respectively with multiplicity 
v-I 

v-I, where p is the number of times the design is replicated. Now we study the 
robustness of Y ouden square and Latin square designs when missing 
observations follow specific pattern as per both the criteria of robustness. 

---_.... __._._-_...... _-_...._--­
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3.2. Robustness of Youden Square Designs 

We consider the following cases of missing observations. 

Case 1. When any t(1 ::; t::; p) observations are lost in a column 

Suppose that t(1 ::;t::; p) observations belonging to one of the columns of 
design d are lost. Without loss of generality, let the missing observations pertain 
to first t treatments in the first column of d. Then it is easy to see that 

(3.2)C;V'V =[P~~ll' :lifl~ t~p-l 

~Ijl 0]
:::;; pv -;,1 Po' if t = P (3.3)[

The non-zero eigenvalues of C;V'V are~ with multiplicity t, if 
pv -1 

I::; t ::; p 1 and ~with multiplicity p - 1, if t = p. Then by the use of 
pv-I 

Lemma 2.2 we arrive at 

Theorem 3.1. Youden square designs are Criterion 1 robust against the loss 

of any t( 1 ::; t::; p) observations in a column if p> (p + l)v - 2 . 
(pv -1) 

Corollary 3.1. All the 62 Youden square designs obtained from symmetric 
BIB designs listed in Raghavarao [15], Kageyama [12] and Hall [9] are 
Criterion 1 robust for the loss of any t observations in a column, for all values 
ofp. 

The A-efficiency of the residual design from (2.13) is simplified as 
-1 

t 
E(t) = 1+ , if 1::; t::; p - 1 (3.4) 

[ (p - 1)(pv - 1) - (v - 1 ) ] 

-1 
p-l

E(p) = 1+ , if t = P (3.5)
[ (p -1 )(pv -1) - (v -1) ] 

Remark 3.1. The efficiency of residual design in comparison to original 
design decreases as t( 1 ::; t ::; p), the number of missing observations increases in 
a column in Y ouden square designs. This efficiency is minimum when t =p 
or p-1. 

http:AGRICULTUP.AL
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Remark 3.2. By symmetry, the robustness of a residual design when any t 
observations are lost in a row is same as when any t observations are lost in a 
column. 

Case 2. When any two observations are missing in a Youden square design 

When any two observations are missing in a Youden square design, the 
situation can be treated by separating into the following patterns 

Case 2(a). When any two missing observations belong to the same column 

This is a particular case of Case I when t =2 and is represented by E1(2). 

Case 2(b). 	When both the missing observations belong to the same 
treatment in different columns/rows 

Suppose without any loss of generality, that the two missing observations 
pertain to the first position in the first column and the second position in the 
second column and both the observations pertain to the same treatment, then we 
have 

(p -l)(pv - I ) IOf 	 Of 
pvp pvp 

0 0 0 0 
 (3.6)C. = I (p -I)(pv -I) Of0' 

pvp pvp 

0 0 0 0 


On 	 simplifying we get the two non-zero eigenvalues of C;V'V as 

e
l 

= 	pvp (b + c) and e2= PVP (b -c) , where a = (p - I)(pv - I), b = (p-I) , 
a+1 a-I p 

c = [ P -1]2 + A. ~ I and A is the number of columns in which each pair of 
P p. 

treatments occurs together in a symmetric BIB design from which Youden 
square is obtained. With these eigenvalues we compute the A-efficiency E2(2) 
from (2.13). 

Case 2(c). When both the observations belong to different treatments in 
different columns/rows 

Without any loss of generality, let the two missing observations belong to 
the first position in the first column and the second position in the second 
column and bbth observations pertain to different treatments. In the present case, 

no unique eigenvalue of C;V'V can be obtained because with interchange of 

columns of Youden square design, the non-zero eigenvalues of C;V'V also 
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change. However a lower bound of efficiency can be obtained if we are able to 

work out the maximum eigenvalues of C;V'V. For this we work out the 

eigenvalues of C;V'V for all possible structures of C;V'V. Interestingly. it is 

found that the eigenvalues of C;V'V are maximum when both the observations 

belong to the same treatment. Thus the efficiency calculated for the Case 2(b), 
[E2(2)] provides the lower bound for the present case. 

In Table I the values of efficiencies for different cases of missing 
observations in Youden square designs obtained from symmetric BIB designs 
listed in Raghavarao [15], Kageyama [12] and Hall [9] for p = land p =2 are 
presented in Table 1. It reveals that for the loss of one observation in a column, 
the loss of efficiency is more than 20% in design R2 and for the loss of a 
complete column the efficiencies are greater than 80% except for four designs, 
viz. R2, R4, R8 and RIO, when p = 1. Also loss of efficiency increases when the 
number of missing observations increases in a column and it is maximum when 
t = P or P - 1. Youden square designs are fairly robust against the loss of all 
observations in a column. For the loss of two observations, except for the 
designs R2, R4 and RIO the efficiencies are greater than 80%, when p = 1. The 
efficiencies are always greater than 80% for all the cases studied here, when 
p = 2. Thus we conclude that Youden square designs are fairly robust against the 
loss of any 2 observations in the design as per Criterion 2. 

Table 1. A-efficiency of the residual design when the original 
design is a Youden square design 

E >0.99 0.95 - 0.99 0.90 - 0.95 0.80-0.90 <0.80 
p=1 	 E(I) 44 13 2 2 1 

E(p) 12 29 8 9 4 
E I (2) 39 14 4 3 2 
E2(2) 38 14 4 3 3 

p=2 	 E(l) 52 9 1 0 0 
E(p) 26 26 8 2 0 
E I (2) 44 14 3 1 0 
~(2) 44 13 3 2 0 

3.3 Latin Square Designs 

Latin square design is a particular case of a Youden square design when 
p == v. Thus the expressions for calculating the efficiencies are same as those of 
Y ouden square designs with the change p == v. However explicit expression can 
be obtained for the case when the two missing observations pertain to different 
treatments in different rows or columns. Without loss of generality we assume 
that the first missing observation belongs to the first treatment at the first 
position of first column and the second observation to any other treatment at the 
second position in the second column. Thus the matrix C. takes the following 

form 

http:0.80-0.90
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(v -l)(pv 1) 0' 0'
2 2pv pv

0 0 0 0= 1 (v-l)(pv-1)
0' 0' 

2 2pv pv
0 0 0 0 

On simplifying, we get the two non-zero eigen-values of C;V'V as 

pv2 (v-2)[p(v-1) 1] 


(pv-1)2(v-1)2-1 


pv2 (pv2 -pv-v+2)
and 

(pv-1)2(v-l)2-1 


Thus the A-efficiency of the residual design is given by 


2 

1 1 ejE3(2) 

+ v -1 L. (pv - e. )
1:1 1[ r 

Table 2. A-efficiency of the residual design when the original 
design is a Latin square design 

0.50 0.50 0.33 0.89 0.80 0.80 0.78 0.77* 
4 0.67 0.75 0.67 0.71 0.95 0.86 0.90 0.89 0.90 
5 0.92 0.75 0.86 0.82 0.85 0.97 0.89 0.94 0.94 0.94 
6 0.95 0.80 0.91 0.89 0.91 0.98 0.91 0.96 0.96 0.96 
7 0.97 0.83 0.94 0.93 0.94 0.99 0.92 0.97 0.97 0.97 
8 0.98 0.86 0.96 0.95 0.95 0.99 0.93 0.98 0.98 0.98 
9 0.98 0.88 0.97 0.96 0.97 0.99 0.94 0.99 0.98 0.99 

2::10 2::0.99 2::0.89 2::0.97 2::0.97 2::0.97 2::0.99 2::0.95 2::0.99 2::0.99 2::0.99 
, Note: * represents that the design is not Criterion I robust. 

Similar to the Youden square designs, the A-efficiencies for Latin square 
designs are presented in Table 2. It is evident from Table 2 that the loss of 
efficiency is ve,'y high for Latin square design for v 3 in all the cases. The lo~s 
of efficiency is also high when v = 4 for the loss of any two observations or all 
the observations in a column. The efficiency is quiet high for all the cases for 
v ~ 5. Also the efficiency decreases as the number of missing observations 
increases in a row or column and it is minimum wh~n t = v or v 1. The 
efficiencies are always greater than 80%, except for the loss of any two 
observations or a complete column/row for v =3, when p =2. Thus Latin square 

p=l p 2 
E(p) EI(2) E2(2) E3(2) E(l) E(p) E1(2) E2(2) E3(2) 
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designs for v ~ 5 are fairly robust against the loss of any two observations and 
loss of any number of observations in a column. 
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