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SUMMARY 

Two new Bootstrap methods of variance estimation under two-phase 
sampling have been developed. Conditional inference for variance estimation 
under two-phase sampling has also been explored. Comparison of the 
developed methods vis-a-vis the existing Jackknife method has been 
discussed under both design-based and conditional design-based settings. The 
study revealed that the proposed methods compare well with the Jackknife 
method. 

Key words: Bootstrap, Conditional inference, Design-based inference, 
Jackknife, Simulation. 

1. Introduction 

Two-phase sampling is commonly adopted for surveys when there is little 
or no prior information about the population. It is also a viable alternative to 
simple random sampling when there are expected to be gains from using 
auxiliary information. Various resampling procedures viz. the Jackknife, the 
Balanced Repeated Replication (BRR) and the Bootstrap have been suggested in 
the literature for estimation of variance under two-phase sampling. 
Schreuder et al. [8] performed a simulation study comparing variance estimation 
techniques for sampling with partial replacement. In the process, they proposed 
a Bootstrap variance estimator for two-phase sampling though they gave no 
motivation and no theoretical justification. Biemer and Atkinson [1] suggested a 
Bootstrap procedure for two-phase sampling wherein the original two-phase 
sample was replicated a finite number of times to form a • pseudo-population , 
and upon this Bootstrap has been applied for estimating variance. A Jackknife 
procedure has been suggested for the two-phase ratio estimator by Rao and 
Sitter [5]. Kott [3] discussed Jackknife variance estimation when the first phase 
sample is used for stratification. Sitter [6] has extensively studied the Schreuder 
et al. 's [8] Bootstrap method and Rao and Sitter's [5] Jackknife method. Rao 
and Sitter [6] reviewed some of these methods and focussed two-phase sampling 
for measurement errors in case of stratified design. Fuller [2] suggested a BRR 
variance estimator for two-phase samples. 

--------~ ....--~---....---------------...------....-~-
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The Bootstrap can be employed to estimate variance for a wide range of 
estimators under two-phase sampling whereas the Jackknife and the BRR 
procedures are not always easily applicable. As a consequence of this, recently, 
lot of literature is coming up in this area as cited above. The Bootstrap technique 
also gained considerable popularity over time due to its simplicity. 

It is well known that direct extensions of the standard resampling 
procedures to problems where the sampling units may not be independent and 
identically distributed may often lead to misleading inferences. Considering the 
special structure of the two-phase sampling design, two new Bootstrap methods 
namely, the two-phase post-stratified Bootstrap method and the two-phase 
Proportionate Bootstrap method have been developed in this paper which are 
discussed in the subsequent sections. 

2. Notations and Preliminaries 

Consider a bivariate population (Xi, Yi), i =1, ... , N from which a sample is 
drawn by the simple (unstratified) two-phase sampling. design wherein simple 
random sampling without replacement is used at each phase. Let (n', S(I») and 

(n, s(2») denote the sample size and the set of sampled units at the first and 

second phase respectively. Let X'n' and s~2 denote the mean and variance of 

elements of the first phase sample s(1) ofsize n'. Let (X'n,yo) and (s~, s;, sXY) 

denote the means, variances and covariance of the elements of second phase 

sample s(2) of size n. Likewise, let x ' and s;2 denote the mean and variance ofn 

the set (s(l}_ S(2}) of size (n' - n). 

Under this set up, a ratio estimator of population mean Y can be 
written as 

Variance estimation for two-phase samples based on Taylor's linearisation 
method is described in standard textbooks. The approximate variance estimator 
of the above ratio estimator is given by, say 

1 1)/2 A22 A ) 12
Vo = - -, ~y + R Sx - 2Rs lty + ,Sy (2.1)[ n n n 

Rao and Sitter [5] proposed a new linearisation variance estimator that 
makes more complete use of the sample data, given by, say (ignoring finite 
population corrections) 

2 '2Sd Sdx 2 SA A 

VI =-+ 2R- + R -L. (2.2) 
n n' n' 
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where s~ =_1_ ~dr with d i =Yi - RXi' i E s(2) and s; and Sdx are 
n-l £..J

ies(2) 

respectively the sample variance of x values and sample covariance of d; and Xi 

of the second phase sample S(2) • 

3. Two-Phase Post-Stratified Bootstrap Method 

In the two-phase Post-stratified Bootstrap method, the second phase 
sample is selected randomly from the first phase sample. 

The method is as follows 

(i) 	 Draw a simple random resample with replacement of size n' from the 
first phase sample s(l). 

(ii) 	 Post-stratify this resample into two sets, one set having size nl (say) 
consisting of units (with repetitions, if any) that belong to the set 
(s(l) - s(2», i.e. such units that belong to the first phase sample s(l) only 

but not to the second phase sample S(2) and the other set of size n2 (say) 
containing units that belong to the second phase sample S(2). Note that here 
nl and n2 are random sizes ranging between 0 and n'. Discard the 

resample for which n I =0 or n2 =0 and select another resample if such is 
the case, because otherwise it may not be representing a case of two-phase 
sampling. 

(iii) 	 Repeat steps (i) and (ii), say, B times. 


The blh Bootstrap resample estimator (b =1,2, ... , B) is given by 


-b 
-b 	 Yn2_b 
Ydrl =	~xn;


xn2 


where 

-b 	 n -b n' - n -b
xn' 	=-xn + --,-xn 

r 	 n' 2 n I 

with =­
i=1 


(ies(1) _S(2» 


Note here that, the sample mean of x from the first phase sample s(l) is 
computed as a post-stratified estimator, instead of simple mean of all units of 
s(l). This is because post-stratification is involved in the underlying Bootstrap 
method and it requires to take the form of the estimator as proposed. 
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Now, applying the usual Bootstrap method to Ydr we get the Bootstrap 

variance estimator as, say 

B B 
1 "" (-b =)2 h = 1 ""-b (3.1)vBt = -B1 L.J Ydrt - Yl were YI = B L.JYdrl 


b=l b=1 


For large B, we can replace YI by Ydr itself, so as to get, say, another 

version of (3.1) given by 

B 
1 ",,(-b -)2 E (-b -)2 (3.2)vBt• == B-1 L.J Ydrl - Ydr = • Ydrl - Ydr 

b=l 

where E. denotes Bootstrap expectation. 

For a nonlinear estimator e= g(y), a Bootstrap variance estimator is 

obtained readily by replacing Y~I and Ydr by e~rl =g&~1 ) and edr =g& dr) 

respectively. 

Expanding Y~rl in right hand side (R.H.S.) of (3.2) by Taylor's series, 

we get 

E.(Y~ y.,)' = IPE.(E;') + R ,[ ;~ }.(EIl + [;~rE.(Ei) 

21P[ ~:' }.~IE~) + 21P[ ~:' )E.(EO E~) 

2R'(;~ rE.(o,E,) (3.3) 

-b - -b - I -b - d RA YowhereEo=Yn -Yn;E)=Xn -Xn;Ej=Xn' -xn' an =­
2 2 r r Xn 

Since the Bootstrap sampling design is simple random sampling with 
replacement, therefore 

E. ~~) V.~~2 ) =V;E.~~2 )+E;V.~~2 ) (3.4) 

where E;, V; denote the conditional Bootstrap expectation and the conditional 
Bootstrap variance respectively. Now, 

(3.5) 

------------..--.-..• ~.----

I 
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Following Stephan [10], expand E;[ :2) in an infinite series of inverse 

factorials to write E;[ n12) =~Ui + E{Rt (x» with Rt{x)-? 0 as t--+oo 

(i -I)ui-I - ~ . _ 1- k _ n,pqn' 

u j (,.) , 1 > 1 and UI - (, ) where k - --, 


n +1P n + 1 P 1 qn 

since pr(n2) =[[:~ }nz qn' n2]/(I_ qn') 
, n n 

with 1 :5 n2 :5 n , p :: -;, q = 1 , 
n n 

For large n' , . Hence after simplification k:: 0and E;[_I_) = ( , n') 
n2 n + 1 n 

we can get (3.5) as 

E. ~~)::-() (I -.!.),n' and similarly 
n + 1 n n 

t2) _ n' ( 1's~
E.~) - (n' + 1) 1 - -;}n 

t,2) n 1 2 n' n - 1 ..2 

E.~) :: n'{nf + 1) Sx + n'{nf + 1) Sx 


l ) n' n -1 Sxy
E.\EOE) :: -f- --- ­

n + 1 n n 


I. f) n-l 
E.\EoE J :: f Sxy

n(n + 1) 


n -1 2 

--:--s 
n(n' +1) x 

Putting these variances and covariances in (3.3) and assuming (n' -1)= n' 

for large Yde the linearised version of the Bootstrap estimator of variance can be 
obtained as 

-----------------------"----"""-­
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Letting (~:,):: 1, (3.6) reduces approximately to Vo in (2.1). Hereinafter 

VB is referred to as the Iinearised Bootstrap. 

4. Two-Phase Proportionate Bootstrap Method 

An important consideration of the Bootstrap method is that the resamples 
should generally resemble as much as possible the original sample. Hence an 
alternative method called the two-phase Proportionate Bootstrap method is 
developed in such a way that the proportion of units belonging to S(2) and 

~(1) _ s(2)) appearing in each Bootstrap resample remains the same as in the 

original sample. 

The method is as follows 

(i) 	 Draw a simple random sample of size n with replacement from the set S(2) 

of size n. 
(ii) 	 Draw another simple random sample of size (n' - n) n' (say) with 

replacement from the set ~(l) - S(2) ) of size (n' - n). 

(iii) 	 Repeat the steps (i) and (ii) independently. say, B times. 

The bth (b =1.2, ... , B) Bootstrap resample estimator is given by 

-b 

Yn -b 

=-i) xn; 

xn 


where 

-b n-b n' n-b x ' 	= -x + xn'-nnr 	 n' n 

-bwith =-­xn' -n nf 	 n 
i 1 

(i € s(l) -8())) 

Analogous to the method discussed in section 3, the Bootstrap variance 
estimators for this method are given by, say 

B 
1 	 ~(-b =)2 (4.1)VB2 = B-1 £..J ydr2 - Y2 


b=l 


where 
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B 
1 ~ C b -)2and VB21 B I L..J Ydr2 - Ydr 


b 1 


E (-b -)2 
= • Ydr2 - Ydr 

Proceeding on similar lines as discussed in section 3 we can see that the 
linearised version of Bootstrap estimator of variance vB in (4.1) from this 

2 

method comes out to be exactly equal to VB in (3.6). Note that in (3.1) has vBI 

been obtained as VB after some approximations due to the randomness of the 
sample sizes involved in the first (previous) method. Thus also obviously v B2 

reduces to voin (2.1). 

5. Simulation Study 

Theoretically we have seen that the two proposed Bootstrap methods yield 
almost results similar to those from the standard methods of variance estimation. 
Since these theoretical results are based on asymptotic arguments, their practical 
applications have been validated by a simulation study in order to examine the 
properties of the proposed methods vis-a-vis the existing Rao and Sitter's [5] 
Jackknife and the Sitter's [9] Bootstrap methods. 

5.1 Existing Methods 

The Rao and Sitter's [5] Jackknife estimator is given by 

- (.) _ Yn - 1 (i) -, (.) \.J' (I). _ I 2 ' 
Ydr I - (.) xn _I I , v IE S ,I - •••••• n 

xn -I I 

nYn - Yi if i E S(2) 
where Yn l(i) = ~ -1 

YnI
and 

if i E s(2) 

if i E S(I) - s(2) 
I­

_ (.) _ n xn' - Xi ViE S(I)Also Xn'-I 1 - , 
n -1 


Rao and Sitter's Jackknife variance estimator is given by 


n'-I~(_ (.) - \2 

v J = --,- L..J Ydr I - Ydr} 

n 
iES(I) 

whose linearised version is given by (hereinafter referred to as the linearised 
Jackknife) 
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_ -Xu' )2 Sd2 2(-xU' 1RA Sdx RA 2 S,2x 
v J , = -=- -+ -=- -, + -,( xn n Xn n n 

with notations as defined in section 2 for (2.2). 

5.2 Design-Based Inference 

To examine the various properties of the proposed methods A = 5000 
independent two-phase main samples (with size nf =400 and n =80) have been 
generated using the following model 

Yi =~Xj + E j rx: 
where E j - N(O, a;) independent of Xi which follows generalised gamma 

distribution with parameters g and h, i.e. Xi - G (g , h). The model considered for 
the study has been shown by earlier workers (Royall [7]) to generate the type of 
population under which the ratio estimator is the best among a wide class of 
estimators. Note here that ~ is the regression coefficient of y on x.. 

The mean, variance and coefficient of variation of X are respectively given 

by J..tx= g h ; fix = g h2 
; Cx = ax IIlx =g-1I2. Further, the mean and variance of 

y and the correlation coefficient between (y , x) are respectively given by 

~Ilx; a; = 132a~ + Ilx a; ; corr(xj, Yi)= P =~ 
a y 

Here we fixed 13 = 1.0 and J..tx = 100 and choose and ax to match a e 

specified values of p and CX' The mean squared error of Ydr was calculated as 

A 


MSE(- )=..!.. ~ (-(a)

Ydr A L.J \Ydr 

a=! 

where y~) is the value of Ydr for the ath simulation run. Also, the simulated 

mean, mean squared error and the percent relative bias of the specified variance 
estimator, say v, based on B =200 Bootstrap resamples from each of the 5000 
main samples were calculated as 

1 A 

E(v) = A L va 


a=! 

MSE(v) = ~ L
A 

{v(a) MSE(YdrW 

a=! 


%RB.(v) E(v) - MSE(ydr) X 100 

MSE(Ydr) 


~~---...--------~--

I 
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Table 1. Comparison of the MSEs of the resampling-based variance estimators with that 
of the usual variance estimator Vo of two-phase ratio estimator Y<It 

Var. estimator P~ 1.4 I 0.77 I 0.33 

0.9 0.23(0.10) 0.70(-1.43) 0.76(2.15) 
VI 

0.8 0.82(-1.07) 0.89(-10.53) 0.93(-2.70) 

0.7 0.90(-6.52) 0.94(2.09) 0.96(5.51) 

0.9 0.27(1.13) 0.96(-0.69) 1.270.65) 

VB. 0.8 0.95(1.67) 1.11(-10.69) 1.39(-3.05) 

0.7 1.13(-0.72) 1.23(2.97) 1.35(5.45) 

0.9 0.28(2.14) 0.97(0.30) 1.29(2.75) 

vo•• 0.8 0.97(2.69) 1.09(-9.76) 1.39(-2.06) 

0.7 1.14(-0.46) 1.25(4.08) 1.38(6.55) 

0.9 0.27(0.59) 1.00(-1.44) 1.23(0.91) 

v02 0.8 0.95(0.86) 1.11(-10.23) 1.35(-2.88) 

0.7 1.09(-2.99) 1.23(1.55) 1.31(4.53) 

0.9 0.27(1.67) 1.01 (-0.44) 1.25(1.92) 

V B2• 0.8 0.96(1.89) 1.10(-9.36) 1.36(-1.81) 

0.7 1.09(-2.07) 1.24(2.56) 1.33(5.62) 

0.9 0.23(3.01) 0.69(0.22) 0.75(2.52) 

VJ 0.8 0.82(3.83) 0.87(-8.77) 0.93(-1.54) 

0.7 0.97(0.38) 0.97(4.58) 0.97(6.61) 

0.9 0.24(0.10) 0.71(-0.87) 0.77(1.89) 

V Jt 
0.8 

0.7 

0.89(0.20) 

1.04(-3.56) 

0.85(-10.18) 

1.02(2.73) 

0.94(-2.38) 

1.01(5.55) 

Note:- Values within parentheses indicate percent relative biases 

Table 1 presents the values of MSE(v)IMSE(vo) and per cent relative 
biases for various variance estimators v for selected values of p and CX' It is 
clear from the table that the proposed variance estimators VB ' VB , VB and 

I la 2 

VB are substantially more efficient than VI for p 2: 0.8 and become more so as 
2. 

Cx increases. The Bootstrap variance estimators vB and vB obtained by
I. 1& 
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deviating the resample estimator from the mean of resample means were found 
better to those deviated from the two-phase ratio estimator i.e. from v B. and 

vB when their percent relative biases are compared. When the proposed
1 

Bootstrap methods are compared with the existing Jackknife method v] and its 
linearised version vJ,' the proposed Bootstrap perform almost at par with the 

Jackknife. When the percent relative biases of VB. and VB are compared VB 
1 1 

appears to be better than vBI ; in case of stability both the estimators performed 

almost equally, as expected, since for large n, the two methods are almost same. 
However, for smaller n, the two-phase Proportionate Bootstrap method may 
perform better. 

5.3 Conditional Inference 

Although inferences through conventional design-based approach may be 
appropriate at the design stage of the survey but once the sample has been 
selected and the sample contains "recognisable subsets" then the whole of the 
sample space may not be the relevant reference set for making inferences 
(Rao [4]). Hence a conditional design-based approach has been considered 
further for the study which allows restricting the set of samples used for 
inference purposes. 

To study the conditional properties of the proposed estimators alongwith 
the existing ones A = 5000 simulated two-phase samples were first ordered 
based on the values of (x n./xn) i.e. sample ratio of auxiliary character x based 
on first phase sample s(1) with respect to the second phase sample S(2) and then 
grouped into 10 successive groups each consisting of 500 samples. 

For each group, the simulated conditional mean squared error MSEc of the 
500 

two-phase ratio estimator Ydr was calculated as MSEc = _I_I, ~~ - ~y1. 
500 r=! 

Also, the conditional mean of a particular variance estimator v was calculated as 
500 


r

Ec (v)= _I_I, v • The values of the conditional means of the different variance 

500 r=! 

est~mators and the conditional mean squared error were then plotted against the 
group average of (x n·/xn ) for the case Cx =1.4; p =0.8; n =80; n' =400. For 

other values of Cx and p also we obtained a qualitatively similar plot, hence not 
presented here. 
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0.7 0.8 0.8 0.87 0.9 0.920.95 0.99 1 1.021.06 1.1 1.11 1.17 1.2 1.3 1.31 1.4 

Group average of ancillary statistic 
Fig. 1 The perfonnance of the various resampling-based variance estimators under 

conditional framework 

Fig 1 shows that vBl and vB perform well in tracking the conditional z 
mean squared error while Vo and Vi lead to significant overestimation of the 
conditional mean squared error when (xnfxn) S 0.8 and significant 

underestimation when the samples are negatively unbalanced i.e. when 
(xn,~xn) more so when (xn'/xn)~1.2. Also for the proposed Bootstrap 

methods the Bootstrap and its linearised version seem to perform very similarly 
as is the case with the Jackknife. Note here that and the linearised VB werevB2 

not distinguishable. Only for balanced samples, for which (xn' IXn) == 1, do the 

usual variance estimator Vo and Vi perform well. It is emphasized here that the 
comparisons have been done with respect to the conditional mean squared error 
MSEc (represented by the thick line in Fig 1) and the group MSE represented on 

I 

http:1.021.06
http:0.920.95
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the vertical axis in Fig 1 should not be misinterpreted to imply that lower the 
MSE, the better the performance. Rather, if some parts of the graph are above 
the conditional MSE then it is over-estimating the true MSE at such points and if 
they are below it, then under-estimating. The graphs of the proposed Bootstrap 
variance estimators coincide with that of Rao and Sitter's Jackknife at almost all 
points, supporting that the proposed Bootstrap methods are almost as efficient as 
the Jackknife method. 
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