
Jour. Ind. Soc. Ag. Statistics 
56( 1). 2003 : 39-51 

Comparison of Mixture Designs Obtained Through Projections 

M.L. Aggarwal and Poonam Singh 
University ofDelhi, Delhi-llO007 

(Received: October, 2002) 

SUMMARY 

Box and Hau [4] and Prescott [18] discussed projection designs for 
mixture experiments. In this paper, we consider the projections of four types 
of standard three - level designs into the mixture simplex and provide 
efficiency measures for the resulting mixture designs when Scheffe's 
quadratic model and Darroch's quadratic models are fitted. We also tabulate 
and compare the uniformity measures for these designs. 
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I. Introduction 

In experiments with mixtures, the response depends only on the 
proportions of the q components present in the mixture and not on the total 
amount of the mixture. As a result, the factor space reduces to a regular 
(q -I)-dimensional simplex 

0.1) 

Mixture experiments are widely used in agricultural, horticultural, and 
industrial situations. Batra et al. ([1], [2]) used mixture experiments in analysis 
of agricultural experiments involving fixed quantity of fertilizer applied in splits 
at different crop growth stages. Deka et al. [9] applied methodology of mixture 
experiments for quality evaluation of mixed fruit juice/pulp ready to 
serve (RTS) beverages. 

Scheffe ([20], [21]) was the first to introduce models and designs for 
experiments with mixtures. Murty and Das [17] have developed symmetric­
simplex designs so that the design points are scattered uniformly over Sq-l' 

------------~.--.-.-.--
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In practice, physical and economic considerations often impose additional 
constraint in the form of lower (Li) and upper (Vi) bounds 

o:=; L j :=; x j :=; V j :=; I (1.2) 

on the level of some or all the x/s in the mixture. In such cases, the experimental 
region is a part of the simplex Sq _ 1. Batra et al. ([1], [2]) observed that in 
experiments involving split application of fertilizer, constrained mixture designs 
are more appropriate. For exploring the restricted region, Mclean and 
Anderson [15] introduced extreme vertices designs (EVD). Saxena and 
Nigam [19] gave a transformation that provides designs constructed through 
symmetric simplex designs. Cornell [7] gives an excellent review on the 
problem of experiment with mixtures. In this paper, we consider the following 
two models: the quadratic model due to Scheffe [20) 

q 

Model I: E(Y):o L. [3j Xi + L. [3ij XiXj (1.3) 

and the additive model due to Darroch and Waller [S] 

L.
q 

[3i Xi + L.
q 

[3ii x i (1- xJModel II : E(Y) (1.4) 

iii I 

The Model I is the most commonly used model in mixture experiments and 
is appropriate for the well behaved systems. The Model II is additive in mixture 
components and is suitable for the design of industrial or agricultural products 
where mixture components have additive effects on response function. Chan [6] 
describes the study and design of solder plate used in surface-mount technology 
in electronic manufacturing as an example where this model can be applied and 
Scheffe's quadratic model is not a suitable model. 

Box and Hau [4J and Prescott [IS] discussed the construction of projection 
designs for mixture experiments by projecting the standard designs such as two­
level factorials and central composite design. They also showed that some useful 
properties of the generating designs, such as orthogonal blocking and rotatability 
are retained in projected designs which make these designs suitable for mixture 
experiments. Prescott [IS] also discussed the case when some ingredients are 
restricted to small values. Box and Hau [4] discussed some second order mixture 
designs generated by two-level factorials. 

For a second order response surface model the designs involving three 
equally spaced levels are popular choices. In this paper, we have used the 
projections of well-known three-level response surface designs to obtain mixture 
designs for 3 to 5 mixture components. The four families of three-level designs 
considered here in this context are- the central composite designs of Box and 
Wilson [5J, the Box and Behnken [3] plans, the small composite designs of 
Draper and Lin [II] and the augmented pair designs of Morris [16]. The D-, A­
and G- efficiencies are also tabulated and compared when we fit Model I 
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Model II to these designs. The uniformity measure centered L2-discrepancy 
(CD2) is also tabulated and compared for these designs. We also construct 
designs for restricted exploration of mixtures, using the transformation given by 
Saxena and Nigam [19] with a slight modification. The method is illustrated 
with the help of examples. 

In Section 2, we give the optimality criteria and uniformity measure used 
for evaluating and comparing designs. In Section 3, we briefly describe the four 
families of three-level designs considered here. Section 4 describes the 
construction of projection designs. In Section 5 we illustrate the construction of 
projection designs using a three component mixture experiment. The efficiencies 
and discrepancies of the mixture designs obtained by projecting the four families 
of designs are also tabulated and compared for 3 to 5 mixture components. The 
restricted exploration of mixtures that is when (1.2) is satisfied is discussed in 
Section 6. 

2. Design Evaluating Criteria 

After considering practical constraints design optimality criteria are often 
used to evaluate a proposed experimental design. The design optimality 
measures tqat we use to compare different designs are D-, A- and G-efficiencies 
given by 

lx/x1
1/P 1 r 

f 
\D-eff::::: 100 , A eff::::: 100 p -I J'[ n \ n trace (X X) 

G-eff 100 (P/nd) (2.1) 

where n =number of design points in the design; p ::::: number of parameters in 

the model; and d ::::: max {v::::: X (X'X) -I x'} over a specified set of design 

points (the row vectors) x in X' where X is the extended design matrix 
depending on model to be fitted. Corresponding to Model I and Model II, we 
have p ::::: q (q + 1)/2 and p ::::: 2q respectively in (2.1). The efficiencies are 
generated using Matlab software and are simply denoted by D, A, and G for 
convenience. 

In recent years uniformity concept is also applied for evaluation of designs. 
Fang and Wang [12] describes uniform designs in which the points are scattered 
uniformly over the experimental domain. Hickernell [14], gave centered 
Lrdiscrepancy (CD2) as a measure to find uniform design 

L 
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where P = {xl' X2' •.. xn} be a set ofn points in [0, I]'. 

The centered Lrdiscrepancy (CD2) considers the uniformity of P not only 
over CS but also of all the projection uniformity of Paver C" where u is a non 
empty subset of coordinate indices S ={l, 2, 3, ... , s}. 

The maximum value of D, A and G and the minimum value of CD2 is 
desirable. 

3. The Three-level Designs 

For response surface m0gel of order two, three-level designs are popular 
choices. Since the full factorial designs using factors with three levels require 
many experimental runs therefore, alternative designs with fewer runs are 
typically used in practice. We now briefly describe the four families of three 
level designs we are going to study in this paper. 

1. 	 The central composite designs (CCD) are given by Box and Wilson [5]. 
These designs are five level factorial experiments with levels denoted by 
± a, ± 1,0. We take 0.=1, so that only three experimental levels are 

required. 

2. 	 Hartley [13] pointed out that the nonsingular composite designs can also 
be constructed using smaller fractional factorials, provided two factor 
interaction are not aliased with other two factor interactions following 
which, Westlake [23], Draper [10] and Draper and Lin [11] introduced 
other catalogues oftsmall composite designs (SCD). The SCD employed 
here are taken from Draper and Lin [11]. 

3. 	 In Box-Behnken designs (BBD) of Box and Behnken [3], The "gross" 
structure of the design is determined by selecting an incomplete block 
design (IBD) in q treatments and b blocks. A one-to-one relation is 
established between the treatments of the IBD and the factors of response 
surface problem. Then for each block of the IBD, the "fine" structure of 
the response surface design is determined by selecting a two-level 
factorial or fractional factorial in the factors associated with these 
treatments and assigning the value of °to all other factors in these runs. 

4. 	 The augmented pairs designs (APD) given by Morris [16] are obtained by 
augmenting the first order designs to provide second order designs. The 
three groups of points are (a) a two-level first-order design, 
preferably orthogonal; (b) for each pair of runs (x r , Xs ~ r < s in (a) add a 

new run Xrs by setting xrs = (x r + xs ) 12; (c) a number no of center 

points (0, 0, ..... , 0). 

_ ..__.__.._--------- ­
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4. Projection Designs 

Box and Hau [4] and Prescott [18] discussed the construction of projection 
designs for situations when the design variables are subject to linear constraints. 
The idea of the construction is to project an appropriate unconstrained design 
onto the constrained space. Suppose we are interested in the construction of a 
design with q factors Xl' X2' X3' ... , Xq subject to m constraints 

Cx=c (4.1) 

where C is an m x q matrix and c is an m x 1 column vector. Suppose XO is the 

chosen origin for the levels of the experimental design then Cxo =c. Let the 

region of interest be the neighborhood x? ± rj around XO where r/s are some 

positive numbers, then the coded variables 

x· -x~ 
~i = J J (4.2) 

arj 

satisfy the constraints 

A~= 0 (4.3) 

where ~ is a q x I vector of coded variables ~i' s, A (aij) is an m x q matrix of 

constraints with aij rjcij and 0 is an m x I vector of O's and a is the scaling 

constant used by the experimenter to modify the overall coverage of the design, 
and is chosen to be the largest number such that all the entries of the matrix aD~ 

are between -1 and 1. 

Let Dz be an n x q matrix of some unconstrained generating design and 

D~ be that of the corresponding constrained design obtained by projection to 

satisfy (4.3) then 

D~ =DzP (4.4) 

where P = I - A'(AAy. A is an idempotent projection matrix of order q x q 

then D~Af =DzPA' =0 and the levels of the design Dx may be obtained from 

Xi = arj~j + x~ (4.5) 

where 'a' is the number such that all the entries of aD~ are between -1 and 1. 

5. Evaluation ofMixture Designs Obtained Through Projections 

In the simplest case of a three component mixture with 0:::; Xj :::; 1 for 

i = 1, 2,3 let XO =(1/3,1/3, 1/3) be a point which satisfies Xl + x2 + x3 =1. 
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Let the region of interest be the neighborhood x~ ± rj around XO where rj = 1/3; 

j = I, 2, 3. The response surface designs Dz for the four families of designs are 

given in Table I and are denoted here by DCCD ' DOOD ' DSCD and D APD. 

Table 1. Standard three-level designs in three factors 

DCCD DOOD DSCD DAPD 
-1 -1 -1 -1 -I 0 -1 -1 -1 1 -1 -I 
-1 -1 1 -1 1 0 1 1 -1 -1 1 -1 
-1 1 -1 1 -1 0 1 -1 1 -1 -1 1 
-1 1 1 1 1 0 -1 1 1 1 1 1 

1 -1 -1 -1 0 -1 -1 0 0 0 0 1 
1 -1 1 -1 0 1 1 0 0 0 1 0 
1 1 -1 1 0 -1 0 -1 0 -1 0 0 
1 1 1 1 0 1 0 1 0 1 0 0 

-1 0 0 0 -1 -I 0 0 -1 0 -1 0 
1 0 0 0 -1 1 0 0 1 0 0 -1 
0 -1 0 0 1 -1 0 0 0 0 0 0 
0 1 0 0 1 1 0 0 0 0 0 0 
0 0 -1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

We may note that here we have used Y2-feplicate for the design APD. A 
full replicate will produce a large number of augmenting point, therefore a 
YHeplicate is taken. Use of other Ih-replicate produces APD, which is same as 
SeD. Now the idea is to project the center (0,0,0) of the design Dz onto the 

o (1 11]center x = -, -'-I ofDx• 
3 3 3/ 

The projection matrix P= I - A'(AA)-1 A is a matrix of order 3 x 3 where 

A (!, I .!} Following the method described in Section-3, we get mixture 
3 3 3 

designs PDCCD ' PDOOD ' PDSCD and PD APD given in Table 2 for four families 

of designs considered in Table 1. 

To illustrate, let us consider the design DCCD given in Table I as 

the response surface design to be projected into the simplex S2. The projection 
matix Pis 

2-I 1]

[ 2-1p=i -1 

-1 -1 2 

---------------~--- ---- -------~------------------~ 
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so that 

DI; =DCCD P= 

0.000 0.000 0.000 

-0.667 -0.667 1.333 

0.667 1.333 -0.667 

1.333 0.667 0.667 

1.333 -0.667 0.667 

0.667 1.333 0.667 

0.667 0.667 -1.333 

0.000 0.000 0.000 

-0.667 0.333 0.333 

0.667 0.333 -0.333 

0.333 -0.667 0.333 

0.333 0.667 -0.333 

0.333 0.333 -0.667 

0.333 -0.333 0.667 

0.000 0.000 0.000 

The largest absolute value of the entries of the design D~ is 1.333, so we 

take the scale factor a = 111.333 = 0.750 and the coordinates of the points of 
in the mixture simplex are now obtained using the equation (4.5) and PDCCD 

are given in Table 2. 

Table 2. Mixture designs obtained through projections of three-level designs 

PDCCD PDBBD PDsCD PDAPD 

0.333 0.333 0.333 0.222 0.222 0.556 0.333 0.333 0.333 0.667 0.167 0.167 
0.167 0.167 0.667 0.000 0.667 0.333 0.500 0.500 0.000 0.167 0.667 0.167 
0.167 0.667 0.167 0.667 0.000 0.333 0.500 0.000 0.500 0.167 0.167 0.667 
0.000 0.500 0.500 00444 0.444 0.111 0.000 0.500 0.500 0.333 0.333 0.333 
0.667 0.167 0.167 0.222 0.556 0.222 0.167 0.417 00417 0.250 0.250 0.500 
0.500 0.000 0.500 0.000 0.333 0.667 0.500 0.250 0.250 i 0.250 0.500 0.250 
0.500 0.500 0.000 0.667 0.333 0.000 00417 0.167 0.417 0.167 0.417 0.417 
0.333 0.333 0.333 0.444 0.111 0.444 0.250 0.500 0.250 0.500 0.250 0.250 
0.167 0.417 00417 0.556 0.222 0.222 00417 00417 0.167 0.417 0.167 0.417 
0.500 0.250 0.250 0.333 0.000 0.667 0.250 0.250 0.500 0.417 0.417 0.167 
00417 0.167 0.417 0.333 0.667 0.000 0.333 0.333 0.333 0.333 0.333 0.333 
0.250 0.500 0.250 O.lll 0.444 0.444 0.333 0.333 0.333 0.333 0.333 0.333 
0.417' 0.417 0.167 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 
0.250 0.250 0.500 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 
0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 
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We obtain mixture designs for 3 to 5 component mixtures by projecting the 
four families of designs in 3 to 5 factors. To save space we have not given 
mixture designs obtained through projections for four and five mixture 
components. These are available with the authors. We obtain uniformity 
measures for these designs. We fit Model I and Model II to these designs and 
obtain efficiency measures using efficiency criteria given in Section 2. We give 
the uniformity measures and the efficiency measures in Table 3. 

Table 3. Discrepancies and efficiencies of the mixture 
designs obtained through projection 

Generating Modell Model II 
q p n no CD2 
Design 

BBD 

SCD 

CCD 

APD 

3 615 3 
0.374712 

41027 3 0.688893 

51546 3 1.100210 

3 611 1 0.418501 


13 3 0.438016 

15 5 0.456852 


410 17 1 0.747609 

19 3 0.762765 


51523 1 1.144800 

25 3 1.156502 

28 6 1.729070 


3 615 1 0.392521 

17 3 0.410163 


41024 o 0.713594 

25 1 0.719362 

27 3 0.730859 

29 5 0.742001 


51527 1 1.132990 

28 2 1.138052 

29 3 1.430620 

31 5 1.152825 


3 611 1 0.417679 

13 3 0.437388 

15 5 0.456352 


41036 o 0.750375 

37 1 0.753682 

39 3 0.760291 


51527 1 1.153238 

39 3 1.160336 

41 5 1.167236 

42 6 1.170595 


D A G 
1.171 0.208 56.545 
0.224 0.033 64.516 
0.055 0.009 67.541 
0.468 0.051 58.995 
0.419 0.045 50.264 
0.378 0.040 43.730 
0.094 om 1 60.890 
0.086 0.010 54.580 
0.024 0.002 67.115 
0.022 0.002 61.775 
0.020 0.002 55.180 
0.781 0.120 53.887 
0.722 0.115 47.626 
0.159 0.023 63.393 
0.155 0.022 60.931 
0.147 0.022 56.579 
0.139 0.021 52.761 
0.041 0.006 58.942 
0.039 0.006 56.864 
0.038 0.006 54.925 
0.036 0.005 5l.412 
0.468 0.056 58.995 
0.419 0.050 50.264 
0.378 0.041 43.730 
0.103 0.013 38.800 
0.270 0.101 37.909 
0.256 0.097 36.204 
0.Q25 0.003 49.415 
0.024 0.003 47.128 
0.023 0.003 45.002 
0.022 0.003 43.999 

D A G 
1.475 0.344 56.445 
0.509 0.081 60.377 
0.217 0.027 60.757 
0.589 0.064 58.995 
0.527 0.055 50.264 
0.477 0.048 43.730 
0.247 0.028 52.173 
0.228 0.025 46.725 
0.096 0.005 50.904 
0.090 0.005 46.840 
0.083 0.004 41.829 
0.984 0.191 53.887 
0.910 0.175 47.626 
0.342 0.046 58.244 
0.334 0.045 55.921 
0.318 0.04:3 5l.787 
0.303 0.040 48.220 
0.130 0.012 48.329 
0.127 0.012 46.630 
0.123 0.012 45.044 
0.117 0.011 42.168 
0.589 0.072 58.995 
0.527 0.062 50.264 
0.477 0.054 43.730 
0.238 0.Q28 39.171 
0.234 0.028 38.160 
0.226 0.027 36.275 
0.089 0.007 42.181 
0.084 0.006 39.126 
0.083 0.006 38.197 
0.081 0.006 37.310 

no denotes the number of center pomts, n 18 total number of pomts mcluslVe of no. 
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For both Model I and Model II, the designs obtained by projecting BBD is 
better than other three classes of designs in terms of uniformity and all the three 
efficiency criteria. The G-efficiencies of projected APD' s in general are poor 
and the design also requires a larger number of points, but for three components 
mixtures, the G-efficiency of projected APD is same as the G-efficiency of 
projected SCD in case of 11 point design. This is highest among G-efficiencies 
for three component mixtures. 

Here for all the designs obtained in Table 2, we have taken the scale factor 
'a' to be the inverse of the largest absolute value of the entries of the design D~. 

However if we use different scale factor a == 0.666667(say) for APD in three 
factors, it produces a projected design for APD which fills the simplex with 
bounds 0 and 1. This of course changes the efficiency criteria values to 
D-efficiency = 2.4021, A-efficiency =0.7227 and G-efficiency == 43.7301 
for Model I and D-efficiency == 3.0265, A-efficiency = 0.8820 and 
G-efficiency == 43.7300 for Model II and this makes mixture design obtained 
through the projection of APD better than those obtained using CCD, BBD and 
SCD in terms of D- and A-efficiencies. The uniformity measure for this design 
is CD2 == 0.383782 which makes it better than those obtained through projections 
of CCD and SCD. 

6. Restricted Exploration ofMixtures 

For restricted exploration of mixtures i. e., when (1.2) is satisfied Saxena 
and Nigam [19] gave a transformation that provides designs constructed through 
symmetric simplex designs. Their transformation works well when some say 
t (:5 q -1) components satisfy (1.2). Prescott [18] discussed the case when some 

components have small values in the form of upper bounds and has illustrated 
this using three components example. We use the transformation given by 
Saxena and Nigam but with a slight modification to generate the design points 
through mixture designs based on projections of three-level designs. We suggest 
the following steps. 

Step-I: Rank the components in order of their increasing ranges 
(OJ - L j ). Xl has the smallest range and Xq has the largest range. 

Step-2: Consider a mixture design Z satisfying (1.1). We can select this from 
the four families of mixture designs obtained through projection in 
Section 5. 

Step-3: Compute Band B' , the minimum and maximum proportions of any 
component Zj in the design so that 0:5 B :5 Zj :5 B' :5 1 for all 

Step-4: Make the transformation as given by Saxena and Nigam [19] Le. 
xiu Ai + Ilj Zju' i 1, 2, ... t; u = 1, 2, ... n 
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where 

A,. = LiB' - UjB and" _ Ui Li 
I B' _ B r--i - B' - B 

i = t + 1, ... q; u =1, 2, ... n 

where t:5: (q 1) is the number of components constrained by (1.2). 

This transformation works well when some say t (:5: q - 1) 

components satisfy 0.2). When all the components are constrained 
by (1.2) then the levels of Xq may be obtained by 

xq=1 (x l +X 2 +···+xq- I)· 

Step-5: 	 While determining the value of Xq in Step 4, if in any point Xq lies 
outside the range Lq :5: Xq :5: U q' it can be adjusted by setting Xq 

equal to the violated bound and adjusting the level of Xq I so that 

(1.2) is satisfied. Repeat this with Xq _2 and so on. Every point out 

of range of Xq can generate a maximum of q - I adjusted points. 

Step-6: 	 The design points from Step-4 combined with different combinations 
of adjusted points result in a number of designs. The design that is 
optimal with certain optimality criteria is taken as the best design. 

We now illustrate the steps given above with the help of example of three 
components mixtures. Let us consider a three components given in Snee and 
Marquardt [22] with components ranked in order of their increasing ranges. 
Here all components are constrained by (1.2). 

Example: 0.1:5: XI :5: 0.6 

O.1:5:x 2 SO.7 

0.0:5: X3 :5: 0.7 

To obtain design for Example, let us consider the four mixture designs 
given in Table 2 as our generating designs in Step 2 given above. The bounds B 
and B' on the design points are 0 to 2/3 for DCCD and 1/4 to 2/3 forD BBD , 

and 0 to 112 for D SCD ' Making transformation given in Step 4, we obtain D APD 

four sets of points SJ, SIl, Sm and SIV given in Table 4 using four mixture designs 
given in Table 2. 

-----..-~..-~.-~--... --..--...---------- ­
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Table 4. The four sets of points obtained through transformation from 
designs given in Table 2 

No. Slll (SCD)SI (CCD) Sll (BBD) SIV (PAD) 
0.600 0.100 0.3001 0.350 0.400 0.250 0.267 0.300 0.433 0.433 0.500 0.067 

0.600 0.700 -0.300' 0.100 0.700 0.2002 0.225 0.250 0.525 0.100 0.700 0.200 
3 0.225 0.700 0.075 0.600 0.100 0.300 0.600 0.100 0.300 0.100 0.100 0.800' 
4 0.100 0.550 0.350 00433 0.500 0.067 0.100 0.700 0.200 0.267 0.300 0.433 
5 0.183 0.200 0.6170.600 0.250 0.150 0.267 0.600 0.133 0.267 0.600 0.133 
6 0.475 0.100 0.425 0.600 0.400 0.000 0.183 0.500 0.3170.100 00400 0.500 
7 00475 0.550 -0.025' 0.100 0.400 0.5000.600 0.400 0.000 0.517 0.300 0.183 

0.350 0.700 -0.050' 0.433 0.200 0.3678 0.350 0.400 0.250 0.433 0.200 0.367 
0.517 0.600 -0.117'9 0.225 00475 0.300 0.517 0.300 0.183 0.350 0.100 0.550 

10 0.475 0.325 0.200 0.350 0.100 0.550 0.350 0.400 0.250 0.350 0.400 0.250 
0.350 0.700 -0.050'11 0.413 0.250 0.338 00433 0.500 0.067 0.267 0.300 0.433 

12 0.267 0.300 0.4330.288 0.550 0.163 .0.183 0.500 0.317 0.433 0.500 0.067 
0.267 0.300 0.4330.413 00475 00400 0.250 0.433 0.500 0.06713 0.11310.350 

14 0.288 0.325 0.388 0.350 0.400 0.250 0.433 0.500 0.067 0.267 0.300 00433 
15 0.350 00400 0.250 . 0.350 00400 0.250 0.433 0.500 0.067 . 0.267 0.300 0.433 

When CCD, BBD and APD are used as generating designs. in points 7. 11 and 3 
respectively X3 lies outside the bounds 0.0 ~ x3 ~ 0.7 and when SCD is used, in 

points 2, 8 and 9, X3 lies outside the bounds 0.0 ~ x3 ~ 0.7. Using step 5 we get two 

designs when CCD. BBD or APD is used as generating design and eight designs when 
SCD is used. We calculate the uniformity measures CD2 for each of these designs and 
select the most uniform design for each of the four families. These are denoted here by 
Dn(CCD), Du(BBD), Dll(SCD), and DIl(APD) and are given in Table 5. The 

values of uniformity measure CD2 are given in Table 6. 

Table 5. Most uniform mixture designs for example 

No. Dll(CCD) Du (BBD) Dll (SCD) DlI (APD) 

1 0.350 0.400 0.250 0.267 0.300 0.433 0.433 0.500 0.067 0.600 0.100 0.300 
2 0.225 0.250 0.525 0.100 0.700 0.200 0.600 0.400 0.000 0.100 0.700 0.200 
3 0.225 0.700 0.D75 0.600 0.100 0.300 0.600 0.100 0.300 0.200 0.100 0.700 
4 0.100 0.550 0.350 0.433 0.500 0.067 0.100 0.700 0.200 0.267 0.300 0.433 
5 0.600 0.250 0.150 0.267 0.600 0.133 0.267 0.600 0.133 0.183 0.200 0.617 
6 0.475 0.100 0.425 0.100 0.400 0.500 0.600 0.400 0.000 0.183 0.500 0.317 
7 0.475 0.520 0.000 0.600 0.400 0.000 0.517 0.300 0.183 0.1 00 0.400 0.500 
8 0.350 0.400 0.250 0.433 0.200 0.367 0.300 0.700 0.000 0.433 0.200 0.367 
9 0.225 0.475 0.300 0.517 0.300 0.183 0.517 0.483 0.000 0.350 0.100 0.550 
10 0.475 0.325 0.200 0.350 0.100 0.550 0.350 0.400 0.250 0.350 0.400 0.250 
11 0.413 0.250 0.338 0.300 0.700 0.000 0.433 0.500 0.067 0.267 0.300 0.433 
12 0.288 0.550 0.163 0.183 0.500 0.317 0.433 0.500 0.067 i 0.267 0.300 0.433 
13 0.413 0.475 0.113 0.350 0.400 0.250 0.433 0.500 0.0671 0.267 0.300 0.433 
14 0.288 0.325 0.388 0.350 0.400 0.250 0.433 0.500 0.067 0.267 0.300 0.433 
15 0.350 0.400 0.250 0.350 0.400 0.250' 0.433 0.500 0.067: 0.267 0.300 0.433 
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Again we fit Model I and Model II and calculate the efficiency measures D, A and 
G for these designs. These are given in Table 6. 

Table 6. Discrepancies and Efficiencies for constrained mixture designs for example 

Generating q 
Design 

p nIl;) CD2 

D 

Model I 

A G D 

Model II 

A G 

BBD 3 615 3 0.407418 0.702 0.098 54.059 0.831 0.134 53.843 

CCD 3 6 15 1 0.440807 0.447 0.048 51.980 0.563 0.077 91.980 

SCD 3 615 5 0.541108 0.254 0.006 42.083 0.320 0.009 42.083 

APD 3 615 5 0.464157 0.401 0.038 43.765 0.506 0.051 43.765 

We observe that design obtained using BBD as generating design is most uniform 
and most efficient for both the models. 
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