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SUMMARY 

Robustness aspects of nested balanced incomplete block designs against 
missing data have been investigated using connectedness and efficiency 
criteria. Sufficient condition for robustness of a design has been obtained for 
the loss of any m observations, using connectedness criterion. Designs robust 
against the loss of any m observations belonging to one sub-block, loss of 
any two observations belong to two different sub-blocks in a block or in 
different blocks and loss of any t observations in a block have been 
identified. 
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I. Introduction 

Blocking is the technique used to bring about homogeneity of experimental 
units within a block, so that the treatment contrasts are estimated, making use of 
the intra-block information, with higher efficiency. In many field and laboratory 
experiments the experimental units or conditions differ due to several factors 
which influence the response under study. It might not always be possible to 
remove such heterogeneity in response due to the factors other than treatments 
by blocking alone. There are the experimental situations in which one or more 
factors are nested within the blocking factor. In such situations nested block 
designs can be adopted. For example, consider the following experiment quoted 
by Preece [16]. Suppose the.balf-leaves of a plant form the experimental units, 
on which a number of treatments, say, inoculations with sap from tobacco plants 
infected with Tobacco Necrosis Virus, are to be applied. Suppose the number of 
treatments is more than the number of suitable half-leaves per plant. Now, there 
is one source of variation present due to the variability among plants. Further, 
leaves within a plant may exhibit variation between themselves due to their 
being located on the upper branch, middle branch or on the lower branch of the 
same plant. Thus leaves within plants form a nested factor, being nested within 
plants. The half-leaves being experimental units, we then have two systems of 
'blocks', leaves (may be called sub-blocks), being nested within plants (may be 
called blocks). 
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Kleczkowski [11] reported an experiment for a biological experiment on 
the effect of inoculating plants with virus. This design is actually based on a 
resolved nested balanced incomplete block design derived later by Preece [16]. 
Further use of this design was reported in 1965 by Kassanis and 
Kleczkowski [10]. This experimental background led to Preece's [16] statistical 
paper where nested balanced incomplete block designs (NBIBD) were defined 
for the first time and an incomplete table of them was given. Another 
experimental situation in hilly areas is reported by Parsad et al. [15]. Satpati and 
Parsad [18] reported some experimental situations both for field and laboratory 
conditions, where nested block designs can be used. For an excellent review of 
the subject, one may refer to Morgan et al. [13]. The paper by Morgan et al. [13] 
contains a catalogue of NBIB designs. 

Statistical procedures followed for these designs, for making inductive 
inferences are based on ideal conditions. However, aberrations may occur due to 
some causes during experimentation. Loss of observations is one such 
aberration. A nested block design may become disconnected due to loss of 
observation(s). Therefore, there is a need to look for the designs that remain 
connected even after the loss of some observations. Ghosh ([4], [5], [6] and [7]) 
introduced a robustness property of designs against unavailability of any t (a 
positive integer) observations. Following Ghosh, a block design is termed as 
robust against the loss of observation(s) if the resulting design obtained after 
loss of observation(s) remains connected. Here after we call this criterion as 
Criterion 1. 

. Even if the design remains connected, the resulting design may become 
inefficient in the sense that some of the contrasts may be estimated with less 
precision. Hence, there is a need to examine the efficiency of the resulting 
design relative to the original design. Ghosh [7] studied the information 
contained in each observation in a given design that is robust against the loss of 
a single observation as per Criterion 1. If in an experiment, a most informative 
observation is unavailable, the loss will be more compared to a situation where a 
least informative observation is unavailable. Another criterion to check the 
efficiency of the resulting design, is in terms of A-efficiency of the design. A 
connected design is said to be robust against loss of observation(s) if the 
A-efficiency of the resulting design as compared to the original design is not too 
small. We call this criterion as Criterion 2. . 

Robustness of designed experiments against missing data has been studied 
extensively in the literature. For a review of the subject references may be made 
to Dey [2], Kageyama [9] and Lal et al. [12]. Robustness of incomplete block 
designs against missing data has been investigated from different angles e.g. 
Baksalary and Tabis [lJ, Dey [2], Dey et al. [3], Ghosh ([4], [5], [6] and [7]), 
Hedayat and John [8], Lal et al. [12] and so on. However, no work on this aspect 
seems to be available for another important class of designs, nested designs. The 
present article attempts to obtain some results on robustness for Nested 
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Balanced Block (NBB) designs. In Section 2, we obtain the sufficient conditions 
for robustness in general for nested block designs and in Section 3 results are 
applied to Nested Balanced Incomplete Block (NBIB) designs reported in 
Morgan et al. [13]. 

Denote an n-component vector of ones by 1", an identity matrix of order n 

by In' and an m x n matrix of ones by J m x n ' with J m x m simply denoted by 

J m • Further A', A- and A + respectively denote the transpose, a generalized 

inverse (g-inverse) and the Moore-Penrose inverse of a matrix A. 

For studying robustness, the following two theorems given by Dey [2] are 
useful (see also Dey et al. [3]). 

Theorem 1. Let A and B be a pair of symmetric, nonnegative definite 
matrices of order n and let 

A=B+GG' 

where G is an n x m matrix. Then Rank (A) = Rank (B) if and only if 

1m - G'A-G is positive definite. 

Theorem 2. Let A, B, G be as in Theorem I and suppose that 

Im-G'A-G= Im-G'A+G 

is positive definite. Then 

B+ =A+ +A+G(I-G'A+GtG'A+ 

2. Conditions for Robustness 

Consider an experiment involving v treatments in a nested block design 
(d, say) with b blocks, there being qj mutually exclusive and exhaustive 

b 

sub-blocks in the jth block, j =1, 2, ... , b; so that bl =Lqj is the overall total 
j=1 

number of sub-blocks. Let N (nij) be the vxb treatments-blocks incidence 

matrix, where nij denotes the number of replications of the ilh treatment in the /h 

block, i = 1, 2, ...• v. The row sums of N are denoted by r = (rI , r2 , ... , ry)' and 

the column sums by k =(k1, k2 , ... ,kb)', where ri and k j denote respectively 

the replication number of the ith treatment and the size of the jth block. Also 
rl + ... + ry = kl + ... + kb = n, the total number of experimental units. Let 

M (mij'(j) denote the v X bi treatments sub-blocks incidence matrix, where 

mij'(j) denotes the replication number of the ith treatment in the j'th sub-block 
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nested within the l' block, j' 1, 2, ... , qj' The row sums of M are the elements 

of r while its column sums are the elements of the b l xl vector 

h=(h~l), ... ,h~bJ, where h~j)=(hl(j), ... ,hqj(j)), l/h(j)= k j . Here hj'(j) 

denotes the size of the r h sub-block nested in the jlh block. Let R, H j , and H 

denote respectively the diagonal matrices whose diagonal elements are the 
successive elements of r, h j and h. Let W be the bxb1 blocks sub-blocks 

incidence matrix. 

The model for the data can be written as 

(2.l) 

where, 1: is v-component vector of treatment effects, tl is b-component vector of 

block effects, 11 is b1- component vector of sub-block effects, 11' is the n x v 

design matrix for treatments, D' is n x b design matrix for blocks, 11>' is n x b l 

design matrix for sub-blocks and e denotes the vector of independent random 

errors with zero expectation and constant variance 0'2. 

The information matrix C for estimating the treatment effects after 
eliminating the effects of other nuisance parameters, can be written as 

(2.2) 

Now we order the n observations, such that the first k j 

observations come from the first block, the 2nd k2 observations come from the 

2nd block and so on. Again out of k j observations first hl(i) observations 

2ndcome from the lSI sub-block of the jlh block, h 2(D observations come 

2ndfrom the sub-block of the jth block and so on, j = 1, 2, ... , b; then , 
we have D' = [D1 D2 ... Db]" where D j is a k j x b matrix with lh column 

of all unities and others of zero, D'D =diag(k1, ...,kb), 

11>' [11>1(1),11>2(l), ... ,l1>ql(l),11>1(2), ... ,l1>qb(b)J' where 11>j'(j) is a hj'(j) xb l design 

matrix for sub-block effects for the Jth sub-block nested in jth block; 

j' = 1,2, ... ,qj and 11>/11> = diag (hl(I),h2(1), ... ,hql(l), ... ,hqb(b»' Similarly we 

partitioned A' as A'=(Al(I),A2(1), ... ,Aql(l), ... ,Aqb(b/ where Ilj'(j) is a 

h j'(j) X v (O 1) design matrix for treatment effects for j/th sub block in the Jh 

block. We also use the following notations 

r=(I-W'H-Iw) = diag(rj(l)' ... .rqb(b» (2.3) 
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where rj'{j) =(Ih" - _1_Jh ,.];j =1, ... , b, j' 1, 2, ... , qj 
J!J) 	 h r(j) J{J) 

Then C-matrix given in (2.2) can be written as 

C=ArA' 

Suppose that any m observations are lost from the design. Without any loss 
of generality we assume that mr(j) (~O) of these lost observations arise from 

j'th sub-block nested within fh block such that 

b qj 

L,L,mr(j) m 
j=1 r=1 

We now define a hj'(j) xh/(j) matrix Uj'(j) such that its U
1h diagonal 

element is 1 if uth observation is lost from the j'th sub-block nested within the l' 
block, the other elements of U nj) are zero, u = 1, 2, ... , h {(j); j'=1, ... , qj; 

j =1, ... , b. We also define U = diag (U IO)' U 2(l), ••. ,Uq,O)"",UI(b)' 

U2(b)' ... ,Uqb(b» and A = In - U . The matrix A is symmetric and idempotent. 

If we denote the information matrix of the residual design by C., then 

C. = AAA' -AAX(X'AX)-X'M' 

where, 	 X = [In D' q,'] 

On simplification we get 

C. =C- V'CoV 

where V = ArU and Co = uru 

Recently Lal et al. [12] arrive at the similar structure of C. while dealing 

with missing observations in block designs. 

Theorem 3. The design d is Criterion 1 robust against the loss of any m 
observations if and only if the smallest positive eigenvalue of C is strictly 

greater than the largest eigen value of V'CoV . 

Prool The proof follows from Theorem 1 and noting that Co admits a 

unique Gramian root (see also Lal et al. [12]). 

Once it is known that a design is Criterion 1 robust, then it is of interest to 
examine the efficiency of residual design relative to original design and to 
decide robustness on the basis of Criterion 2. The efficiency o(residual design 
with respect to original design is given by (Mukerjee and Kageyama [14]) 
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Sum of reciprocals of non - zero eigen value of C _ tr(C+)
E 

Sum of reciprocals of non - zero eigen vaiue of C. - tr(Ct) 


Now from Theorem 2 we have 


tr(Ct) ::::: tr(C+) + tr[C+H(In -H'C+HtH'C+) 


(2.5) 
where 

g =tr( (In H'C+HtH'C+C+H) 

For a balanced design C+ = ..!. Iv e 
If Ai' i = I, 2, ... , mo (::; m ) are the mo non-zero eigenvalues of H'H, 

then the efficiency is 

E (I+~J-I 	 (2.6)l 	 v-I 

3. Applications 

In this section we apply the conditions obtained under Section 2 to 
NBIBD. For a NBIBD, all block sizes are equal (say k), all sub-block sizes are 
equal (say h) and each block contains equal number of sub-blocks (say q). For 
completeness, we recall the definition of a nested balanced incomplete block 
design of Preece [16]. 

Definition. A nested balanced incomplete block design with parameters 
(v, b, k, r', A , bl ,h ,AI' q) is a design for v treatments, each replicated r' times 

with two systems of blocks such that: 

(a) 	 the second system is nested within the first, with each block from the first 
system, called henceforth a 'block', containing exactly q blocks from the 
second system, called hereafter as 'sub-blocks' 

(b) 	 ignoring the second system leaves a balanced incomplete block design 
with the usual parameters v, b, k, r*, A 

(c) 	 ignoring the first system leaves a balanced incomplete block design with 
parameters v, bl , h. r', Al 
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3.1 	 Robustness of NBIBD when any m Observations Belonging to One 
Sub-Block are Lost 

Suppose that m observations belonging to first sub-block of the first block 
of the design d are lost. \\!ithout loss of generality, we assume that between 
these two sub-blocks first ex treatments are common. Then it is easy to see that 

C. =C AlrOUj(UIrOUI)-UlroAI 

where r 0 = In - ~ J n' obtained from (2.3) and AI(1) and U 1(1) are written as 
n 


AI and UI respectively. 

, 

Since Aj Al = Ih , we have 
, 

C. C-GG',where G=AlrOUI(UlrOUI)-U\rOAl 

We then obtain the following sufficient condition for robustness of d 

Theorem 4. A NBIB design is robust against _ the loss of any 
m (1 ~ m ~ h) observations in a sub-block, if the smallest positive eigenvalue 
of C is strictly larger than 1. 

Proof From Theorem 1, it follows that design d is robust as per Criterion 1 
against the loss of any m observations belonging to the same sub-block, if and 

only if Iv - G'C-G is positive definite, or equivalently, if and only if all the 

eigenvalues of G'C-G are strictly smaller than unity. Let Amax (A) denote the 

largest eigenvalue of a symmetric nonnegative definite matrix A. Then, 

Amax (G'C-G) = Amax (G'C+G) = Amax (C+GG') 

It is known that for a pair of symmetric non-negative matrices A and B 

Amax (AB) ~ Amax (A),Amax (B) 	 (3.1) 

Hence, Amax (G'C+G) ~ Amax (C+ ),Amax (GG') 	 (3.2) 
, 

Now GG'= A,roUI(U,rOUI)-U,roAI 

Since for two matrices A and B, the eigenvalues of AB and BA are the , 
same, we calculate the eigenvalues of (UlrOUI)-U,roAI AlrOUI . On 
simplification 

0] .o ,If 1~ m ~ h -1 
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Thus the non zero eigenvalues of GG' are I with multiplicity m, if 
I S; m S; h I and I with multiplicity m -I if m =h . Hence from (3.2) we have 

(3.3) 

Using (3.3) and remembering that Amax(C+) {Amin(C)r1 
, we get the 

required result, where Amin is the smallest positive eigenvalue of C. 

From Theorem 4 and noting that 9> I for all NBIB designs, we get the 
following result. 

Corollary 1. All NBIB designs reported in Morgan et al. [13] satisfy the 
sufficient condition of Theorem 4 and are thus robust against the loss of any m 
(I S; m s. h) observations in a sub-block. 

Now we examine the efficiency of the residual design and decide 
robustness on the basis of Criterion 2. 

From (2.6) and using the eigenvalues of GG' , we get the efficiency of the 
residual design E, as a function of m, to be 

E(m) =11+__m__]-1
-L (v-l)(8-1) 

(3.4) 

[ 
h-I ]-1- 1+---­

(v-I)(8 I) 
if m h (3.5) 

Note that E(m) is a decreasing function of m, we therefore calculate E(m) 
for m =h, i.e., efficiency for the loss of all observations in a sub-block. We have 
calculated the efficiencies for all NBIB designs reported in Morgan et al. [13], 
and found that the efficiency is always greater than 0.90 for all the designs 
except one corresponding to serial number 1, for which it is 0.85. Therefore, all 
these designs are fairly robust as per Criterion 2 against the loss of all the 
observations in a sub-block. 

3.2. Robustness of Designs when any Two Observations are Lost 

When any two observations are lost, following cases may arise: 

Case(i) Two observations belong to the same sub-block. 

This is a particular case of Section 3.1 when m = 2 . 

Case(ii) Two observations belong to two different sub-blocks. 

Under this case again we get different sub-cases. 

Case(ii)(a) Two sub-blocks belong to the same block. 

Without loss of generality we assume that the first observations in the first 
sub-block and the first observations in the 2nd sub-block nested within the IS! 
block are lost. Then on simplification 
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Here A'(I) , A2(1) , UI(l) and U2(l) are written as AI' A2 , UI and U2 

respectively. 

For robustness study we need the eigenvalues of VV' or v'V . Since, the 
two sub-blocks are disjoint, on simplification we get 

v'V =12 ®[~ ~] 
The non-zero eigen values of v'V are 1 with multiplicity 2. If we denote 

the efficiencies for the present case by Esb(2), then from (2.6) we get 

Esb(2)::: [1 + (v -1~e -1)r 
Case(ii)(b) Two sub-blocks nested in different blocks 

Without loss of generality, we assume that the first observations in the first 
sub-block nested in the first block and the first observations in the first sub­
block nested within the second block are lost. Further two missing observations 
pertain to first two treatments and between these two sub-blocks a. treatments 
are common. Then on simplification, we get 

where the value of c depends on the configuration of missing observations. 

Now we give a sufficient condition for the design d to be Criterion 1 
robust. 

Theorem 5. A NBIB design is robust as per Criterion 1 against the loss of 
any 2 observations if the smallest positive eigenvalue of C is strictly greater 
than 2. 

Proof From (3.1), we get 

Amax (V'C+V) S Amax (C+ )Amax (VV') < Amax (C+) tr(VV') 

Now, tr(V'V) = 2, hence the result, by noting that in other cases the 

maximum eigenvalue of v'V is 1. 

Corollary 2. All designs reported in Morgan et al. [13] satisfy the 
sufficient condition of Theorem 5 and are thus. robust against the loss of any two 
observations. 
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Now we consider Criterion 2 robustness against the loss of any two 
observations. The value of c is calculated for all possible cases of missing 
observations and are presented in Table 1. 

Table 1. The value of c 

Case c 

(ii) (b) (i) Two missing observations pertain to the same treatment h2 -2h+a 

h(h -I) 

(U) (b) (ii) Two missing observations pertain to two different a xh 
trel tments and among these two treatments x are common in both h(h -1)
the sub-blocks; x =0, 1, 2 

If we denote the efficiency for the present case by Edb(2), then from (2.6) and using 
the eigenvalues we get 

-' l+c l-c 
-1-c + e-l+c]} 

(3.6) 

For e> I, from (3.6) it can easily be seen that E is monotonically 
decreasing function of c. Again the value of c for the Case(ii) (b)(i) is the largest 
for a fixed value of a, and c is monotonically increasing function of a. 
Therefore efficiency for the Case (ii)(b)(i) is the minimum among all the cases. 
We calculate the efficiency for the Case (ii)(b)(i) only. If the design is robust 
for the Case (ii)(b)(i), it will be robust against the loss of any two observations 
in the design. The efficiency for the Case (ii)(b)(i) has been calculated for all the 
designs reported in Morgan et ai. [13]. The efficiency for the designs 
corresponding to serial numbers 5 to 68 is greater than 0.90, where as it is 0.81, 
0.88 and 0.87 for the designs corresponding to serial numbers 2, 3 and 4 
respectively. The efficiency is only 0.50 for the design corresponding to serial 
number 1. Thus all these designs, except one corresponding to serial number 1 
are fairly robust against the loss of any two observations. 

3.3. Robustness of Designs when any t Observations in a Block are Lost 

Suppose t (1 ~ t ~ k) observations b,elonging to 1sf block of the design d 

are lost. Without loss of generality we assume that t j' observations belong to 

q 

the j"h sub-block, j'=1, ... , q, such that ~> j' =t . Then C. =C - VCoV' 
j'=1 
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Forthe present case V [A\rOU l A2r OU2 

Co diag{U1rOU j , ... ,UqroUq) 

Here also A j'(j} and U j'(j) are written as Aj' and U j' respectively. 

For robustness study we need the eigenvalues of VCoV' or CoVV' . On 

simplification 

CoVV'=Iq ®S 

where S=[~tf ~]if 
if tj' = h 

Thus the non-zero eigen values of CoVV' are 1 with multiplicity 

:E{t r Or) 
where Of =1 if tr = h 

=Oifl.$;tr.$;h 

Now using Theorem 3, we get the following result. 

Theorem 6. The design d is robu"'t against the loss of any t observations 
belonging to the same block if the smallest positive eigenvalue of C is strictly 
larger than unity. 

Corollary 3. All designs reported in Morgan et ai. [13] satisfy the 
sufficient condition of Theorem 6. 

The efficiency of the residual design can be obtained using the following 
result. 

Theorem 7: The efficiency E of the residual design in comparison with the 
original design when any t observations from the same block are lost in a NBIB 
design, is given by 

where E j' is the corresponding efficiency of the design if any t j' observations 

from the j'th sub-block are lost. • 

More specifically Ej' can be obtained from (3.4) and (3.5) by substituting 

m by tj" 
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Proof: From (2.5), we get 

tr( ct) =tr( C+ ) + a 

where a = tr [(I - COI/2V/C+VCol/2)CoI/2V/C+C+VCoI/2] 

=_1[(I _ ~C-1/2V'VC-1/2)(C-1/2V'VC-l/2)]
82 8 0 0 0 0 

I 

Now for two sub-blocks rand j", ~j' ~j' = Ih V j' r 
=OVr",j" 

Hence v'V = diag (U1r OU1),(U2r oU2), ... ,(uqrOuq),O,O.... ,O) 

and C~1/2V'VC~1/2=diag (UlrOUl)-1/2(U,rOUl)(UlrOUI)-1/2, ... ,0 ,0) 

Thus a 	 laJ 

J=l 


where ar = 1 tr{I-i(UrroUr)-1/2(UrroUr)(uj'roUr)-1/2} 

{(U j"r oUJ)-1/2 (UJroUJ)(UJroUJ)-1/2 } 

Now if we denote the efficiency for the loss of any t j' observations in the 

rib sub-block by Ej" then 

tr(C+) -I C+E ., = or a·, = (E, - 1) tr( ) 	 (3.7) 
J tr(C+) + a r J J 

and E= tr(C+) or a =(E-1_I) tr(C+) (3.8)
tr(C+)+a 

Thus from (3.7) and (3.8) we have 

E=[1 +L(Er1-l)J1 

We have calculated the efficiency for the loss of all observations in a 
block, i.e., Ej' is calculated from (3.5) and it is constant for all sub-blocks. We 

found that the efficiency is greater than 0.90 for the designs corresponding to 
serial numbers 4 to 7, 10, 11 and 13 to 68, where as it is above 0.83 for the 
designs corresponding to serial numbers 2, 3, 8, 9 and 12. The efficiency of the 
remaining design, i.e., corresponding to serial number 1 is 0.75. Thus all these 
designs are fairly robust as per Criterion 2 against the loss of all observations in 
a block, except one design corresponding to serial number 1. 

---------..-- ..........- .•.........- ...... 
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