A Note on Linear Unbiased Invariant Estimator for Some Classes of Estimators

P.S. Shende and S.G. Prabhu Ajgaonkar Marathwada University, Aurangabad (Received: April, 1985)

SUMMARY

It is demonstrated that, unbiased linear invariant estimator does not exist for each of the T_1 , T_2 , T_3 and T_4 classes.

Key words: Classes of estimators, Unbiased linear invariant estimator.

1. Introduction

Let $U = (U_1, U_2, ..., U_N)$ denote a finite population consisting of N elements. Let Y_i represent the value of the characteristic under consideration

for the ith population element. The population total is denoted by $T = \sum_{i=1}^{N} Y_i$. A

random sample of size n is drawn without replacement with arbitrary probabilities of selection at each draw.

For estimating the population total, Horvitz and Thompson [1] have formulated certain classes of linear estimators.

2. Classes of Linear Estimators

(a) Estimators belonging to the Horvitz and Thompson T_1 class are defined symbolically as

$$T_{l} = \sum_{r=1}^{n} \alpha_{r} y_{r} \tag{1}$$

where α_r (r = 1, 2, ..., n) is a constant used as weight attached to the outcome at the rth draw.

(b) T2-class: T2 class of linear estimators is defined as

$$T_2 = \sum_{r=1}^{n} \beta_i (y_r = Y_i)$$
 (2)

where β_i , i = 1, 2, ..., N is a constant to be used as weight attached to the i^{th} population unit whenever it is included in the sample and y_r denotes the outcome at the r^{th} draw (r = 1, 2, ..., n).

(c) T₃-class: T₃ class of linear estimators is defined as

$$T_3 = \beta^s \left(\sum_{r=1}^n y_r \right)_s \tag{3}$$

where β^s is a constant to be used as weight attached to the total of s^{th} sample, $s=1,2,\ldots,\binom{N}{n}n!$

(d) T₄-class: T₄ class is defined as

$$T_4 = \sum_{r=1}^{n} \beta_{ri} \left(y_r = Y_i \right) \tag{4}$$

where β_{ri} , r = 1, 2, ..., n and i = 1, 2, ..., N is a constant used as weight attached to the ith population unit, whenever, it is selected at the rth draw. This class was defined by Koop [2] and Prabhu-Ajgaonkar [4] independently of each other.

3. Invariant Estimator

Roy and Chakravarti [3] defined a linear invariant estimator and demonstrated that in the class of linearly invariant unbiased estimators in general, there does not exist a best estimator.

A linear unbiased estimator T = t(y) is called as invariant, if the transformation $y_i^* = ay_i + b$, (i = 1, 2, ..., N) of the variate values transforms t(y) to $t^*(y)$ where

$$t^*(y) = a t(y) + b$$

4. Results

(a) Prabhu-Ajgaonkar [4] demonstrated that, T₁ class is unbiased if and only if

$$\sum_{r=1}^{n} \alpha_r p_{ir} = 1, \quad i = 1, 2, ..., N$$
 (5)

where p_{ir} is the probability that u_{i} gets selected at $r^{th} \; draw.$

The unbiased T₁ class is linearly invariant, if

$$T_{1}^{*} = \sum_{r=1}^{n} \alpha_{r} (ay_{r} + b)$$

$$= a \sum_{r=1}^{n} \alpha_{r} y_{r} + b \sum_{r=1}^{n} \alpha_{r}$$

$$= aT_{1} + b$$

This is so if
$$\sum_{r=1}^{n} \alpha_r = 1$$

In equation (5), summing over i, we get

$$\sum_{r=1}^{n} \alpha_r \sum_{i=1}^{N} p_{ir} = N$$

$$\sum_{r=1}^{n} \alpha_r = N \text{ as } \sum_{i=1}^{N} p_{ir} = 1 \text{ which is a contradiction}$$

Thus, linearly invariant estimator does not exist in the unbiased T_1 class of linear estimators.

(b) Horvitz and Thompson have proved that a unique unbiased estimator exists in the T_2 class, if $\beta_i = \frac{1}{\pi_i}$. Where π_i is the probability of including the i^{th} population unit in the sample (i=1,2,...,N).

Let T_2^* be the transformed estimator

Then
$$T_2^* = \sum_{r=1}^n \frac{y_r^*}{\pi_r}$$

= $a \sum_{r=1}^n \frac{y_r}{\pi_r} + b \sum_{r=1}^n \frac{1}{\pi_r}$

This is invariant estimator, if

$$T_2^* = aT_2 + b$$

This is so, if
$$\sum_{r=1}^{n} \frac{1}{\pi_r} = 1$$

But $\pi_r \leq 1$

or
$$\frac{1}{\pi_r} \ge 1$$

$$\therefore \sum_{r=1}^{n} \frac{1}{\pi_r} \ge n$$

Hence, unbiased invariant estimator does not exist in the T2 class.

(c)
$$T_3 = \beta^s \left(\sum_{r=1}^n y_r\right)_s$$
, T_3 will be unbiased estimator, if $\sum_{s \in i} \beta^s p(s) = 1$ where $p(s)$ is the probability of getting the s^{th} sample, $s = 1, 2, ... \binom{N}{n} n!$ and $\sum_{s \in i} s^{th} s^{th} s^{th}$ is

Now
$$T_3^* = a\beta^s \left(\sum_{r=1}^n y_r \right)_s + \beta^s nb$$

the sum over all samples which contain the ith unit.

T₃* is invariant, if

$$\beta^s nb = b$$
 i.e. $\beta^s = \frac{1}{n}$

This value of β^s does not satisfy the conditions of unbiasedness. Therefore, an unbiased linear estimator (invariant) does not exists in the T_3 class.

(d)
$$T_4 = \sum_{r=1}^{n} \beta_{ri} (y_r = Y_i)$$

The condition of unbiasedness is

$$\sum_{r=1}^{n} \beta_{ri} p_{ir} = 1, i = 1, 2, ... N$$

where p_{ir} is the probability of selecting the i^{th} unit at the r^{th} draw.

$$T_4^* = \sum_{r=1}^n \beta_{ri} y_i^*$$

$$T_4$$
 is invariant, if $\sum_{r=1}^{n} \beta_{ri} = 1$

Subsequently, the T₄ class is unbiased linear invariant if, the following two conditions are satisfied.

$$\sum_{r=1}^{n} \beta_{ri} p_{ir} = 1 \tag{1}$$

and

$$\sum_{r=1}^{n} \beta_{ri} = 1 \tag{2}$$

Now,
$$\pi_i = \sum_{r=1}^n p_{ir} = \sum_{r=1}^n p_{ir} \sum_{r=1}^n \beta_{ri} \ge \sum_{r=1}^n \beta_{ri} p_{ir} = 1$$
 which is a

contradiction as π_i is a probability.

Thus, an unbiased invariant estimator does not exist in the T₄ class.

REFERENCES

- [1] Horvitz, D.G. and Thompson, D.J. (1952). A generalization of sampling without replacement from a finite universe. J. Amer. Stat. Assoc., 47, 663-685.
- [2] Koop, J.C. (1963). On the axioms of sample formation and their bearing on the construction of linear estimators in sampling theory for finite universes. I, II and III. Metrica, 7, 81-114-165-204.
- [3] Roy, J. and Chakravarti, I.M. (1960). Estimating the mean of a finite population. *The Annals of Mathematical Statistics*, 31, 392-398.
- [4] Prabhu-Ajgaonkar, S.G. (1970). A contribution to the theory of unique estimators for Horvitz and Thompson's class of linear estimators. *Metrika*, 15, 40-47.