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SUMMARY 

The robustness of universal optimal binary balanced block (BBB) 
designs for diallel crosses has been investigated for the loss of any t (~1) 
observations (crosses) in a single block as per connectedness and 
A-efficiency criteria. It is observed that all the BBB designs for diallel 
crosses with the minimum eigenvalue strictly greater than 2 are robust as per 
connectedness criterion. Further A-efficiency of the residual design in 
comparison to original design, except the BBB design for diallel crosses with 
4 lines, 3 blocks each of size 2, is also computed for the loss of any t (~1) 
crosses in a block. The designs which are not robust as per A-efficiency 
criterion are also identified. 
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I. Introduction 

The diallel cross is a type of mating design used to study the genetic 
properties of a set of inbred lines. Suppose there are p inbred lines and it is 
desired to perform a diallel cross experiment involving p(p - 1)/2 cross of type 
(i x j) for i < j, i, j =1,2, ... ,p. This is a type IV mating design of Griffing [13]. 
The problem of obtaining the optimal block designs for complete diallel cross 
experiments have been studied by Gupta and Kageyama [11], Dey and 
Midha [5], Das et al. [2], Pars ad et al. [17]. All these studies have been made for 
the situations where the experimenter is interested in estimating the general 
combining ability (gca) effects and the specific combining ability (sea) effects 
have been excluded from the model. A catalogue of block designs for diallel 
crosses has also been presented by Parsad et al. [17]. These optimal designs 
perform well under ideal conditions. However, disturbances may occur during 
the experimentation. The loss of observation(s) during the experimentation is 
one such aberration and because of this an optimal design may become 
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non-optimal design. Therefore, it is necessary for an experimenter to investigate 
whether the design adopted by him is robust for the loss of observation(s) or not. 
Following Ghosh [8], a block design for diallel crosses (d) is termed as robust 
against the loss of observations if the resulting design (d(t) obtained after the 
loss of t (~1) observation(s) remains connected. This criterion of robustness is 
called as connectedness criterion. 

Many times design remains robust as per connectedness criterion but the 
A-efficiency of the residual design in comparison to original design may fall 
considerably. So, another criterion of robustness is A-efficiency criterion. A 
connected design is said to be robust as per A-efficiency criterion against the 
loss of any t (~1) observation(s) in a block if the A-efficiency of residual design 
in comparison to original design is sufficiently large, i.e., it is at least 0.95. In 
A-efficiency the term A- is used because the efficiency is based on average 
variance of the design. 

The robustness of block designs against missing data has been investigated 
by John [14], Baksalary and Tabis [1], Dey and Dhall [4], Kageyama [15]. 
Gupta and Srivastava [12], Dey [3], Dey et ai. [6], Srivastava et ai. ([20]. [21], 
[221), Lal et al. [16], among others. In the context of block designs for diallel 
cross Ghosh and Desai ([9]. [lO]) investigated the robustness of complete dial lei 
cross plans. obtained by taking all possible crosses of lines of a balanced 
incomplete block (BIB) designs and Singular Group Divisible designs, due to 
unavailability of a complete block. Dey et al. [7] studied the robustness of block 
designs for diallel cross against loss of one observation and one complete block 
for binary balanced block designs. No other work seems to have been done on 
the robustness of designs for diallel cross against missing data. In the present 
article we shall investigate the robustness of block designs for diallel cross for 
the loss of any t (~l) observations in a block as per connectedness criterion in 
Section 2 and as per A-efficiency criterion in Section 3. 

Throughout the present investigation, we shall denote an n-component 
vector of all unities by In. an identity matrix of order n by In and m x n matrix of 
all ones by Jm.n, Jm,m is simply denoted by Jm. Further, AI, ~(A). A- and A+ will 
respectively denote the transpose. column space (range), a generalized inverse 
(g-inverse) and Moore-Penrose inverse of matrix A. 

2. Robustness as per Connectedness Criterion 

Let d be a block design for a diallel cross experiment of the type mentioned 
in Section 1 involVll1g p inbred lines, b blocks such that the fh block is of size kj, 
j = 1, ... , b. For the data obtained from the design d, we postulate the model 

Y = !lln + III g + DI ~ + e (2,1) 
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where Y is n x 1 vector of observations, Il is general mean effect, g and ~ are 
vector of p gca effects and b block effects, respectively. /:,.' and D' are the 
corresponding n x p and n x b design matrices, respectively i.e. the (s, t)th

lhelement of /:,.' is I if the sth observation pertaining to t line and is zero 
otherwise. Also, the (s, t)th element of D' is 1 if the sth observation pertaining to 
tth block and is 'zero otherwise, e is the random vector follows Nn(O, cr- In), 

b 

n =L k j the total number of experimental units in the design. 
j;J 

Suppose n observations are so ordered that the first kl corne from the 
first block, the next k2 corne from the 2nd block, and so on, the last kb corne 
from the blh block. The n x b matrix D' can be partitioned as [DJ, ... , Db]' where 
D{ is a kj x b matrix with Jh column of all one's, other columns O's and 

b + 
DD' =L J k.· Using the similar partitioning we can write the matrix 

j"'l J 

/:,.' =[Ab ..., /:"b]', where /:,.{ is a kj x p matrix. 

Under the model 2.1, the C-matrix (coefficient matrix) for reduced normal 
equations for estimating linear functions of gca effects using design d is 
C =/:,,(1 - D' K-1 D) /:,.' = G - N K-1 N' where G is the matrix of order p x p with 
diagonal elements as replication of the p-inbred lines and off-diagonal elements 
are the number of replications of the crosses in the design d, nu is the number of 
times line i occurs in block j, K = diag(kJ, ..., kb)' For an universal optimal 
binary balanced block design, the information matrix simplifies to 

(2.2) 

where e=2 (p 1)-1 (n - b) is the unique non-zero eigenvalue of Cpo 

Let dpbe the connected and universal optimal binary balanced block design 
for diallel cross, then its C-matrix is as given in (2.2) and Rank (Cp) =p I. 
Suppose any t observations are lost in the design dp then the model of t missing 
observations will be A Y = !lAIn +A/:'" g +AD'~ + Ae (2.3) 

where A =In - U is an idempotent matrix as U is a diagonal matrix of order n 
with I at the ilh diagonal position if ilh observation is missing and 0, otherwise. 
The C-matrix under (2.3) will be 

Cp(t) =M [I - X(X' X r X'] A /:,.' (2.4) 

where X =[A In AD'] and (X' X)- 00 0' 1 
[ (DAD')­
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On solving, we get 

Cp(t) =!:J. A!:J.' -!:J. A D' (D A D'f D A !:J.', because A =A' = A A (2.5) 

Now we consider the model by devoting an extra parameter to each 
missing observation 

y = ~ In + A' g + D' f3 + Vy + e (2.6) 

where y is an n x 1 vector of unknown parameters. The usual C-matrix under 
this model is 

Ca =!:J. [I X(X' Xr X'J!:J.' where X = [1 D' V]. By applying 
V = V' = V V ,it simplifies to C. =!:J. A !:J.' -!:J. AD' (D A D' fDA !:J.' (2.7) 

Thus the C-matrices under model of t missing observations and the model 
(2.6) is same. Henceforth, we shall use the C-matrix under model (2.6) for the 
t missing observations in the design. Now we derive the relation between the 
C-matrix of the original design dp and the design of t missing observation 
i.e. dp(I)' 

Lemma 2.1. Cp=Ca + Q C; Q' =Cp(l) + Q C.- Q' 

where Q =!:J. <I> V, C. = V <I> V and <I> =1- D' K-1 D = diag (<1>1. ..., <!>t,), and 

<l>j =1)(. -kj1J)(., j = 1, ... , b. 
J J 

Proof: The proof can easily be derived after having 

K DUJ- = [K'I + K,JDUCU'DK·1 

[ UD' U -C~UDfK-1 

c. =A <I> !:J.' - !:J. <I> U C; V <I> !:J.' and Cp=A <I> !:J.' 

Theorem 2.1. The design dp under model (2.1) is robust as 
per connectedness criterion against the loss of any t(~I) observations iff 

In - C;1/2 Q' (Cpr Q C;1/2 is positive definite. 

Proof: From Lemma 2.1, Cp = Cp(t) + Q C; Q' and ~(Q) C ~(Cp). 

Using Theorem 1 of Lal et aZ. [16], we have Rank (Cp) =Rank (Cp(t» iff 

In C;1/2 Q'(Cpf QC;1/2 is positive definite and also we know that 

Rank (Cp) =p 1. Hence the theorem is proved. 

Since it is not easy to confirm the positive definiteness of a matrix so we 
shall derive the sufficient condition for the robustness which is easy for the 
search of robust designs. 

This theorem can also be stated as the design is robust iff all the 

eigenvalues of C;/2 Q' C; Q C;"2 are strictly less than 1 or if 

!..max (C;1/2 Q' Cp- Q C;1/2) is less than one. !..max (A) is the maximum 

eigenvalue of matrix A. 
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Thus, Amax (C;1/2 Q' C; Q C;lf2) = Amax (C;1/2 Q' C; Q C;l!2) 

=Amax (Q C; Q' C;) <l (2.8) 

If A and B are non-negative definite matrix, then it is known (Marshal and 
Olkin [18]) that Amax (A B) ~ Amax (A) Amax (B) (2.9) 

So, from (2.8) and (2.9) 

Amax (QC;Q'C;) ~ Amax (C/) Amax (Q C; Q') 

Also Amax (C/) [AI (CpWI where Al (A) is the minimum eigenvalue of A. 
From this we have the following result: 

Theorem 2.2. The design dp under model (2.1) is robust as per 
connectedness criterion against the loss of any t (21) observations if the 
minimum eigenvalue of information matrix of the original design dp is strictly 

larger than maximum eigenvalue of Q C; Q'. 

Thus the eigenvalue of Q C; Q' are needed for investigating the 

robustness against the loss of any t (21) observation(s) in a block of the design 
dp, which we have considered a binary design. For this, the following cases 
arises: 

Case 1. When t missing observations are less than the block size i.e. t < kJ 

Without any loss of generality, let the missing observations pertain to the 
first t crosses and the lh block, in which these observations are lost, is the first 
block of size k1• The n x n matrix V can be rewritten as V = diag(VJ, ... , Vb) 
where Vj is a kj x kj matrix with 1 at the diagonal position corresponding to the 
missing observation, is zero otherwise. 

(2.10) 

where ~i , i = 1, ... , p and <l>j , j = 1, ... , b are as above. Because of (2.10) 
C. = V <I> V =diag (VI <1>1 VJ, 0, ... ,0) where kl x k, matrix 
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VI ~I VI = [~t -kjlJt ~l 


SO, c. = (V ~ vr =diag ([VI ~I Vd-, 0, ... ,0) where 


(U, +, U,)- = [~' +(k, - 1)-'1, ~] 


Also, Q = (LlI ~I V h •.. , Llb ~b Vb). As the design dp a binary design, so, 
Ll; = [Ik ® 1; : 0] because p 2! 2 kj V j =1,2, ... , b 

I 

Here A ® B is the kronecker product of matrix A and B. 

Since ~. = Ik k:-IJ k 
J j J j 

where H= ~l 
Thus the p x p matrix Q C.-Q'= Lli ~l VI (VI ~I VS VI ~I Llt' 

= [:®J2 :] 

The matrix M is an idempotent matrix and Rank (M) = t, t< kl . 

Case 2. When t missing observations are equal to block size i.e. t = kl 

Here VI = Ik VI ~I VI = ~I , (VI ~I Vir = ~I 
I 

:] 
Also, the matrix ~I is an idempotent matrix and Rank (~I) = kl L From 

Searle [19], we have the following result: 
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Corollary 2.1: The eigenvalues of A ® B are the product of eigenvalues of 
matrix A with those of B. 

It is known that eigenvalues of an idempotent matrix are 1 with 
multiplicity equal to its rank and there are only two eigenvalues of J2 i. e. 2 and 
O. Now combining both the cases 1,2 and Corollary 2.1 we have the following 
result: 

Corollary 2.2. The positive eigenvalues of Q C; Q' are 

2 with multiplicity t if 1s t s kl-I 

2 with multiplicity kl - 1 if t = kJ 

o otherwise 

Thus the maximum eigenvalue of Q C. Q' for the loss of any number of 
observations is 2. We have the following result: 

Theorem 2.3. The design d is criterion 1 robust against the loss of any 
t (1 s t ski) observations in a block if the smallest eigenvalue of information 
matrix Cpof design dpis strictly larger than 2. 

Corollary 2.3. The 102 universally optimal binary block designs for dialiel 
cross given by Gupta and Kageyama [11], Dey and Midha [5], Das et al. [2], 
Parsad et al. [17] for block size up to 15 and inbred lines up to 30 are studied. 
All the designs are found to be robust as per connectedness criterion except the 
design with p =4, b =3, k 2, n =6. 

3. Robustness as per A-efficiency Criterion 

In Section 2, we have concentrated on robustness in terms of 
connectedness of residual design. However, even if a design is robust according 
to connectedness criterion, the design may not be robust as per A-efficiency 
criterion because of poor efficiency of residual design in comparison to original 
design. It is therefore, necessary to investigate the robustness as per A-efficiency 
of residual design in comparison to original design. Let dp be the design as 
defined in Section 2 and dp(t) be the residual design when any t observations are 
lost in any of the block of dp' Then the A-efficiency of residual design with 
respect to original design is given by: 

Sum of reciprocals of the non - zero eigen - values of Cp trace[C;] 
E=--------------------------------------~ 

Sum of reciprocals of the non - zero eigen - values of Cp(l) tracer C;(I)] 

where Cp(Cp(t) is the information matrix of dp(dt ). 

The result given by Lal et al. [16] in Section 4.1 for binary balanced block 
design can be used for the model (2.1) and is as follows: 

~~------~---------------
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Theorem 3.1. The A-efficiency E of the residual design dp(t) when any t 
observations are lost in comparison to original design dp is 

m 


E =[1 + (p _1).1 Lei (0 - eir1rJ 


i=l 

where 0 > eJ ;?: e2 ;?: ••••• ;?: em be the m($; t) posItIve eigenvalues 

of matrix QC; , Q', 0 is the unique non-zero eigenvalue of Cp with multiplicity 

p - 1 as given in (2.2). Now for m = t, when t < kJ, the A-efficiency 

EJ =[1 + 2t {(p-l) (0-2)rJ rl 
On solving, we get 

EJ = (n - b - p + t + 1)-1 (n b - p + 1) because 0 =2 (n - b)(p - 1)-1 

Again when t =k" the multiplicity of eigenvalues is kl - 1. 

So A-efficiency will be 

= (n - b p + kd-1 (n - b - P + 1) 

The A-efficiency for all the universally optimal binary balanced block 
designs for the loss of t =2. 3 and 4 observations in a block, in comparison to 
original design. have been worked out and the designs for which A-efficiency is 
less than 0.95 i. e. designs which are not robust, are presented in Table-I. The 
A-efficiency for the loss of a single observation and a complete block is 
available in Dey et al. [7J. 

Table 1. List of designs for which A-efficiency is less than 95% 

p b k n Efficiency Factor 

t= 2 t=3 t=4 

6 5 3 15 0.7143 

6 15 3 45 0.9259 

7 7 3 21 0.8000 

8 7 4 28 0.8750 0.8235 

9 9 4 36 0.9048 0.8636 

10 9 5 45 0.9310 0.9000 0.8710 

11 11 5 55 0.9444 0.9189 0.8947 

12 11 6 66 * 0.9362 0.9167 

13 13 6 78 * 0.9464 0.9298 

14 13 7 91 * * 0.9420 

Note: 	 Efficiency for the loss of t = 1 and t = k are not shown here as these are available 
in Table-2 of Dey et al. [7]. 

* denotes that the efficiency is ~ 0.95. 
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