Estimation in Post-Stratification Using Prior Information and Grouping Strategy

D. Shukla, Ajay Bankey and Manish Trivedi
Dr. H.S. Gour University, Sagar (M.P.) 470003
(Received : December, 1998)

SUMMARY

This paper presents an estimator in a post stratified set-up of sampling assuming prior knowledge of Population Proportion of Mean Matrix (PPM) and coefficients of variation of strata. A concept of PPM matrix is introduced and properties are derived. The method of choice of weights for combining post-stratified sample means, is proposed along with their optimum selection. A general strategy of grouping strata is introduced with the application of two plans.

Key words : Post-stratification, SRSWOR, PPM, Estimator, Optimum.

1. Introduction

The stratification requires information on strata sizes and availability of frames for each stratum. The former is easier to manage but the latter is often hard to get and therefore reduces the effective application of stratification. As a solution, the post-stratification technique is used and according to Sukhatme et al. [12] with a large sample size, the post-stratification is always as precise as the stratified sampling with proportional allocation. Some useful research contributions in the area of post-stratification are by Holt and Smith [3], Jagers et al. [4], Jagers [5], Agrawal and Panda [1], Little [7], Gelman and Little [2], Lazzerni and Little [6] and Shukla and Trivedi ([10], [11]).

2. Notations and Assumptions

Let N be the size of a population $U=\left[U_{11}, U_{12}, \ldots U_{i N_{i}} \ldots U_{K N N_{k}}\right]$ consisting of K strata, with N_{i} units belonging to the $i^{\text {th }}$ strata such that $\sum_{i=1}^{K} N_{i}=N$. Let variable under study be Y with values $Y_{i j}, i=1,2, \ldots K$, $j=1,2, \ldots N_{i}$ on $U_{i j}$ along with stratum means \bar{Y}_{i} of $i^{\text {th }}$ stratum and grand mean
$\overline{\mathrm{Y}}$. A sample of size n is drawn from N by SRSWOR and post-stratified into k strata with n_{i} units falling in the $i^{\text {th }}$ stratum such that $\sum_{i=1}^{k} n_{i}=n$. The sample mean is \bar{y} based on n and \bar{y}_{i} is based on n_{i} units. The components of variability are

$$
\begin{aligned}
& S_{i}^{2}=\left(\frac{1}{N_{i}-1}\right)\left[\sum_{j=1}^{N_{i}}\left(Y_{i j}-\bar{Y}_{i}\right)^{2}\right] \\
& S^{2}=\left(\frac{1}{N-1}\right)\left[\sum_{i=1}^{K}\left(N_{i}-1\right) S_{i}^{2}+\sum_{i=1}^{K} N_{i}\left(\bar{Y}_{i}-\bar{Y}\right)^{2}\right] \\
& C_{Y_{i}}=\frac{S_{i}}{Y_{i}}, C_{Y}=\frac{S}{\bar{Y}}
\end{aligned}
$$

2.1 Population Proportion of Mean Matrix (PPM)

Define a matrix of order $(\mathrm{k}+1) \times(\mathrm{k}+1)$ as $\mathrm{P}=\left(\mathrm{p}_{\mathrm{ij}}\right) ; \mathrm{i}, \mathrm{j}=\mathrm{i}, 2, \ldots \mathrm{k}$ where

$$
\left.\begin{array}{rl}
p_{i j} & =\bar{Y}_{i}: \bar{Y}_{j}=\left(\frac{\bar{Y}_{i}}{\bar{Y}_{j}}\right), p_{i(k+1)}=\bar{Y}_{i}: \bar{Y}=\left(\frac{\bar{Y}_{i}}{\bar{Y}}\right) \\
p_{(k+1))_{j}} & =\bar{Y}: \bar{Y}_{j}
\end{array}=\left(\frac{\bar{Y}}{\bar{Y}_{j}}\right), p_{(k+1)(k+1)}=\bar{Y}: \bar{Y}=1\right)
$$

Some important properties of matrix P
(i) It is a square matrix
(ii) Diagonal elements of P are unity i.e. $\mathrm{p}_{\mathrm{ij}}=1$ for $\mathrm{i}=\mathrm{j}$ and $\mathrm{p}_{(\mathrm{k}+1)(\mathrm{k}+1)}=1$
(iii) Non diagonal elements possess a relation

$$
\mathrm{p}_{\mathrm{ji}}=\frac{1}{\mathrm{p}_{\mathrm{ij}}}, \mathrm{p}_{\mathrm{i}(\mathrm{k}+1)}=\frac{1}{\mathrm{p}_{(\mathrm{k}+1) \mathrm{j}}} \text { for } \mathrm{i} \neq \mathrm{j}
$$

(iv) The knowledge of only lower (or upper) diagonal elements is enough to determine P completely.
Some important assumptions are: (i) while post stratifying n, it is presumed that probability of n_{i} being zero is very small, (ii) prior information on lower (or upper) diagonal elements of P is available, (iii) prior information on coefficients of variation $\mathrm{C}_{\mathrm{Y}_{\mathrm{i}}}$, of each strata, is available.

The assumption (i) is obvious with moderate k for a large n . Moreover, (ii) and (iii) are easily possible through expert guess, past experience, successive
surveys or pilot surveys. As an example, an agricultural survey of the rural area of a district, village may classified as "Big Size" and "Small Size" according to the area under cultivation, and "Crop Production" is a variable of main interest. The possible guesses are
(i) average crop production by small-villages is nearly one-third to bigvillages and approximately half to the average of entire rural area
(ii) average production of big size group is nearly $2 \frac{1}{2}$ times of entire rural area. This provides a PPM matrix of order 3×3 as

Small Big All

Small
Big
All

3: 1 \& 1: 1 \& 2.5: 1

2: 1 \& 1: 2.5 \& 1: 1\end{array}\right]=\left[$$
\begin{array}{lcc}1 & 1 / 3 & 1 / 2 \\
3 & 1 & 5 / 2 \\
2 & 2 / 5 & 1\end{array}
$$\right]\)

Remark. When reliable information on \mathbf{P} is available through an expert guess, past experience or a pilot survey, it needs to be effectively utilized in estimation problems. Searls [9] has utilized the prior information on the coefficient of variation C_{Y} for constructing an efficient estimator.

3. Proposed Estimator

With $W_{i}=\left(\frac{N_{i}}{N}\right)$ a class of post-stratified estimator for \bar{Y}, is

$$
\begin{equation*}
\left[\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)_{\mathrm{c}_{\mathrm{i}}}\right]=\sum_{i=1}^{\mathrm{k}}\left(\mathrm{C}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right) \overline{\mathrm{y}}_{\mathrm{i}} \tag{3.1}
\end{equation*}
$$

where C_{i} is an unknown constant of the $i^{\text {th }}$ stratum and the quantity $\left(C_{i} W_{i}\right)$ constitutes a new weight structure for combining strata means in the sample.

Remark 3.1. As special case when $\mathrm{C}_{\mathrm{i}}=\mathrm{C}, \forall \mathrm{i}$ then

$$
\begin{equation*}
\left[\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)_{\mathrm{c}}\right]=\mathrm{C} \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{w}_{\mathrm{i}} \overline{\mathrm{y}}_{\mathrm{i}} \tag{3.2}
\end{equation*}
$$

and $C=1$ provides usual post-stratified estimator $\bar{y}_{p s}=\sum_{i=1}^{k} W_{i} \bar{y}_{i}$
Remark 3.2. The proposed (3.1) is a general class of estimators having (3.2) and (3.3) as members. Moreover, (3.3) is unbiased for $\overline{\mathrm{Y}}$. The weight structure $\mathrm{C}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}$ is to be chosen subject to the level of minimum mean square error, in the class (3.1).

3.1 Motivation and Justification

(i) In the set up (N, n) of SRSWOR, for sample mean $\overline{\mathrm{y}}$ with $V(\bar{y})=\left[\left(n^{-1}\right)-\left(N^{-1}\right)\right] S^{2} ;$ Searls $[9]$ has proposed estimator $\bar{y}_{s}=C \bar{y}$ with optimal choice

$$
\mathrm{C}=\mathrm{C}^{*}=\left[1+\left\{\left(\mathrm{n}^{-1}\right)-\left(\mathrm{N}^{-1}\right)\right\} \mathrm{C}_{Y}^{2}\right]
$$

(ii) The $\overline{\mathrm{y}}_{\mathrm{s}}$ observed efficient over $\overline{\mathrm{y}}$ at $\mathrm{C}=\mathrm{C}^{*}$ assuming known coefficient of variation (C_{Y}) of the population
(iii) A motivation is derived from (i) and (ii) for a post-stratified set-up of sampling $\left(N, n=\sum_{i=1}^{k} n_{i}\right)$ in the form of proposed class (3.1) assuming
Case I: when constant C is same for all k strata
Case II: when it is different for all k strata
Case III: when it is same for a group of strata

3.2 Bias and Mean Square Error

$$
\begin{equation*}
E\left[\left(\bar{y}_{\mathrm{ps}}\right)_{\mathrm{c}_{\mathrm{i}}}\right]=\sum_{i=1}^{k} \mathrm{C}_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}} \overline{\mathrm{Y}}_{\mathrm{i}} \text { and } \operatorname{Bias}\left[\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)_{\mathrm{c}_{\mathrm{i}}}\right]=\left[\sum_{i=1}^{k} \mathrm{C}_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}} \bar{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right] \tag{3.2.1}
\end{equation*}
$$

Note 3.1. Wherever follows, we denote $\mathrm{E}\left[1.1 / \mathrm{n}_{\mathrm{i}}\right]$ and $\left.\mathrm{V}[1.\} / \mathrm{n}_{\mathrm{i}}\right]$ as conditional expectation and conditional variance under given n_{i}. A standard result is

$$
E\left[\frac{1}{n_{i}}\right]=\left[\frac{1}{n W_{i}}+\frac{(N-n)}{(N-1)} \frac{\left(1-W_{i}\right)}{n^{2} W_{i}^{2}}\right]
$$

Remark 3.3. The mean square error of the class (3.1) is

$$
\begin{aligned}
& \operatorname{MSE}\left[\left(\bar{y}_{p s}\right)_{c_{i}}\right]=V\left[\left(\bar{y}_{p s}\right)_{c_{i}}\right]+\left[\operatorname{Bias}\left\{\left(\bar{y}_{p s}\right)_{c_{i}}\right\}\right]^{2} \\
= & E\left[V\left[\left\{\left(\bar{y}_{p s}\right)_{c_{i}}\right\} / n_{i}\right]\right]+V\left[E\left[\left\{\left(\bar{y}_{p s}\right)_{c_{i}}\right\} / n_{i}\right]\right]+E\left[E\left[\left\{\left(\bar{y}_{p s}\right)_{c_{i}}-\bar{Y}\right\}^{2} / n_{i}\right]\right] \\
= & E\left[\sum_{i=1}^{k} C_{i}^{2} W_{i}^{2}\left(\frac{1}{n_{i}}-\frac{1}{N_{i}}\right) S_{i}^{2}\right]+\left[\sum_{i=1}^{k} C_{i} W_{i} \bar{Y}_{i}-\bar{Y}\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{k} C_{i}^{2} W_{i}^{2}\left[E\left\{\frac{1}{n_{i}}-\frac{1}{N_{i}}\right\}\right] S_{i}^{2}+\left[\sum_{i=1}^{k} C_{i} W_{i} \bar{Y}_{i}-\bar{Y}\right]^{2} \\
& =\left[\frac{1}{n}-\frac{1}{N}\right] \sum_{i=1}^{k} C_{i}^{2} W_{i} S_{i}^{2}+\frac{(N-n)}{(N-1)\left(n^{2}\right)}\left[\sum_{i=1}^{k}\left(1-W_{i}\right) C_{i}^{2} S_{i}^{2}\right] \\
& +\left[\sum_{i=1}^{k} C_{i} W_{i} \bar{Y}_{i}-\bar{Y}\right]^{2}
\end{aligned}
$$

which is obtained using note 3.1. On substitution of $C_{i}^{2}=\left[1+\left(C_{i}^{2}-1\right)\right]$

$$
\begin{align*}
& \operatorname{MSE}\left[\left(\bar{y}_{p s}\right)_{c_{i}}\right]=v\left[\left(\bar{y}_{p s}\right)\right]+\sum_{i=1}^{k}\left(C_{i}^{2}-1\right) A_{i} S_{i}^{2}+[B]^{2} \tag{3.2.2}\\
& v\left[\left(\bar{y}_{p s}\right)\right]=\left[\frac{1}{n}-\frac{1}{N}\right] \sum_{i=1}^{k} W_{i} S_{i}^{2}+\frac{(N-n)}{(N-1)^{2}}\left[\sum_{i=1}^{k}\left(1-W_{i}\right) S_{i}^{2}\right] \tag{3.2.3}
\end{align*}
$$

$$
\begin{equation*}
\text { At } C_{i}=C, \forall i, \operatorname{MSE}\left[\left(\bar{y}_{p s}\right)\right]=v\left[\left(\bar{y}_{\mathrm{ps}}\right)\right]+\left(\mathrm{C}^{2}-1\right)[\mathrm{D}]+\left[(\mathrm{C}-1)^{2} \overline{\mathrm{Y}}^{2}\right] \tag{3.2.4}
\end{equation*}
$$

$$
\begin{aligned}
& A_{i}=\left[\left(\frac{1}{n}-\frac{1}{N}\right) W_{i}+\frac{(N-n)}{(N-1) h^{2}}\left(1-W_{i}\right)\right] \\
& B=\left[\sum_{i=1}^{k} C_{i} W_{i} \bar{Y}_{i}-\bar{Y}\right] ; D=\left[\sum_{i=1}^{k} A_{i} S_{i}^{2}\right]=V\left(\bar{Y}_{p s}\right)
\end{aligned}
$$

4. Choice of C_{i}

The proposed estimator (3.1) is efficient over $\bar{y}_{p s}$, when C_{i} satisfies condition

$$
\begin{equation*}
\left[\sum_{i=1}^{k}\left(C_{i}^{2}-1\right) A_{i} s_{i}^{2}\right]+[B]^{2}<0 \tag{4.1}
\end{equation*}
$$

Moreover, from (3.2.4), the estimator (3.2) is efficient over $\bar{y}_{p s}$, when the selection of C , fulfils condition $(\mathrm{C}-1)\left[(\mathrm{C}+1) \mathrm{D}+(\mathrm{C}-1) \overline{\mathrm{Y}}^{2}\right]<0$

Remark 4.1. In (4.1), if choices $C_{i}>1$ for all i then $\left[\left(\bar{y}_{p s}\right)_{c_{i}}\right]$ can never be efficient over $\overline{\mathbf{y}}_{\mathrm{ps}}$. If at least one or some of them are less than unity, there is a high chance of getting gain over usual estimator. In (4.2), the choice $\mathrm{C}<1$ supports this fact.

Differentiate (3.2.2) with C_{i} and equate to zero, we have

$$
\begin{equation*}
2\left[A_{i} S_{i}^{2}+W_{i}^{2} \bar{Y}_{i}^{2}\right] C_{i}+\left[\sum_{i \neq j}^{k} \sum_{j}^{k} C_{j} W_{i} W_{j} \bar{Y}_{i} \bar{Y}_{j}\right]-2 \bar{Y}\left[W_{i} \bar{Y}_{i}\right]=0 \tag{4.3}
\end{equation*}
$$

Divide by $2 \bar{Y}_{i}{ }^{2}$, we have the systems of k equations in C_{i} as

$$
\begin{gather*}
\left(A_{1} C_{Y_{1}}^{2}+W_{1}^{2}\right) C_{1}+\frac{1}{2}\left(W_{2} W_{1} \frac{\bar{Y}_{2}}{\bar{Y}_{1}}\right) C_{2}+\frac{1}{2}\left(W_{3} W_{1} \frac{\bar{Y}_{3}}{\bar{Y}_{1}}\right) C_{3}+\ldots \\
\ldots+\frac{1}{2}\left(W_{k} W_{1} \frac{\bar{Y}_{k}}{\bar{Y}_{1}}\right) C_{k}=\frac{\bar{Y}}{\bar{Y}_{1}} W_{1} \\
\frac{1}{2}\left(W_{1} W_{2} \frac{\bar{Y}_{1}}{\bar{Y}_{2}}\right) C_{1}+\left(A_{2} C_{Y_{2}}^{2}+W_{2}^{2}\right) C_{2}+\frac{1}{2}\left(W_{3} W_{2} \frac{\bar{Y}_{3}}{\bar{Y}_{2}}\right) C_{3}+\ldots \tag{4.4}\\
\ldots+\frac{1}{2}\left(W_{k} W_{2} \frac{\bar{Y}_{k}}{\bar{Y}_{2}}\right) C_{k}=\frac{\bar{Y}_{1}}{\bar{Y}_{2}} W_{2}
\end{gather*}
$$

$$
\frac{1}{2}\left(W_{1} W_{k} \frac{\bar{Y}_{1}}{\bar{Y}_{k}}\right) C_{1}+\frac{1}{2}\left(W_{1} W_{k} \frac{\bar{Y}_{2}}{\bar{Y}_{k}}\right) C_{2}+\frac{1}{2}\left(W_{3} W_{k} \frac{\bar{Y}_{3}}{\bar{Y}_{k}}\right) C_{3}+
$$

$$
\ldots+\left(A_{k} C_{Y_{k}}^{2}+W_{k}^{2}\right) C_{k}=\frac{\bar{Y}}{\bar{Y}_{k}} W_{k}
$$

The (4.4) has k equations for k unknown C_{i}. The other elements W_{i} and elements of P are known, therefore the system could be easily solved for C_{i} using any standard technique of solution of equations.

4.1 Criteria for Optimum Choice

The necessary condition for the proposed estimator (3.1) to be more efficient than $\bar{y}_{p s}$ is that C_{i} values ($i=1,2, \ldots k$) obtained as a solution of system of equations (4.4) must satisfy (4.1).

Remark 4.1.1. In matrix notation, (4.4) could be like $\mathbf{A C}=\mathbf{B}$ where
$A=\left[a_{i j}\right]_{k \times k}$ and $a_{i j}=\left[\begin{array}{ll}A_{i} C_{Y_{i}}^{2}+W_{i}^{2} & \text { if } i=j=1,2,3 \ldots k \\ \frac{1}{2} W_{i} W_{j} \frac{\bar{Y}_{j}}{\bar{Y}_{i}}=\frac{1}{2} W_{i} W_{j} p_{i j} & \text { if } i \neq j\end{array}\right.$
$\mathbf{B}=\left[b_{j}\right]_{k \times k}$ and $b_{j}=\frac{\bar{Y}}{\bar{Y}_{j}} W_{j}, C^{\prime}=\left[C_{1}, C_{2}, C_{3}, \ldots C_{k}\right]_{1 \times k}$
Remark 4.1.2. The optimum MSE of $\left[\left(\bar{y}_{\mathrm{ps}}\right)_{\mathrm{c}}\right]$ at the value $C_{\text {opt }}=\left[1+\frac{D}{\overline{\mathrm{Y}}^{2}}\right]^{-1}$
$\operatorname{MSE}\left[\left(\bar{y}_{p s}\right)\right]_{\mathrm{opt}}=\mathrm{C}_{\mathrm{opt}} \mathrm{v}\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)$

5. Empirical Study

In order to examine the performance of the proposed estimator some empirical illustrations are given in Tables 5.1 and 5.2 for various types of data sets. The efficiency comparisons of these data sets are given in Table 5.3.

Table 5.1. Data set I (From Sarndal et al. [8])

| Stratum
 No. | N_{i} | $\sum_{\mathrm{j}=1}^{\mathrm{N}_{i}} \mathrm{Y}_{\mathrm{ij}}$ | $\sum_{\mathrm{j}=1}^{\mathrm{N}_{\mathrm{i}}} \mathrm{Y}_{\mathrm{ij}}^{2}$ | $\overline{\mathrm{Y}}_{\mathrm{i}}$ | $\mathrm{S}_{\mathrm{i}}^{2}$ | $\mathrm{~W}_{\mathrm{i}}$ | Sample
 Size |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 105 | 1098.9 | 21855.0 | $\overline{\mathrm{Y}}_{1}=10.4657$ | $\mathrm{~S}_{1}^{2}=99.560^{2}$ | 0.8467 | 30 |
| 2 | 19 | 3445.9 | 1822736.8 | $\overline{\mathrm{Y}}_{2}=181.3631$ | $\mathrm{~S}_{2}^{2}=66543.195$ | 0.1532 | |
| Total | 124 | 4544.8 | 1844591.8 | $\overline{\mathrm{Y}}=36.65$ | $\mathrm{~S}^{2}=12213.202$ | - | |

Matrices \mathbf{P} and \mathbf{A} and vector \mathbf{B} are

$$
\mathbf{P}=\left[\begin{array}{ccc}
1 & 0.06 & 0.28 \\
17.33 & 1 & 4.95 \\
3.50 & 0.20 & 1
\end{array}\right]_{3 \times 3} \quad \mathbf{A}=\left[\begin{array}{cc}
0.7365 & 1.1242 \\
0.0037 & 0.0327
\end{array}\right]_{2 \times 2} \quad \mathbf{B}=\left[\begin{array}{c}
2.9654 \\
0.0309
\end{array}\right]_{2 \times 1}
$$

Table 5.2: Other Data Set

Data Set No.	Stratum No.	N_{i}	$\sum_{j=1}^{N_{i}} Y_{i j}$	$\sum_{j=1}^{N_{i}} Y_{i j}^{2}$	\bar{Y}_{i}	S_{i}^{2}	W_{i}	Sample Size
Il	1	120	1843.92	33232.5	$\bar{Y}_{1}=15.366$	$\mathrm{S}_{1}^{2}=41.1667$	0.8467	30
	2	32	6108.00	3341961.8	$\bar{Y}_{2}=190.875$	$\mathrm{S}_{2}^{2}=70196.693$	0.1532	
	Total	152	7951.92	3375194.3	$\overline{\mathrm{Y}}=52.3152$	$S^{2}=19745.073$		
III	1	105	573.89	13491.0	$\bar{Y}_{1}=5.4657$	$\mathrm{S}_{1}^{2}=99.5603$	0.8467	30
	2	32	3350.89	3058164.1	$\bar{Y}_{2}=176.3631$	$\mathrm{S}_{2}^{2}=66543.1979$	0.1532	
	Total	124	3924.79	3071655.1	$\overline{\mathrm{Y}}=31.6516$	$S^{2}=13642.412$		
IV	1	180	1831.89	26951.0	$\bar{Y}_{1}=10.1772$	$\mathrm{S}_{1}^{2}=46.41066$	0.8181	40
	2	40	7212.00	4496134.2	$\bar{Y}_{2}=180.3$	$S_{2}^{2}=81943.864$	0.1818	
	Total	220	9043.89	4523085.2	$\overline{\mathrm{Y}}=41.1086$	$S^{2}=16635.48$		
V	1	44	345.29	135704.7	$\bar{Y}_{1}=7.8477$	$\mathrm{S}_{1}^{2}=3092.9064$	0.468	25
	2	50	5759.90	4141861.3	$\bar{Y}_{2}=115.198$	$\mathrm{S}_{2}^{2}=70986.377$	0.532	
	Total	94	6105.19	4277566.0	$\overline{\mathrm{Y}}=64.9489$	$S^{2}=19745.073$		

Data Set No.	Stratum No.	N_{i}	$\sum_{j=1}^{N_{i}} Y_{i j}$	$\sum_{j=1}^{N} Y_{i j}^{2}$	\bar{Y}_{i}	S_{i}^{2}	$\mathrm{w}_{\text {i }}$	Sample Size
vi	1	105	573.89	13491.0	$\bar{Y}_{1}=5.4657$	$\mathrm{S}_{1}^{2}=99.5603$	0.7342	25
	2	38	5903.78	3313737.1	$\overline{\mathrm{Y}}_{2}=155.367$	$\mathrm{S}_{2}^{2}=64770.4$	0.2657	
	Total	143	6477.69	3327228.1	$\overline{\mathrm{Y}}=45.2985$	$\mathrm{S}^{2}=21364.77$		
VII	1	44	345.29	135704.7	$\overline{\mathrm{Y}}_{1}=7.8477$	$\mathrm{S}_{1}^{2}=3092.9064$	0.4681	25
	2	40	5541.00	4060226.9	$\overline{\mathrm{Y}}_{2}=138.525$	$\mathrm{S}_{2}^{2}=84427.1789$	0.4255	
	3	10	218.90	81634.6	$\overline{\mathrm{Y}}_{3}=21.89$	$\mathrm{S}_{3}^{2}=8538.1$	0.1064	
	Total	94	6105.19	4277566.2	$\overline{\mathrm{Y}}=64.9489$	$\mathrm{S}^{2}=41731.61$		
vill	1	105	573.89	13491.9	$\bar{Y}_{1}=5.4657$	$\mathrm{S}_{1}^{2}=99.5603$	0.7342	30
	2	19	3046.89	1686387.6	$\overline{\mathrm{Y}}_{2}=160.3631$	$\mathrm{S}_{2}^{2}=66543.19$	0.3286	
	3	19	2856.89	1627349.6	$\bar{Y}_{3}=150.36$	$\mathrm{S}_{3}^{2}=66543.19$	0.1328	
	Total	143	6477.69	3327228.2	$\overline{\mathrm{Y}}=45.29857$	$\mathrm{S}^{2}=21364.7$		

5.1 Calculation of Variance, MSE and Bias
Table 5.3

Date Set No.	$\mathrm{v}(\bar{y})$	$v\left(\bar{y}_{p s}\right)$	Estimator ($\left.\bar{y}_{\mathrm{ps}}\right)_{\text {c }}$				Estimator ($\left.\overline{\mathrm{y}}_{\mathrm{ps}}\right)_{\mathrm{ci}}$			
			Optimum C-Value	Optimum M.S.E.	Bias	$\begin{aligned} & \text { Estimator } \\ & \left(\bar{y}_{\mathrm{ps}}\right)_{\mathrm{c}} \end{aligned}$	Optimum C-Value	Optimum M.S.E.		$\begin{aligned} & \text { Estimator } \\ & \left(\bar{y}_{\mathrm{ps}}\right)_{\mathrm{ci}} \end{aligned}$
I	358.418	307.634	0.8136	250.3110	6.8296	$\begin{aligned} & E_{1}=30.16 \% \\ & E_{2}=18.66 \% \\ & \hline \end{aligned}$	$\begin{aligned} & C_{1}=3.1291 \\ & C_{2}=0.5875 \end{aligned}$	181.3048	7.4069	$\begin{aligned} & \mathrm{E}_{1}=49.41 \% \\ & \mathrm{E}_{2}=41.06 \% \end{aligned}$
II	487.130	421.259	0.8666	364.9950	6.9788	$\begin{aligned} & \mathrm{E}_{1}=25.0 \% \\ & \mathrm{E}_{2}=13.3 \% \end{aligned}$	$\begin{aligned} & C_{1}=3.24 \\ & C_{2}=0.6358 \end{aligned}$	319.2280	12.5418	$\begin{aligned} & \mathrm{E}_{1}=34.46 \% \\ & \mathrm{E}_{2}=24.22 \% \end{aligned}$
III	344.727	307.634	0.7650	235.3608	7.4362	$\begin{aligned} & \mathrm{E}_{1}=31.72 \% \\ & \mathrm{E}_{2}=23.49 \% \end{aligned}$	$\begin{aligned} & C_{1}=4.7969 \\ & C_{2}=0.5365 \end{aligned}$	162.5331	15.8894	$\begin{aligned} & E_{1}=52.85 \% \\ & E_{2}=47.16 \% \end{aligned}$
IV	379.302	348.270	0.8324	283.2392	6.8898	$\begin{aligned} & \mathrm{E}_{1}=25.32 \% \\ & \mathrm{E}_{2}=18.77 \% \end{aligned}$	$\begin{aligned} & C_{1}=3.7389 \\ & C_{2}=0.587 \end{aligned}$	222.7312	9.2737	$\begin{aligned} & \mathrm{E}_{1}=41.27 \% \\ & \mathrm{E}_{2}=36.12 \% \end{aligned}$
v	1225.390	1192.540	0.8014	1074.2314	12.9000	$\begin{aligned} & E_{1}=12.30 \% \\ & E_{2}=09.86 \% \end{aligned}$	$\begin{aligned} & C_{1}=2.6597 \\ & C_{2}=0.7507 \end{aligned}$	1045.4735	9.1753	$\begin{aligned} & \mathrm{E}_{1}=14.68 \% \\ & \mathrm{E}_{2}=12.30 \% \end{aligned}$
VI	562.754	569.758	0.8342	452.9073	7.5080	$\begin{aligned} & \mathrm{E}_{1}=19.51 \% \\ & \mathrm{E}_{2}=20.50 \% \\ & \hline \end{aligned}$	$\begin{aligned} & C_{1}=7.4562 \\ & C_{2}=0.5694 \end{aligned}$	407.7135	8.1330	$\begin{aligned} & \mathrm{E}_{1}=27.55 \% \\ & \mathrm{E}_{2}=28.44 \% \end{aligned}$
VII	1225.399	1192.548	0.7797	1129.3808	14.3090	$\begin{aligned} & \mathrm{E}_{1}=07.80 \% \\ & \mathrm{E}_{2}=05.29 \% \end{aligned}$	$\begin{aligned} & \mathrm{C}_{1}=2.3368 \\ & \mathrm{C}_{2}=0.7393 \\ & \mathrm{C}_{3}=2.5643 \end{aligned}$	1125.4070	6.5112	$\begin{aligned} & \mathrm{E}_{1}=08.13 \% \\ & \mathrm{E}_{2}=05.63 \% \end{aligned}$
VIII	562.754	569.758	0.7826	545.9367	9.8447	$\begin{aligned} & \mathrm{E}_{1}=02.99 \% \\ & \mathrm{E}_{2}=04.18 \% \end{aligned}$	$\begin{aligned} & \mathrm{C}_{1}=0.7032 \\ & \mathrm{C}_{2}=0.7086 \\ & \mathrm{C}_{3}=6.8313 \end{aligned}$	500.8108	11.2640	$\begin{aligned} & \mathrm{E}_{1}=11.00 \% \\ & \mathrm{E}_{2}=12.10 \% \end{aligned}$

where $E_{1}=\frac{V(\bar{y})-\operatorname{MSE}(.)}{V(\bar{y})} \times 100, E_{2}=\frac{V\left(\bar{y}_{p s}\right)-\operatorname{MSE}(.)}{v\left(\bar{y}_{p s}\right)} \times 100$

6. Counter Examples

Two populations containing three strata where the selection of the constants ($\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$) from (4,4) produces results inferior to the usual estimator.

Set IX
$\left.\begin{array}{llllll}\hline \begin{array}{c}\text { Stratum } \\ \text { No. }\end{array} & N_{i} & \sum_{j=1}^{N_{i}} y_{i j} & \sum_{j=1}^{N_{i}} y_{i j}^{2} & \text { Mean } & S_{i}^{2}\end{array} \begin{array}{c}\text { Sample } \\ \text { Size }\end{array}\right]$
$V\left(\bar{y}_{p s}\right)=1191.3347 ; \quad V(\bar{y})=579.7488 ; \operatorname{MSE}\left[\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)_{\mathrm{c}_{i}}\right]=3417.1887$ at the values $\mathrm{C}_{1}=1.7717, \mathrm{C}_{2}=1.9173$ and $\mathrm{C}_{3}=2.6281$

Set X

Stratum No.	N_{i}	$\sum_{\mathrm{j}=1}^{\mathrm{N}_{\mathrm{i}}} \mathrm{y}_{\mathrm{ij}}$	$\sum_{\mathrm{j}=1}^{\mathrm{N}_{i}} \mathrm{y}_{\mathrm{ij}}^{2}$	Mean	$\mathrm{S}_{\mathrm{i}}^{2}$	Sample Size
1	105	573.89	297038.25	$\overline{\mathrm{Y}}_{1}=5.4657$	$\mathrm{~S}_{1}^{2}=99.5603$	
2	19	3350.89	$1464905.10 \quad \overline{\mathrm{Y}}_{2}=176.3631$	$\mathrm{~S}_{2}^{2}=66543.19$	40	
3	40	5541.00	$3553848.10 \quad \overline{\mathrm{Y}}_{3}=138.525$	$\mathrm{~S}_{3}^{2}=84427.19$		
Total	$\mathrm{N}=164$	9465.79	$5313791.40 \quad \overline{\mathrm{Y}}=57.7182$	$\mathrm{~S}^{2}=32614.23$		

$$
\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)=594.505 ; \quad \mathrm{V}(\overline{\mathrm{y}})=616.4886 ; \quad \operatorname{MSE}\left[\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)_{\mathrm{c}_{i}}\right]=2979.954 \text { at the }
$$ values $C_{1}=5.2506, C_{2}=3.055$ and $C_{3}=0.3705$

6.1 Reason for Counter Examples

When C_{i} values obtained as a solution from (4.4) fail to satisfy (4.1) these values may not result in providing more efficient estimator. In such situation it is desireable to re-design the estimation strategy through the grouping strategy discussed in the Section 7.

7. General Grouping Strategy

Choose two positive integers r_{1} and r_{2} such that $r_{1}+r_{2}=k$ and define two groups G_{1} (containing any r_{1} strata) and G_{2} (containing any r_{2} strata). The constant C_{1} is to be used for G_{1} and C_{2} for G_{2}, and then consider a modified form of estimator

$$
\begin{equation*}
\left[\left(\bar{y}_{p s}^{\prime}\right)_{c_{i}}\right]=C_{1}\left[\sum_{i=1}^{r_{1}} w_{i} \bar{y}_{i}\right]+C_{2}\left[\sum_{i=r_{1}+1}^{r_{1}+r_{2}} w_{i} \bar{y}_{i}\right] \tag{7.1}
\end{equation*}
$$

Remark 7.1. The problem at this juncture is that some strata may be large in terms of size (like middle income group) and some may be bigger in terms of means (like mean expenditure of high income group). Therefore, grouping of any r_{1} strata among k in G_{1} need not be a fruitful strategy.
7.1 Grouping Plan ($1, \mathrm{k}-1$)

Step I : Choose a row $\mathrm{i}(\mathrm{i}=1,2,3, \ldots \mathrm{k})$ of the PPM matrix having $\mathrm{p}_{\mathrm{ij}} \leq 1$ for all $\mathrm{j}=1,2,3, \ldots \mathrm{k}+1$. Assume only one such row exists definitely.
Step II : Put corresponding $\mathrm{i}^{\text {th }}$ stratum in the group G_{1} and change its notations by $\mathrm{W}_{(\mathrm{I})}, \overline{\mathrm{Y}}_{(1)}, \mathrm{S}_{(\mathrm{l})}^{2}$, and $\overline{\mathrm{y}}_{(1)}$.
Step III : Put rest all the $(k-1)$ strata into group G_{2} changing their notations

$$
W_{(m)}, \bar{Y}_{(m)}, S_{(m)}^{2}, \bar{Y}_{(m)},(m=2,3,4, \ldots k)
$$

Step IV : Use the estimator $\left[\left(\bar{y}_{p s}^{(1)}\right)_{c_{i}}\right]=\left[C_{1} W_{(1)} \bar{y}_{(1)}+C_{2}\left\{\sum_{m=2}^{k} W_{(m)} \bar{y}_{(m)}\right\}\right]$

7.2 Grouping Plan (k-1, 1)

This is opposite to the former
Step I : Choose a row $\mathrm{i}(\mathrm{i}=1,2,3, \ldots \mathrm{k})$ of the PPM matrix having $\mathrm{P}_{\mathrm{ij}} \geq 1$ for all $\mathrm{j}=1,2,3, \ldots \mathrm{k}+1$. Assume a definite existence of only one such row.
Step II : Put all the $(k-1)$ strata into group G_{1} (not including $\mathrm{i}^{\text {th }}$ strata) with changing notations $W_{(m)}, \bar{Y}_{(m)}, S_{(m)}^{2}, \overline{\mathrm{y}}_{(\mathrm{m})}(\mathrm{m}=1,2,3, \ldots \mathrm{k}-1)$.

Step III : Put the $i^{\text {th }}$ strata into the group G_{2} with notations

$$
\mathrm{W}_{(\mathbf{k})}, \overline{\mathrm{Y}}_{(\mathbf{k})}, \mathrm{S}_{(\mathbf{k})}^{2}, \overline{\mathrm{y}}_{(\mathbf{k})}
$$

Step IV : Use the estimator

$$
\begin{equation*}
\left[\left(\bar{y}_{\mathrm{ps}}^{(2)}\right)_{c_{i}}\right]=C_{1}\left[\sum_{m=1}^{k-1} W_{(m)} \bar{y}_{(m)}\right]+C_{2} W_{(k)} \bar{y}_{(k)} \tag{7.3}
\end{equation*}
$$

7.3 Optimum Equations

The (4.4) reduces into only two equations with two unknowns containing known elements of the PPM matrix under these plans. A solution of these provides the optimum C_{1} and C_{2}.

Under Plan (1, k-1)

$$
\begin{align*}
& C_{1}\left[A_{(1)} C_{Y_{(1)}}^{2}+W_{(1)}^{2}\right]+C_{2} W_{(1)}\left[\sum_{m=2}^{k} W_{(m)}\left\{\frac{\bar{Y}_{(m)}}{\bar{Y}_{(1)}}\right\}\right]=W_{(1)} \frac{\bar{Y}}{\bar{Y}_{(1)}} \tag{7.3.1}\\
& C_{1} W_{(1)}\left\{\frac{\bar{Y}_{(1)}}{\bar{Y}}\right\}\left[1-W_{(1)}\left\{\frac{\bar{Y}_{(1)}}{\bar{Y}}\right\}\right] \\
& \\
& +C_{2}\left[\sum_{m=2}^{k} A_{(m)} C_{Y_{(m)}}^{2}\left\{\frac{\bar{Y}_{(m)}}{\bar{Y}}\right\}^{2}+\left(1-W_{(1)} \frac{\bar{Y}_{(1)}}{\bar{Y}}\right)^{2}\right] \tag{7.3.2}\\
& \\
& =\left(1-W_{(1)} \frac{\bar{Y}_{(1)}}{\bar{Y}}\right)
\end{align*}
$$

where

$$
C_{Y_{(m)}}=\frac{S_{(m)}}{\bar{Y}_{(m)}}, \quad A_{(m)}=\left[\frac{1}{n}-\frac{1}{N}\right] W_{(m)}+\frac{(N-n)}{(N-1) n^{2}}\left(1-W_{(m)}\right)
$$

Under Plan (k-1, 1)

$$
\begin{align*}
& C_{1}\left[\sum_{m=1}^{k-1} A_{(m)} C_{Y_{(m)}}^{2}\left\{\frac{\bar{Y}_{(m)}}{\bar{Y}}\right\}^{2}+\left(1-W_{(k)} \frac{\bar{Y}_{(k)}}{\bar{Y}}\right)^{2}\right] \\
& \quad+C_{2} W_{(k)}\left\{\frac{\bar{Y}_{(k)}}{\bar{Y}}\right\}\left[1-W_{(k)}\left\{\frac{\bar{Y}_{(k)}}{\bar{Y}}\right\}\right]\left[\left(\bar{y}_{p s}\right)_{c}\right]=C \sum_{i=1}^{k} W_{i} \bar{y}_{i} \tag{7.3.3}\\
& C_{1} W_{(k)}\left[\sum_{m=1}^{k-1} W_{(m)}\left\{\frac{\bar{Y}_{(m)}}{\bar{Y}_{(k)}}\right\}\right]+C_{2}\left[A_{(k)} C_{Y_{(k)}}^{2}+W_{(k)}^{2}\right]=W_{(k)} \frac{\bar{Y}}{\bar{Y}_{(k)}}(7.3 .4)
\end{align*}
$$

Table 7.1. Comparison of MSE and bias under grouping plans

For Estimator $\left(\bar{y}_{p s}\right)_{c_{i}}$									
	Without Grouping			With Grouping Plan (1, $\mathrm{k}-1$)			With Grouping Plan (k-1, 1)		
Date Set No	Optimum C-Values	 (Bias)	Gain in efficiency	Optimum C-Values	Optimum MSE \& (Bias)	Gain in efficiency	Optinum C-Values	Optimum MSE \& (Bias)	Gain in efficiency
VII	$\begin{aligned} & C_{1}=2.564 \\ & C_{2}=0.739 \\ & C_{3}=2.336 \end{aligned}$	$\begin{array}{r} 1125.407 \\ (6.511) \end{array}$	5.63\%	$\begin{aligned} & C_{1}=1.171 \\ & C_{2}=0.758 \end{aligned}$	$\begin{aligned} & 923.416 \\ & (14.177) \end{aligned}$	22.6\%	$\begin{aligned} & C_{1}=1.098 \\ & C_{2}=0.750 \end{aligned}$	$\begin{aligned} & 922.366 \\ & (14.145) \end{aligned}$	22.6\%
VIII	$\begin{aligned} & C_{1}=6.831 \\ & C_{2}=0.708 \\ & C_{3}=0.703 \end{aligned}$	$\begin{aligned} & 500.810 \\ & (11.264) \end{aligned}$	12.10%	$\begin{aligned} & C_{1}=7.608 \\ & C_{2}=0.268 \end{aligned}$	$\begin{array}{r} 167.345 \\ (3.688) \end{array}$	70.6\%	$\begin{aligned} & C_{1}=0.824 \\ & C_{2}=0.757 \end{aligned}$	$\begin{array}{r} 444.876 \\ (9.819) \end{array}$	21.9\%
IX	$\begin{aligned} & C_{1}=1.771 \\ & C_{2}=0.717 \\ & C_{3}=2.628 \end{aligned}$	$\begin{array}{r} 3417.190 \\ (49.605) \end{array}$	-186\%	$\begin{aligned} & C_{1}=2.638 \\ & C_{2}=0.229 \end{aligned}$	$\begin{array}{r} 382.046 \\ (3.190) \end{array}$	69.9\%	$\begin{aligned} & C_{1}=0.387 \\ & C_{2}=3.315 \end{aligned}$	$\begin{gathered} 559.462 \\ (4.681) \end{gathered}$	53\%
X	$\begin{aligned} & C_{1}=5.250 \\ & C_{2}=3.055 \\ & C_{3}=0.370 \end{aligned}$	$\begin{array}{r} 2979.950 \\ (35.599) \end{array}$	-401%	$\begin{aligned} & C_{1}=2.636 \\ & C_{2}=0.872 \end{aligned}$	$\begin{gathered} 463.587 \\ (0.920) \end{gathered}$	22\%	$\begin{aligned} & C_{1}=0.751 \\ & C_{2}=1.026 \end{aligned}$	$\begin{array}{r} 499.607 \\ (8.728) \end{array}$	15\%

Remark 7.2. As special case with two strata $(\mathrm{k}=2)$ and two groups, the strategy reduces into plan $(1,1)$ which will provide improved estimator subject to condition (4.1).

7.4 Comparison of $(1, k-1)$ and $(k-1,1)$

Both plans are based on different criteria of selecting the $\mathrm{i}^{\text {th }}$ strata, for G_{1} and G_{2}. The plan ($1, \mathrm{k}-1$) is focused on lowest mean, biggest grouping idea of strata while plan ($k-1,1$) has a basis of biggest grouping, highest mean of the strata.

8. Conclusions

Proposed estimator (3.1) is a general class having estimators (3.2) and (3.3) as members. When information about elements of PPM matrix and coefficients of variation are known, it could be utilised in the efficient estimation by using the proposed estimator. The weight $\left(\mathrm{C}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}\right)$ could be made optimal by solving the system of equations satisfying (4.1). Among several unknown constants C_{i}, if at least one or some of them are less than unity, there is a high chance of getting gain over usual post-stratified estimator. Under laid down assumptions, the optimum selection of constant C_{i} is easy to compute improving the efficiency. Among all data sets I to VIII, there is considerable gain in efficiency over the usual estimator when (3.1) and (3.2) are used. In spite of that, lack of gain in efficiency, using (3.1), is shown in two counter examples. To cope with this, a general strategy of grouping strata is proposed which is found effective and easy in application. The strategy has grouping plans $(1, k-1)$ and $(k-1,1)$ and both generate efficient estimators on those data sets where the usual (3.1) proved less efficient. While comparing two plans over same data sets, it is found that plan $(1, k-1)$ is better than plan ($k-1,1$), but all together both are recommendable over the situation of not using the grouping strategy. Also, both plans are effective in reducing the bias component of the estimator (3.1).

ACKNOWLEDGEMENT

Authors are thankful to referee for critical comments and suggestions which have improved the contents of the manuscript.

REFERENCES

[1] Agrawal, M.C. and Panda, K.B. (1993). An efficient estimator in poststratification. Metron, 51, 3-4, 179-187.
[2] Gelman, A. and Little, T.C. (1997). Post-stratification into many categories using hierarchical logistic regression survey method. Survey Methodology.
[3] Holt, D. and Smith, T.M.F. (1979). Post-stratification. J. Roy. Statist. Soc, A 142, 33-36.
[4] Jagers, P., Oden A. and Trulsson, L. (1985). Post-stratification and ratio estimator. Int. Stat. Rev., 53, 221-238.
[5] Jagers, P. (1986). Post-stratification against bias in sampling. Int. Stat. Rev., 54, 159-167.
[6] Lazzerni, I.C. and Little, R.J.A. (1997). Random effect models for smoothing post-stratification weights. Journal of Official Statistics.
[7] Little, R.J.A. (1993). Post-stratification : A modeler's perspective. Jour. Amer. Statist. Assoc., 88, 1001-1012.
[8] Samdal, C.E., Swensson, B. and Wertman, J. (1992). Model Assisted Survey Sampling. Springer-Verlag, New York.
[9] Searls (1964). The utilisation of a known coefficient of variation in the estimation procedure. Jour. Amer. Statist. Assoc., 59, 1225-1226.
[10] Shukla, D. and Trivedi, Manish (1999). A new estimator in post-stratification sampling scheme, Baysian Analysis. Proceedings of NSBA-TA, 16-18 Jan. 1999.
[11] Shukla, D. and Trivedi, Manish (2001). Mean estimation in deeply stratified population under post-stratification. Jour. Ind. Soc. Agril. Stat., 54(2), 221-235.
[12] Sukhatme, P.V, Sukhatme, B.V., Sukhatme, S. and Asok, C. (1984). Sampling Theory of Survey with Applications. Iowa State University Press, Indian Society of Agricultural Statistics, New Delhi.

