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SUMMARY 

AMMI model has been shown to be a useful technique to capture the 

non-linear interactions, when Joint Regression technique fails to perceive 

important effects in studies of G x E interaction. The application of biplots to 

draw reliable stability conclusions is subject of great interest when significant 

proportion of interaction explained is by the first or first two peA axes. In the 

present study some stability measures are proposed which are equivalent to 

biplot with first PCA axis and biplot with first two peA axes for ranking 

purposes. The reliability of stability conclusions improves with increase in 

the number of PCA axes, which has been exploited while proposing the new 

measure of stability. The proposed stability measure Wi(AMMI) which 

accommodates all possible peA axes is shown equivalent to Wricke's 

ecovalence. The proposed stability measures are precise in the order in which 

amount of information increases. The ranking ability of Wi(AMMI) is found to 

be superior to other measures when there are missing cells in the data; 

showing some kind of robustness to the missing data. The ranking abilities of 

different stability measures are found to be better in the proposed EM-AMMI 

with random environments as compared to EM-AMMI of Gauch and 

Zobel [6] and Modified EM-AMMI of Bajpai [l] revealing its superiority 

over the other two methodologies. Thus, the stability measure Wi(AMMI) using 

EM-AMMI with random environments methodology may be recommended 

and may be employed to derive stability conclusions from AMMI model 

when some cells in two-way table are missing. EM-AMMI enriched 

technique has been proposed for Joint Regression to deal with incomplete 

data. This technique enables us to fit not only the main effects but also the 

interactions for the missing cells. 
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1. 1ntroduction 

Recently yielding stability as a selection trait in plant breeding 
programmes and evaluation trials is constantly gaining importance over yielding 
ability especially in developing countries like India, where the number of small 
and marginal farmers with small holdings is very high. A main strategy among 
small-scale subsistence farmers, particularly in marginal areas, is risk 
minimization. In these areas, stable yields are the key to sustainable food 
supplies. However the existence of interaction reflecting differences among 
varieties in their ability to maintain performance over a wide range of 
environmental conditions is long been recognized to exist. Hence the challenge 
put forward for the plant breeder has been to develop cultivars that are stable 
across a range of environments. If one follows the dynamic concept, the goal of 
breeding stable genotypes may be translated as the goal of minimizing genotype 
environment interaction, which makes the selection of high yielding genotypes 
easier. 

As an alternative to additive ANDV A model, which identifies the 
interaction as a source but does not analyze it, multiplicative formulations may 
be chosen to quantify the variety's contribution to genotype x environment 
interaction, which include well known Joint Regress~n and at the moment most 
popular Additive Main effects and Multiplicative Interaction (AMMI) model. 
These multiplicative formulations permit the interpretation of interaction as 
differential genotypic sensitivity to environmental variable(s). 

Joint Regression consists in regressing the observed yield on the observed 
environmental mean yield. The resulting regression coefficient may be 
interpreted as linear sensitivity of the variety to environmental change. However 
this procedure suffers from a conceptual problem of regressing a vector of 
observations on another vector. which is a linear combination of the former. 
Hence the estimates of sensitivity obtained from this method are biased. Further, 
when the component of deviation from linear regression is significant, Joint 
Regression fails to perceive important interaction effects. This makes the 
prediction of variety's behaviour over a range of environments imprecise. 
Subsequently, one may not be able to make any remarks on the stability. In such 
cases, Additive Main effects and Multiplicative Interaction (AMMI) model 
proves to be a more realistic one in the sense that it can digest the non-linear 
interactions too into a pattern rich model, discarding a noise rich residual. This 
methodology consists in decomposing the matrix of residuals, obtained after 
fitting the additive main effects, by singular value decomposition. Graphical 
representation of interaction using AMMI interaction parameters is known as 
biplot. Till date, the stability conclusions made from AMMI model are based on 
biplots. However the scope of biplots is very much limited. Biplot formulation 
of interaction will be successful only when significant prop onion of G x E 
interaction is concentrated in the first or first two PCA axes. Thus in view of 
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this, one may be interested in deriving a more comprehensive stability measure 
from AMMI model. 

Most often the data obtained from multi environment testing are 
unbalanced. It may be incidental or accidental. There is a need to study the 
existing methodologies for such data sets also and to have further modification 
for their improvement. Further, treating the environment effect as random wiH 
have some desirable consequences in the sense that the corresponding BLUP 
estimator corrects for possible random environmental contributions to the 
genetic effects. Due to this, the bias creeping in due to the selection of 
environments is precluded. The aim of this study is to determine and develop a 
reliable and statistically sound methodology, that efficiently explains the 
genotype environment interaction, and a practical solution of obtaining reliable 
and stable genotypes, keeping in view of the said issues and concerns. 

2. Joint Regression/or Balanced Data 

Eberhart and Russell [2] proposed an observational formulation for the 
Joint Regression context. The model proposed by Eberhart and Russell [2] may 
be written as 

Yij =ai + ~j ej + Oij 
where 

Yij is the performance of i-th genotype at the j-th environment 

( i =1, ...• K; j =I, ... , N) averaged over R replications 

aj is the mean of i-th genotype over all the environments 

ej is the environmental index for the j-th environment which may be obtained 
as the mean of all genotypes at the j-th environment minus the general mean 

~i is the regression coefficient measuring the linear sensitivity of i-th genotype 
to environment change 

Oij is the 'deviation from regression' of the i-th genotype in the j-th 
environment 

The estimates of parameters may be obtained as following: 

aj Yi. 

e, = -y , - -y
J j" 

such that ~ e, =0 
~ J 



300 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS 

Mean squared deviation from linear regression, sf may be obtained as, 

-2 	 L OijS = -- 
d; 	 . N 2 R 


J 


Stability and Adaptability 

A genotype with unit regression coefficient i.e. Pi 1 and the mean 

squared deviation not significantly different from zero (Sf =0) is said to be 
i 

stable. Significance of SJ from zero invalidates the linear prediction. If sf is, 	 , 
not significantly different from zero, the performance of the genotype for a 
given environment may be predicted. Accordingly, a genotype whose 
performance can be predicted is said to be stable and it also helps in choosing 
genotypes for specific adaptation. 

3. AMMI Model and its Evaluation for a Balanced Data 

The AMMI model for a two way table of genotype x environments may be 
written as 

m' 

Yij =J.l + <Xi + Pi + LAmYmiOmi + Ojj' i =1, ... , K andj =1, ... , N (1) 
m=l 


where 

Yij is the mean yield of i-th genotype in j-th environment 


J.l is the grand mean 

(Ii is the i-th genotype mean deviation 

Pi is the j-th environment mean deviation 

m l is the number of PCA axes retained in the model 

Am is the singular value for the PCA axis, m 

YnU is the i-th genotype PCA score for the axis, m 

Omj is the j-th environment PCA score for the axis, m 

Oij is the residual 


The identification constraints for the model (1) are as under 


0 I 

2 'if m 	 (2) 

(3) 

(4) 
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Ordinarily the number m' of interaction principal component axes retained 
in the model is chosen with empirical considerations of F test of significance, 
predictive accuracy, agricultural interpretability of the associated interaction 
peA scores, and so on. The residual combines the M-m' discarded axes, where 
M =min [(K-l), (N-I)]. Equations (2) and (3) state that the vectors 'Ymi and Smj 
are normalized. According to equation (4), the vectors 'Ymi and 'Ym'; are 
orthogonal with a similar statement for Smj and Sm>j. 

One way of constructing AMMI is that the interaction is described in terms 
of differential sensitivity to the most discriminating environmental variables that 
can be constructed. These environmental variables are hypothetical and obtained 
from the data themselves. No explicitly measured environmental variables enter 
the model. Because both environmental variables and genotypic sensitivities are 
estimated from the data table itself, the AMMI model is called a bilinear model: 
given the column parameters the model is linear in the row parameters and given 
the row parameters the model is linear in the column parameters. The basic 
model is essentially a two way ANOV A model, which requires that the matrix 
of interaction parameters be decomposed by u'sing factor analytic techniques. 

Let us reparameterize the equation (1) so as to obtain the matrix of 
interaction parameters as 

Yij = f.l + (lj + J3j + V ij (5) 
m' 

where V;j = L. Am'Y miOmj + Ojj of equation (1) 
m=i 

Now the estimates of Vij may be obtained as 

Vij :: Yij - ,1- u Pji 

Form the matrix X of interaction estimates from Vij ' s such that each row 

of X denotes the interactions of a variety over N environments. Using factor 
analytic decomposition, the matrix X may be written as 

X =ADB' (6) 

where 

X is K x N matrix with Vij 's as elements 

A is K x M orthonormal matrix 

Dis M x M diagonal matrix with elements d1 ~ d2 ~ ••• ~ dm· ~ ... dM 

B is N x M orthonormal matrix 
M is the rank of X 

The matrices A, D and B of equation (6) may be obtained from the 
characteristic vectors and characteristic roots of the K x K matrix XX'. The 
K x M matrix A then consists of the characteristic vectors and the M x M 
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diagonal matrix D consists of the square roots of the characteristic roots of XX'. 
The N x M matrix B can then obtained by solving 

B == X'AD'! (7) 

The above solution specifies that the matrices D and A be found by solving 
the eigenvalues and eigen vectors of the matrix XX' and then the matrix B be 
obtained from (7). It is also possible to solve for the matrices D and B by finding 
the eigenvalues and eigen vectors of the matrix X'X and then obtaining A from 
A == X BD-!, For ease of calculation it is convenient to solve for the eigenvalues 
and eigen vectors of either of XX or XX' whichever has the smaller dimension. 

The environmental eigen vector corresponding to A! (first column of B) 
represents the hypothetical environmental variable that describes the largest 
amount of interaction and thus best discriminates between genotypes, the second 
axis the second largest amount, and so on. If all the M possible axes are retained 
in the model, it completely factors out the interaction without leaving any 
residual. Multiplicative modelling of interaction is successful when the additive 
ANOVA interaction with (K l)(N - 1) independent parameters, can be 
replaced by only a few multiplicative terms (m' «M ), thus adequately 
describing the interactions with considerably fewer parameters. Various 
methods exist to determine the number of multiplicative terms that should be 
retained. The most simple one is due to Gollob [7J, and suffices for many 
practical applications (Gauch [4]). For each axis a mean square is calculated, 
that is compared with the estimate of residual by means of an F test. The mean 
squares are obtained as follows: 

The sum of squares for axis m is equal to the square of the singular 
value, 1.2m' The corresponding number of degree of freedom is K + N - 1 - 2m. 
The required mean square is the quotient of these two quantities. 

4. Predictive and Postdictive Success 

The ability of a model to predict validation data, not used in constructing 
the model constitutes predictive success. The ability of reduced, parsimonious 
model to fit selfsame data (the data used in constructing the model) constitutes 
postdictive success, for example the percentage of treatment SS accounted for 
by a reduced model. Gauch [3] recommends GoUob's [7] simple F test as a 
practical approach to the evaluation of postdictive success. 

Evaluating the Predictive Accuracy 

In prediction, one data set is used to construct a model, while different and 
independent data are used to validate the model. For example an AMMI model 
can be fitted to some yield data, and its expected values can then be evaluated by 
calculating the root mean square prediction difference between model and 
validation observations not used previously in modeling. This use of 
independent validation data precludes bias. The root mean square predictive 
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difference (RMSPD) between AMMI model and validation observations is 
simply the square root ,of the quantity of the sum of squared differences between 
AMMI estimates and validation observations, divided by the number of 
validation observations (Gauch and Zobel [5]). RMSPD is in the same units as 
the yield measurements and a small value indicates predictive success or 
accuracy. 

A model's predictive accuracy may be estimated as follows: consider the 
variance of a model cr2M' the variance of validation observations, cr2v and the 
variance of differences between model and validation observations, a2MV. By the 
variance rule, cr2MV = cr2M+ a2v. Now, cr2Mv can be estimated empirically as the 
mean square difference between the model's estimates and validation 
observations (i.e. as the square of RMSPD). Likewise a2v is estimated 
empirically by the Error MS. Thus the model's accuracy may be assessed by 
cr2M=cr2MV a2v. This estimate is unbiased because cr2MV and a2v are both 
unbiased. In otherwords a2Mreally does assess accuracy, not merely precision. 

Furthermore, the model's predictive accuracy can be expressed in terms of 
number of effective replications, namely, the Error MS divided by cr2M' When 
the effective replications exceed the actual replications supplied to a model, the 
model exhibits the Stein effect, which implies the model is predictively accurate 
and the model is better than its data. 

5. Biplots 

Graphical display of interaction with AMMI interaction parameters is 
known as Biplot. 

Let us distribute the singular values, Am over the genotypic scores, 
y*mi = Ymi Amc and the environmental scores 0* mj = Omj Am(I'C); where c is a scaling 
constant, varies from 0 to 1. The features of the biplot, however are not too 
critically dependent on c, and c = 0.5 may suit well for most problems. Two 
kinds of plotting is possible with estimated AMMI interaction parameters. 

5.1 Biplot with First peA Axis 

First peA scores of genotypes and environments are plotted against their 
respective means. This biplot formulates the interactions as E(Xij) =1.1 Yli 01j 

Y*li O*lj' where Xij is the interaction of i-th genotype in the j-th environment. 
Now the pattern of G x E interaction may be visualized from this plot. If the 
genotype or an environment has a peA score of nearly zero, it will have smaller 
interaction effects. If a genotype and an environment are having the same sign 
on the peA axis, their interaction is positive, if different, their interaction is 
negative. This biplot may also be used in simultaneous selection for yield and 
stability, provided the first peA axis explains significant proportion of 
interaction SS. 



304 JOURNAL OF THE INDIAN SOCIFlY OF AGRICULTURAL STATISTICS 

5.2 Biplot with First Two peA Axes 

For a better description of the interaction, both first and second peA scores 
of genotypes and environments may be considered for plotting. Here second 
peA scores of genotypes and environments are plotted against their respective 
first peA scores. The interaction from this biplot may formulated as 
E(Xij ) =Y*liS*lj + Y*21 S*2j. The scores determine the end points of genotypic 
and environmental vectors, which depart from the origin. Simple geometry 
reveals that the interaction between a genotype i and an environment j can be 
obtained from a projection of either vector on to the other. In any quadrant the 
interaction between a genotype and an environment will be positive. 

The stability of a variety or an environment is determined by the end point 
of its vector from the origin (0, 0). The vector, which is nearer to the origin, will 
have lesser interaction effects, hence may be regarded as a stable one. Obviously 
the stability conclusion made based on this biplot will be more precise than the 
former one; since this biplot takes into consideration the second peA axis too 
for explaining the interaction. 

However the scope of biplots is very much limited. Biplot formulation of 
interaction will be successful only when significant proportion of G x E 
interaction is concentrated in the first or first two peA axes. When postdiction 
(F tests) mandates to retain more than 2 axes in the AMMI model, the biplot 
formulation of interaction will faiL Subsequently, the stability conclusions made 
based on biplots will be imprecise. In such cases, one may be interested to 
consider the procedures that accumulate considerable proportion of interaction 
SS (all the m' significant peA axes or all possible M axes) to make the stability 
conclusions more reliable. Another remark that can be made on biplots is that, 
when the stability differences among the genotypes are very close it will be 
difficult to distinguish the genotypes with respect to the stability. 

6. Some Measures ofStability from AMMI Model 

Keeping in mind, the limitations of biplots concerning stability 
conclusions, we may attempt to derive a more comprehensive stability measure, 
retaining all possible 'M' peA axes. 

Let us consider the matrix X of interaction residuals obtained from 
ANOVA, X =[(Vij)] where Vlj is the interaction residual of i-th genotype in j-th 
environment, i = 1, ... , K andj = 1, ... , N. 

Obtain the square, symmetric matrix XX' of order K x K from X. 

Obtain the positive eigenvalues A~,A~,.... A~, ... ,A~ of XX'; where 

M =rank(XX') 



305 A STUDY ON AMMI MODEL AND ITS BIPWTS 

Obtain the eigen vectors Yt. Y2,' .. , Ym, .. , YM corresponding to the 

eigenvalues A~ ,A~, ... , A~, ... , A~ of XX', where Ym is K x I vector, contains the 

peA scores for the K genotypes corresponding to the axis m. 

Using spectral decomposition, the square, symmetric matrix XX' may be 
written as 

(8) 

Let us consider the i-th diagonal element of XX' [= f ViJ ) , measures the 
J=I 

spread of interaction effects of i-th genotype over N environments, which may 
be decomposed from (8) as 

N 
I I I I""V2 12 12 12 12L..J ij =AIYliYIi +A2Y2iY2i + ... +AmYmiYmi + .•• +AMYMiYMi 

i=1 
12 2 ,2 2 12 2 12 2= AjYIi +A2Y2i + ... +AmYmi + ... +AMYMi 

M 

=LA~Y;j 
m=1 

N 

However L ViJ is a measure of stability proposed by Wricke [11], 
j=1 

popularly known as Wricke's ecovalence. Hence the proposed measure of 
stability may be viewed as Wricke's ecovalence (Wi) in terms of AMMI 
parameters and may be denoted by Wi(AMMI)' 

M 

Wi(AMMI) = LA~Y;i (9) 
m-I 

Therefore it may be concluded that the stability rank order obtained from 
the proposed measure will be equivalent to that ofWricke's ecovalence. 

We may also develop few more measures of stability by retaining varying 
number of axes in the AMMI model. 

When the first peA axis only is retained in the AMMI model, then, we 
may measure the stability from FPi as 

FPi =A~Y~ (10) 

However the absolute value of Yli alone is sufficient for comparison; since 
1.12 is same for all the genotypes. Lesser the absolute value of Yoo, more will be 
the stability. The comparison of genotypes for stability based on this measure 
will be equivalent to the comparison based on Biplot with first peA axis. 
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We may retain the first two PCA axes in the AMMI model, to develop a 

measure Bj as 


2 

(11)Bj = LA~Y~i 
ill;l 

Stability comparisons based on this measure will be equivalent to the 

comparisons based on Biplot with first two PCA axes. 


We may also consider the measure based on fitted AMMI model by 

retaining m' axes, where m' is determined by the postdiction (F tests). 


m' 

FA j = LA~Y~ (12) 
ill;l 

In comparison to Wj(AMMI), the above three measures will be less precise, as 

is evident from the fact that, they could not exploit the complete information. 

The reliability of a measure improves with the increase in the number of axes 

retained. 


It may also interesting to propose, quantification for the accuracy of 

stability conclusions made based on FP;, Bj and FAj. If we assume that the 

stability rank order obtained from Wj(AMMI) is true, then we may compare the 

remaining three measures of stability with respect to their ability to assess the 

true stability rank order. The concordance between the true rank order and the 

rank order displayed by the stability measure under consideration may be 

quantified by Spearman's rank correlation coefficient. Now the three measures 

FPj, Bi and FA; may be compared with respect to their estimated concordances. 


For ranking purposes, the proposed measure Wj(AMMl) will be equivalent to 

Shukla's unbiased estimator of stability variance, 0/ (Shukla [9]). 


7. AMMIfor Incomplete Data 

7.1 EM-AMMI 

Implementation of AMMI requires that the two way table of interactions 

be complete. But, the interaction for the missing cells in incomplete 

Genotype x Environment table is undefined. Gauch and Zobel [6] suggested to 

employ Expectation and Maximisation (EM) algorithm to implement AMMI 

model for an ·ihcomplete two way table. They termed the so called missing data 

version of AMMI as "EM-AMMI". "In many important cases", including the 

AMMI model, "the EM algorithm is remarkably simple, both conceptually and 

computationally" (Little and Rubin [8]). In essence, EM involves "Filling in 

missing values and iterating" in such a manner that starting values do not affect 

the solution and hence are arbitrary and inconsequential, apart from some affect 

upon the number of iterations required for convergence. Little and Rubin [8] 


-_._._---_._--_.... _._--------------------- 
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summarize the computations: "the EM algorithm formalizes a relatively old ad 
hoc idea for handling missing data: 

(I) 	 replace the missing values by the estimated values 

(2) 	 estimate the parameters 

(3) 	 re-estimate the missing values assuming the new parameter estimates are 
correct 

(4) 	 re-estimate the parameters 

and so forth, iterating until convergence." 

A suitable implementation of the EM algorithm for EM-AMMI works as 
follows. First, compute cell means for every cell with data. Then initialize 
EM-AMMI's additive parameters by computing the un-weighted genotype 
means, environment means, and grand mean. Then initialize the interaction 
residuals as usual for cells with data (namely, the interaction equals the cell 
mean minus the genotype mean minus the environment mean plus the grand 
mean), but impute an interactions residual of zero for missing cells. Now, the 
interaction matrix has no unspecified cells, so perfectly ordinary PCA 
calculations solve for EM-AMMI's multiplicative parameters, continuing for as 
many PCA axes as desired. Next, re-estimate and revise each missing cell with 
the current EM-AMMI model. Then fit EM-AMMI to these revised data, 
treating imputed values the same as actual data. Iterate this process until 
convergence, i.e., until the imputed values for missing cells show acceptably 
small changes. Upon convergence, the EM-AMMI model "fits" the imputed 
cells perfectly with a residual of zero (within numerical precision), where as 
actual data have finite residuals as usual. Hence the EM algorithm fits a model 
to the actual data, while ignoring missing cells in the sense that they receive 
imputed values that fit the model perfectly. 

Predictive Accuracy of Indirect Data 

What we have described earlier under the head of predictive success or 
accuracy, is concerned to total data. To better understand, what the indirect data 
is, let us split the yield trial data consisting of K genotypes, N environments and 
R replicates into model data and validation data such that for each treatment 
(a cell in the two way table) R * « R) replicates are chosen at random for AMMI 
modelling, while the remaining (R - R*) replicates are reserved for validation. 
This means that the model data consist of KNR* observations, where as the 
validation data consist of (KNR KNR*) observations. Now the KNR* 
observation used to fit the AMMI model constitute the total (model) data; and 
for each treatment (i-th genotype grown in j-th environment) the remaining 
(KNR* - R*) modelling observations except its direct R* replications constitute 
the indirect information (data), 

Estimation of yield for each treatment from indirect data is possible 
given an implementation of EM-AMMI described previously. For each 
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treatment in turn, EM-AMMI is given for only the indirect modelling data 
namely, the (KNR* - R*) observations, and the model is used to impute a yield 
value for the missing ceIL The result is a complete matrix of imputed yield 
values for all KN treatments, in which not a single computation has used a 
single direct yield observation. We may now compute the Root Mean Square 
Predictive Difference (RMSPD) between these imputed values and the 
validation observations. Now, the predictive success of indirect information may 
be compared with the predictive success of total data in tenns of their RMSPD 
values. Gauch and Zobel [6] illustrated this concept on a soyabean yield trial 
data. The amount of indirect EM-AMMI derived information (with an RMSPD 
of 395.4022) is found very nearer to the total information (with an RMSPD 
of 361.0331). 

7.2 Modified EM-AMMI Approach 

Bajpai [1] proposed to implement AMMI for an incomplete two-way data 
by initializing the EM-AMMI's additive parameters by Patterson's fitting 
constants technique. Here the additive main effects of equation (5) are estimated 
with "Fitcon" technique and then the interaction residuals are obtained from 

Vij=Yir jl-ai-~j 

Now proceed to impute the missing cells as in EM-AMMI. 

Finally Yij'S are estimated as 

Yij = Yij(fit) +Vjj(AMMI) 

7.3 EM-AMMI with Random Environments 

We may propose that when the environmental effects are treated as 
random, one may ini'tialize the EM-AMMI's additive parameters with the ones 
obtained from mixed model equations. The mixed model equations provide the 
BLUE's for grand mean and genotypic effects and BLUP's for environmental 
effects. After fitting the additive main effects, the interaction residuals may be 
obtained as 

V ij =Yir jl- aj ~j 

Now proceed to impute the missing cells as in EM-AMMI. 

Comparison of the Three EM-AMMI App~oaches
I 

We may propose to compare the EM-AMMI approaches outlined here. to 
implement AMMI for an incomplete data, with respect to their ability to yield 
and stability conclusions as obtained from the complete data set using a similar 
approach. One may use the four measures of stability proposed with AMMI 
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model for this purpose. Assuming the stability rank order obtained from 
balanced data as true, we may quantify the concordance of stability rank order 
displayed by the methods of interest, that deal with incomplete data, by means 
of Spearman's rank correlation. 

8. EM-AMMI Enriched Technique/or foint Regression/or Unbalanced Data 

Till date. while fitting the Joint Regression for incomplete data, for the 
missing cells. one has to compromise with main effects; since the interaction for 
a missing cell stays undefined. Appreciating the predictive success of indirect 
data exhibited by soyabean data of Gauch and Zobel [6], we may. now, propose 
an EM-AMMI enriched technique for Joint Regression for unbalanced data. 
EM-AMMI enables us to fit the interactions too for the missing cells. Having 
impution of the missing cells in the two way table of yields, with the ones 
obtained from an appropriate EM-AMMI. such that the two way table of yields 
is complete, evaluation of Joint Regression becomes straightforward. 

8.1 EM-AMMI Substituted Least Squares for Joint Regression 

Form the complete two-way table of yields by imputing the missing cells 
with modified EM-AMMI (Bajpai [1]) the estimates ej's from the table can be 

obtained. Now one may regress the Yij's for each variety on the e/s to evaluate 

the linear sensitivities. 

8.2 EM-AMMI Substituted BLUP for Joint Regression 

When the environmental effect is treated as random, form the complete 
two-way table of yields by predicting the missing cells with EM-AMMI with 
random environments and compute ej. Now regress the Yi/S for each i, on the 

ej 's so obtained. 

9. Empirical Study 

Extent of Data 

The data used in this study were collected from the multi-location year 
trials of released and pre-release varieties of ground nut conducted at research 
stations situated in different agro-climatic zones of Andhra Pradesh. The data 
were supplied by Regional Agricultural Research Station (RARS), Palem. The 
data consist of 20 environments and 15 genotypes. The experiments were laid in 
Randomized Block Design (RBD) with 3 replications. The pod yields were 
expressed as kglha. The mean data over the replicates for the 15 genotypes and 
20 environments are presented in Table 1. 
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Joint Regression for Balanced Data 

The genotypic parameters of Eberhart and Russell [2] model are presented 
in Table 2 and the corresponding analysis of variance is presented in Table 3. 
ANOV A in Table 3 reveals that there is significant difference among the 
genotypes indicating wider genetic diversity among the genotypes. 
Genotype x Environment (linear) and pooled deviation were found to be 
significant when tested against pooled error, indicate significant 
genotype x environment interaction. Genotype x Environment (linear) 
interaction was found to be not significant when tested against pooled deviation 
which implies that the genotypes don't differ for their regression on 
environmental index and overwhelming portion of G x E interaction is of non
linear type, which ultimately makes the behaviour of genotypes unpredictable. If 
we look at the significance of deviation from linear regression for the IS 
genotypes in Table 3, all the deviations are significant at I % level except 
genotypes G-7 and G-14. The deviation for the genotype G-14 is not significant 
and the regression co-efficient f3i is around unity (0.921) and as such it is 
regarded as stable variety. Similarly the deviation for genotype G-7 is not 
significant at I % level and the coefficient of linear sensitivity is very close to 
unity, hence this can also be regarded as stable variety. The genotype G-6 tops 
in Table 2 with respect to the average yield over the environments. However the 
significance of deviations from linear regression makes its behaviour 
unpredictable over the environments and one may not be able to comment on its 
stability from Eberhart and Russell's model point of view. 

AMMI for Balanced Groundnut Data 

The AMMI model was evaluated for the balanced groundnut data. The 
corresponding AMMI analysis of interaction is presented in Table 4, which may 
elucidate the post-dictive success of AMMI model to explain the interaction. 

Post-dictive Success 

The first six peA axes were found to be significant and hence retained in 
the modeL The fitted AMMI model with first six peA axes explained 89% of 
the interaction variation. The sum of squares accounted for by different 
significant axes and the residual are also presented in Table 4. The requirement 
of too many axes here indicates the complexity of G x E interaction pattern in 
the groundnut data. However, a large amount of non-linear interaction, Joint 
Regression failed to explain, is now explained by the AMMI modeL Even with a 
single axis (peA-I), the contribution is 40.3% as against the contribution of 
linear component of interaction in Joint Regression, 3.5%. 

Predictive Accuracy 

To estimate cr~ , we need atleast two replicates hence we were to construct 

the AMMI model for balanced groundnut data with a single replicate. One 
replicate out of three is chosen at random for each of the 300 treatments and 
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utilised for modelling. The AMMI model was fitted by retaining the first 6 peA 

axes for the interaction. Now a~v is estimated empirically as the mean square 

difference between the model's estimates and the validation observations which 

turns out to be cr~v = 130088.69. Likewise, a~ is estimated empirically by the 

Error MS obtained from the one way ANDV A model, which turns out to be 

cr~ 69719.5. Now the model's predictive accuracy may be assessed from the 

estimate of model's variance, cr~, which may be obtained as 

cr~ = cr~v - cr~ ;: 60369.19 

~2 

Now the effective number of replications may be evaluated as ~; =1.155 
OM 

Here'the effective number of replications exceeded the actual replications 
supplied (one) to the model, hence the model exhibits the Stein effect. This 
means that the model's estimates are more predictively accurate, implying that 
the model is better than its data. 

Biplots 

The scaling constant c is chosen equal to 0.5 to obtain the genotypic and 
environmental scores. 

Biplot with First peA Axis 

Figure 1 depicts the first peA scores of genotypes and environments of 
balanced groundnut data plotted against their respective means. From Figure I, 
the genotypes 0-6, 0-11, and 0-12 may be considered as stable. Similarly the 
environments E-20, E-9, E-4 and E-7 may be regarded as stable. The genotypes 
0-4 and 0-5 and the environment E-17 have larger interaction effects, hence 
may be regarded as unstable. There is huge variability in environmental means 
as compared to genotypic means. The genotypes 0-4 and 0-5 have negative 
interactions in E-17 and positive interaction in E-3. Similarly 0-3 has positive 
interaction in E-17 but negative interaction in E-3. If we employ the strategy, 
simultaneous selection for yield and stability for the genotypes, 0-6 is found to 
be superior to all others. However the stability conclusions drawn from this plot, 
which accounted for only 40.3% of interaction SS; are not precise. 

Biplot with First Two peA Axes 

Figure 2 depicts the second peA scores of genotypes and environments of 
balanced groundnut data plotted against their respective first peA scores. From 
Figure 2, 0-11 is the most stable among all the genotypes, which was at second 
rank in Figure 1. From Figure 2 also, 0-4 and 0-5 were found to be most 
unstable varieties. The genotype 0-6, which was at first rank in Figure I, now 

http:60369.19
http:130088.69
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goes to second rank. In Figure 2 also. E-17 was found to be the unstable 
environment. Interaction of a given genotype in a given environment may be 
obtained by projecting either vector on to the other, times the length of the 
vector on which projection takes place. If the given genotype and the 
environment are in the same quadrant their interaction will be positive. 

The scope of biplots to efficiently explain the interaction is very much 
limited for the dataset considered here as is evident from the fact that the first 
PCA axis accounted for only 40.3% of the interaction variation and the first two 
PCA axes together constituted only 55% of the interaction variation. The 
postdiction suggested to retain more than two (six) PCA axes in the model to 
explain the interaction. In such cases it is not advisable to do stability conclusion 
from biplots. The stability measure that considers all the significant axes or all 
possible axes should be explored. 

Measures of Stability from AMMI Model 

The four measures of stability FPi, B" FAi and Wi(AMMI) described earlier 
were evaluated for each of the 15 genotypes of balanced groundnut data. The 15 
genotypes were ranked with respect to their stability with each of the four 
measures such that lesser the value of the rank, more is the stability. The 
stability rank orders displayed by these four measures of stability were presented 
in Table 5. Stability rank order displayed by FPi in Table 5 reveals that 
genotypes G-6, G-ll and G-12 are the most stable genotypes in the descending 
order; and variety-4 is the least stable. The same stability conclusions were 
obtained from biplot in Figure 1. However the stability ranks of G-6 and G-II 
are interchanged with Bi as compared to FPi • the same conclusion obtained from 
biplot in Figure2. Only the ranks of genotypes G-3, G-4 and G-5 remained same 
to that of FPi. The stability rank order displayed by FAi (retaining 6 PCA axes in 
the AMMI model) in Table 5 is highly deviating from the ones obtained by FPi 
as well as Bi; as we shall see the G-ll and G-6 are taking the ranks 6 and 8 
respectively with FAi. FAi identified G-7 and G-5 as the most stable and least 
stable varieties respectively. The stability rank order displayed by Wi(AMMI) in 
Table 5 reveals that G-14 is the most stable one and G-7 is the second most 
stable variety; just the ranks obtained by FAi are interchanged. In contrast to FPi 
and B" the G-5 was identified as the least stable variety by FAi and Wi(AMMl)' 

We may also observe in Table 5, the rank of G-14 is monotonically 
improving towards Wi(AMMI)' G-7 also exhibits almost a similar trend. This 
implies that there is some association improving towards the right (Wi(AMMI»)' 
This trend supports the presumption made earlier that the reliability of the 
measure improves towards the right; with the increase in the number of PCA 
axes retained in the model. Now, we may use the tool Spearman's rank 
correlation to quantify the reliability of FP" Bi and FAi assuming that the 
stability conclusions derived from Wi(AMMI) as true. The rank correlations of 
stability rank orders displayed by FPj, Bi and FAi with rank order obtained by 

J 
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Wi(AMMI) were 0.761, 0.846 and 0,961 respectively, This increasing trend in rank 
correlations, also supports our presumption that the reliability of the measures 
are in the following order: FP, S;B i S; FA, S; Wi(AMMI) i.e, the order in which 
amount of information increases. 

AMMI for Incomplete Two-way Table 

To evaluate the methodologies described to deal with mlssmg data, 
unbalancedness is created by eliminating 20 cells at random in Table 1. The 
genotype, environment combinations identified for deletion are as following: 
(1,17), (2,3), (3,9), (4,1), (4,16), (5,5), (7,6), (8,5), (8,10), (9,7), (10,2), (l0,15), 
(l0,18), (11,11), (11,20), (12,4), (12,12), (13,6), (14,14) and (15,8). The three 
EM-AMMI approaches described for incomplete datasets were employed for the 
unbalanced groundnut data so derived. 50 iterations were found to be sufficient 
to achieve convergence in the imputed values with all the 3 approaches. 

Predictive success of indirect data vs total data 
-2 A2 A2 
O'MV = O'M +O'v 

A2 A2 A2 
O'M == O'MV - O'v 

If our aim is only the comparison of total and indirect data with respect to 

their predictive success cr~v serves our purpose rather than cr~, provided 

validation data is same for both the models. When validation data is same, cr~ 
remains same for both the models and the two models may be compared in 

terms of cr~v rather than cr~ . cr~v may directly be .)btained as the square of 

RMSPD and we are not required to estimate O'~. When we do not need to 

estimate O'~ , only one replicate for validation data suffice, which leaves (R - 1) 

replicates at our disposal for modelling data ensuring maximum possible 
precision for the model. As our groundnut data is having 3 replicates, we may 
take one replicate at random for each of the 300 treatments for validation data 
and the remaining two replicates (2 x 300 = 600 observations) for modelling 
data. Now for any treatment, the two replicates used for modelling constitute 
direct data and the indirect data consist of the remaining 299 treatments each 
having 2 replicates; so the indirect data contain 598 observations. Obviously the 
total data consist of -both direct and indirect data i.e., 2 + 598 == 600 
observations. 

AMMI model was fitted for the total data (600 observations) retaining first 
6 peA axes for the interaction. Root mean square predictive difference 
(RMSPD) between AMMI model's estimates of 300 treatments and their 
respective validation observations was found to be 313.89'. The indirect data 
estimates are possible given an implementation of EM-AMML For each 
treatment in turn, EM-AMMI was given only for the indirect modelling data, 
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namely, the 600 2 =598 other observations, and the model was used to impute 
a yield value for the missing cell. The result was a complete matrix of imputed 
yield values for all the 300 treatments. The RMSPD between these imputed 
values and their corresponding validation observations was evaluated which 
turned out to be 599.03. 

Unfortunately, unlike the soyabean data of Gauch and Zobel [6], the 
groundnut data considered here for study does not exhibit a considerable amount 
of indirect EM-AMMI derived information to that of total information. The 
predictive success of indirect model is too poor as compared to the total model, 
for the data considered here. 

Comparison of the Three EM-AMMI Approaches 

The missing cells in the two-way table of incomplete groundnut data were 
imputed using EM-AMMI (Gauch and Zobel [6]) as well as Modified EM
AMMI (Bajpai [1]). Now the four measures of stability proposed were evaluated 
for the complete two way table so obtained. Stability rank order with each 
stability measure is obtained such that lesser the numerical value, more is the 
stability for the genotype. Table 6 and Table 7 correspond to the stability rank 
orders displayed by the four measures of stability with EM-AMMI (Gauch and 
Zobel [6]) and Modified EM-AMMI (Bajpai [1]). Table 6 and Table 7 also 
report the Spearman's rank correlations between rank order displayed by the 
measures of stability with incomplete data and the ones obtained with the 
corresponding complete data. 

In case of EM-AMMI with random environments, the results need to be 
compared with a similar approach applied to the complete data. The two-way 
table of interactions are obtained by correcting balanced data for the BLUE's of 
/..t and (lj and the BLUP's of ~j obtained from mixed model equations. Now, the 
four measures of stability are evaluated for the two-way table of interactions so 
obtained and the corresponding stability rank orders are presented in Table 8. 

The stability rank orders obtained using the approach EM-AMMI with 
random environments for incomplete groundnut data are presented in Table 9. 
Table 9 also reports the rank correlations between the stability rank order 
obtained with incomplete groundnut data using EM-AMMI with random 
environments and the ones obtained with complete (balanced) groundnut data 
using AMMI with random environments, presented in Table 8. 

One may be interested to compare Table 5 with Table 8 to see what 
happened when the environments are treated as random. This comparison 
reveals that the stability rank order remained same for all the stability measures 
from Table 5 to Table 8 except for Wi(AMMI) with which !;he ranks of genotypes 
G-I and G-8 got interchanged. The results ill Table 8 may be preferred to 
Table 5; since treating environmental effects as random has got a desirable 
implication of precluding bias creeping in, due to selection of environments. 
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Now two questions will arise; which stability measure out of the four is to 
rely upon and which EM-AMMI approach out of the three is to be employed in 
case of incomplete data. If we compare the rank correlations under FP j • Bi, FA j 

and Wi(AMMI) in the three EM-AMMI approaches it may lead to the following 
conclusions. In all the three EM-AMMI approaches the rank correlations under 
FPj , Bi and FA, are found to be poor (less than or equal) as compared to Wi(AMMI) 
which implies that the stability measures FPj, Bi and FAi are more sensitive to 
missing of data and Wi(AMMI) exhibits some kind of robustness to the missing of 
data. Hence we may conclude that Wi(AMMI) is not only reliable as compared to 
the remaining 3 measures, but also robust to the missing observations. The rank 
correlations under the measures of stability in EM-AMMI with random 
environments are found to be better than or equal to the ones obtained with the 
other two approaches except for FA, which was found to be better in EM-AMMI 
(Gauch and Zobel [6]). As we are more interested in Wi(AMMI) on account of its 
high reliability and robustness, we may compare the rank correlatrons under 
Wi(AMMI) for the. three EM-AMMI approaches which reveals that EM-AMMI 
with random environments is superior to the rest two having the stability rank 
order more closer to the one displayed by balanced data. Besides, the approach 
EM-AMMI with random environments has some theoretically desirable 
consequences, in the sense that it precludes the bias creeping in due to the 
selection of environments. These considerations may motivate us to prefer and 
recommend Wi(AMMI) using EM-AMMI with random environments for 
incomplete data sets over the other two approaches to rank the genotypes with 
respect to their stability. 

EM-AMMI Enriched Technique for Joint Regression for Unbalanced Data 

The estimated variety parameters with EM-AMMI Substituted least 
squares and EM-AMMI Substituted BLUP for Joint Regression are presented in 
Table 10. We may observe in Table 10, the estimates of variety parameters 
obtained from EM-AMMI Substituted least squares are very close to that of EM
AMMI Substituted BLUP. We may compare the results of Table 10 with the 
results of Table 2, which reveals that employment of EM~AMMI enriched 
technique for Joint Regression for unbalanced data yields almost the same 
conclusions to that of balanced data. 
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Table 2. Stability parameters for the 15 genotypes of groundnut 

Genotype 

G-2 
G-3 
G-4 
G-5 
G-6 
G-7 
G-8 
G-9 
G-1O 
G-ll 
G-12 
G-13 
G-14 
G-15 

a i 

1312.4 
1386.78 
1320.95 
1304.27 
1692.65 
1468.53 
1269.47 
1373.57 
1365.13 
1369.05 
1498.95 
1464.43 
1443.25 
1273.48 

~i 

0.961 
1.096 
1.100 
1.110 
1.109 
0.998 
0.918 
1.074 
1.095 
0.910 
0.942 
0.833 
0.921 
0.899 

-2 
Sd 

I 

20484 
145570 
191293 
207790 

31631 
15067 
36896 
63579 

106905 
32370 
39707 
52999 
10586 
66874 

Table 3. Analysis of variance for the balanced groundnut 
data with eberhart and russel model 

Genotypes 14 254686 ** 
Env + Gen x Env 285 

Env (linear) 

Gen x Env (linear) 14 62925 NS 

Pooled deviation 270 90839 
G-l 18 58480 ** 
G-2 18 40652 ** 
G-3 18 165738 ** 
G-4 18 211461 ** 
G-5 18 227958 ** 
G-6 18 51799 ** 
G-7 18 35235 * 
G-8 18 57064 ** 
G-9 18 83747 ** 
G-1O 18 127073 ** 
G-ll 18 52538 ** 
G-12 18 59875 ** 
G-13 18 73167 ** 
G-14 18 30754 NS 
G-15 18 87042 ** 
Average error (pooled error) 560 20168 
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Table 4. AMMI analysis of variance for the interaction of balanced groundnut data 

Source df SS MS Variance ratio 

G x E interaction 266 25408292 95519.89 

PCA-l 32 10240492 320015.38 12.05 

PCA-2 30 3899700.4 129990.01 4.90 

PCA-3 28 2795398.8 99835.67 3.76 

PCA-4 26 2377000.8 91423.11 3.44 

PCA-5 24 1961588.9 81732.87 3.08 

PCA-6 22 1372729.6 62396.80 2.35 

Residual 104 2761382.0 26551.75 

Table 5. Stability rank orders displayed by FPj, Bi> FAj and Wj(AMMl)with balanced 
groundnut data 

Genot:n~e FPj B; FA; Wj!AMMII 
G-I 9 6 5 6 
G-2 8 7 3 3 
G-3 13 13 13 l3 
G-4 15 15 14 14 
G-5 14 14 15 15 
G-6 1 2 8 5 
G-7 6 4 2 
G-8 4 9 7 7 
G-9 7 5 11 10 
G-IO 11 10 12 12 
G-II 2 1 4 4 
G-12 3 8 6 8 
G-13 10 12 10 9 
G-14 5 3 2 1 
G-15 12 11 9 II 
Rank Correlations 0.761 0.846 0.961 1 

Table 6. Stability rank orders displayed by the four measures of stability with incomplete 
groundnut data using EM-AMMI (Gauch and Zobel [6)) 

Genot:n~e FPj B; FA; Wj(AMMlj 
G-l 12 12 10 10 
G-2 4 4 4 4 
G-3 13 13 13 13 
G-4 14 14 15 15 
G-5 15 15 14 14 
G-6 2 1 7 7 
G-7 5 5 3 2 
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Genoti:pe FP; B; FA; W;(AMMlj 

G-9 6 11 8 8 
G-1O 10 10 12 12 
G-lI 8 8 6 5 
G-12 1 3 5 6 
G-13 9 7 9 9 
G-14 7 6 1 
G-15 11 9 11 11 
Rank Correlations 0.8607 0.5607 0.8607 0.9143 

Table 7. Stability rank orders displayed by the four measures of stability with incomplete 
groundnut data using Modified EM-AMMI (Bajpai [1]) 

Genoti:pe FPi Bi FA; Wi[AMMIl 

G-l 12 12 10 10 
G-2 5 2 4 4 
G-3 13 13 13 13 
G-4 14 14 14 14 
G-5 15 15 15 15 
G-6 1 5 7 7 
G-7 4 1 3 2 
G-8 3 3 1 3 
G-9 7 10 8 8 
G-1O 10 8 12 12 
G-ll 6 7 6 6 
G-12 2 4 5 5 
G-13 9 9 9 9 
G-14 8 6 2 
G-15 11 11 11 11 
Rank Correlations 0.9036 0.6143 0.8464 0.9036 

Table 8. Stability rank orders displayed by FP;, B" FA; and W;(AMMI) with balanced 
groundnut data using AMMI with random environments 

Genoti:~ FP; Bi FAi Wi{AMMl! 

G-l 9 6 5 7 
G-2 8 7 3 3 
G-3 13 13 13 13 
G-4 15 15 14 14 
G-5 14 14 15 15 
G-6 2 8 5 
G-7 6 4 2 
G-8 4 9 7 6 
G-9 7 5 11 10 
G-1O 11 10 12 12 

--------.. ------.--..... --------~ ------_..... 
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Genotype FPi Bi FAi Wi(AMMII 
G-ll 2 1 4 4 
G-12 3 8 6 8 
G-13 10 12 10 9 
G-14 5 3 2 
G-15 12 11 9 11 

Table 9. Stability rank orders displayed by FPj, Bi> FAi and Wi(AMMI) with incomplete 
groundnut data using EM- AMMI with random environments 

Genotn~e FPi Bi FA, Wj!AMMll 
G-l 12 12 10 10 
G-2 5 1 4 4 
G-3 13 13 13 13 
G-4 14 14 14 14 
G-5 15 15 15 15 
G-6 1 4 7 7 
G-7 4 2 3 2 
G-8 3 3 1 3 
G-9 7 10 8 9 
G-1O 10 8 12 12 
G-11 6 7 6 6 
G-12 2 5 5 5 
G-13 9 9 9 8 
G-14 8 6 2 1 
G-15 11 11 11 11 
Rank Correlations 0.9036 0.625 0.8464 0.9321 

Table 10. Estimated variety parameters with EM-AMMI substituted least squares and 

EM-AMMI substituted BLUP for joint regression 


EM-AMMI substituted least 
EM-AMMI substituted BLUP 

Genotype uares 

ct.i l3i a.; l3i 
G-l 1542.54 1.071 1542.56 1.084 
G-2 1335.43 1.039 1335.46 1.052 
G-3 1389.17 1.096 1389.07 1.109 
G-4 1273.24 0.995 1272.37 1.005 
G-5 1306.02 1.093 1305.44 1.106 
G-6 1692.75 1.104 1692.75 1.117 
G-7 1477.35 0.988 1477.16 1.000 
G-8 1273.83 0.962 1273.91 0.973 
G-9 1391.03 1.072 1391.02 1.085 
G-I0 1395.47 1.000 1396.04 1.012 
G-11 1391.94 0.999 1390.94 1.009 
G-12 1471.53 0.907 1471.50 0.918 
G-13 1468.06 0.834 1468.20 0.845 
G-14 1476.30 0.953 1476.34 0.965 
G-15 1278.40 0.887 1278.40 0.898 

--_ ....._--_.... -------------....-~--..... -- 
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B1PLOT OF MEAN vs FIRST PCA 
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Fig. 1. Biplot of means Vs first PCA for the balanced groundnut data 

BIPLOT OF FIRST PCA vs SECOND PCA 
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Fig. 2. Biplot of first peA v s second PCA for the balanced groundnut data 


