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SUMMARY 

Advantages of "Structural time-series modelling" approach over well­
known "Auto Regressive Integrated Moving Average" (ARIMA) 
methodology are highlighted. In the former, peculiar features exhibited by the 
data dictate the particular type of model from the family to be employed. 
Various types of models which are capable of explaining "cyclical 
fluctuations" are discussed. As an illustration, all-India lac production data, 
which has prominent cycles, is modelled. Results are compared with 
corresponding analogue from ARIMA family. Finally, forecasting of 
all-India lac production is carried out. 
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1. Introduction 

Statistical modelling of time-series data in Agriculture is usually carried 
out by employing ARIMA methodology (Brockwell and Davis [2]). One 
disadvantage of this methodology is that the data series under consideration is 
assumed to be either stationary, or can be made so by differencing; however this 
is not always possible. A quite promising, mechanistic approach, which does not 
suffer from this drawback, is "Structural time-series modelling (STSM)" 
(Harvey [3]). The distinguishing feature of this methodology is that observations 
are regarded as made up of distinct components such as trend and cyclical 
fluctuations and each of which is modelled separately. The techniques that 
emerge from this approach are extremely flexible and are capable of handling a 
much wider range of problems than is possible through ARIMA approach. 
Purpose of this paper is to discuss STSM approach when there are prominent 
cyclical fluctuations. Finally, as an illustration, this methodology is applied to 
all-India lac production data for the period 1930-31 to 1998-99. 

-----.--...~-...----~.-..--...---------------------­
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2. Structural Time-Series Models 

A structural time-series model is set up in terms of various components of 
interest, viz. trend Olt), cyclical fluctuations ('111), seasonal variations (SI) and 
irregular (error) term (Bt) 

(1) 

where Y, is the observed time-series at time "t". In the absence of seasonal 
components, eq. (1) reduces to 

For 
discussed 

Y, =Jlt + '11,+ Bt 

modelling cyclical fluctuations, the following three models 

(2) 

are 

(i) Cycle Plus Noise Model (CNM) 

Here the trend Jlt is assumed to be constant. Thus, the functional form of 
CNM (Harvey [3]) is 

(3) 

The cyclical fluctuations '11, can be expressed as a mixture of sine and 
cosine terms 

'11, =a cos (Ac t) + (3 sin (Ac t) (4) 

where Ac, (a2 + (32)112 , tan·1 «(3/a) represent respectively the frequency,_ 
amplitude, and phase. The cycles in eq. (4) need to be made stochastic by 
allowing the parameters a and (3 to evolve over time. Following Harvey [3J, the 
final form of eq. (4) can be written as 

[~;] =p [~~i~~c ~~~~:~:;~:l +[:;] (5) 

where the correlation coefficient p E [0, 1] is a damping factor, and k, and k; 
are uncorrelated white-noise disturbance terms. Further, '110 = a, '11~ = (3. The 

new parameters are '11" the current value of the cycle, and '11;, which appears 

by construction in order to form '11,. Eq. (5) is a vector AR (1) process. 

Let L denote the lag operator, i.e. 

(6)L'I1t ='11'-1 

Then eq. (5) can be written as 

1- Lpcos Ac - Lpsin Ac] ['11 t] [kk;r] (7)[ Lpsin Ac 1 - Lpcos Ac '11; 
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Substituting for 'If I in eq. (3) yields 

- (1-LpcOSAc)k l + (Lpsin Ac)k; -12 T (8)
YI - J..l + 2 2 + ep t - , , ... ,

(1- 2Lp cos Ac + L P ) 

where et is assumed to be uncorrelated with kt and k;. 

For estimation of parameters, eq. (8) has to be put in state space form 
(Meinhold and Singpurwalla [6]) and then Kalman filter, prediction and 
smoothing (Koopman et al. [4]) are applied. In eq. (8), unobservable state, 

conditional on variances S~ and cr~, is done recursively using Kalman mter 

and smoother. In general, these are unknown and are treated as hyperparameters. 
Likelihood function can be evaluated by Kalman filter via prediction error 
decomposition (Shumway and Stoffer [8]). Maximizing likelihood function with 
respect to hyperparameters, using quasi-Newton optimization procedure, is 
rj!ferred to as "hyperparameter estimation". After estimation of parameters, 
prediction and smoothing are performed. The reduced form from ARIMA 
family corresponding to CNM is "Constant + ARIMA (2,2)". 

(ii) Trend Plus Cycle Model (TCM) 

As described by Harvey [3], TCM is given by the following equations 

YI =J..lt + 'If I + el' t =I, 2, ... , T (9) 

J..l t J..lI -1 + [31 -1 + 111 (10) 

f3 t =131 -1 + ~I' t = ... , - 1, 0, I, ... (11) 

In this, el , 111 and ~t are the disturbance terms which follow Gaussian 

distributions with means 0 and variances cr;, 0'; and O'~ respectively and are 

called hyperparameters of the model. As mentioned in CNM model, estimation 
of state vector and hyperparameters is carried out by putting the model in state 
space form and subsequently Kalman filter is applied with proper initial values. 
The state space formulation of TCM is as follows 

The measurement equation is 

YI =[1 o 1 O]al+el't 1,2, ... , T (12) 

whereas the transition equation is 

J..l I I 

13,-1 
at (13)[~l I,b, 0':' p COS Ac S~'A'I'If1-1 +[~;l•-psinAc p cos Ac 'If I-I 
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The covariance matrix of the vector of disturbances in eq. (13) is a 

diagonal matrix with diagonal elements ~;, cr~, cr~, cr;. } . Once the parameters 

are estimated using prediction error decomposition, Kalman filter, prediction 
and smoothing can be applied. 

(iii) Cyclical Trend Model (CTM) 

Here the cycle is actually incorporated within trend. Thus the model is 
given by the equations (Harvey [3]) 

YI III + Et , t = 1. 2, ... , T (14) 

Ilt = Il t -1 + \If t -I + f3 t -1 + Tit (15) 

f3t =f3t -1 +;t (16) 

Estimation of parameters and hyperparameters is carried out by putting the 
model in state space form and applying Kalman filter. The essential difference 
between TCM and CTM is that, in the former, the observation Y depends on t 

cyclical fluctuations \If I explicitly whereas. in the latter, it does so on \If t-1 

implicitly through the trend Ill' As far as analogue form of CTM is concerned, 

there is no difference with TCM, i.e. ARIMA (2, 2. 4) model is the 
corresponding analogue of both TCM and CTM. 

Goodness ofFit 

Goodness of fit of models having equal number of hyperparameters is 
assessed using Prediction Error Variances (PEV). If the number of 
hyperparameters is different, one can use Akaike Information Criterion (AIC) 
which is given as 

AIC = - 2 loge L + 2n (17) 

or Schwartz - Bayes Information Criterion (SBC) given as 

SBC = - 2 log., L + n log., T (18) 

where L is the likelihood function. n denotes number of hyperparameters, and T 
is the sample size. Lower the values of these statistics, better is the fitted model. 

3. An Illustration 

As an illustration, data on all-India annual lac production for the period 
1930-31 to 1998-99, obtained from the annual reports of Shellac Export 
Promotion Council, Kolkata, is utilized. Data up to the period 1990-91 is used 
for fitting purposes while subsequent data is used for examining goodness of fit 
of the models by comparing forecast values with the actual values. As the data 
set pertains to annual figures of lac production, only those models which do not 
incorporate "seasonal fluctuations" are considered. To the best of our 

----_...._-------------------­
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knowledge, only STAMP software package (Koopman et al. [5]) has the 
capability to estimate parameters of "Structural time-series models". Version 6.0 
of this software package downloaded from the world wide web site at 
http://www.econ.vu.nUSTAMP.htmis utilized for data analysis. 

In the first instance, graphical display of data depicted in Fig.l indicates 
presence of prominent cyclical fluctuations. Accordingly, all the three models 
capable of exhibiting cyclical fluctuations, viz. CNM, TCM, and CTM from the 
family of "Structural time-series models" are applied to the data set and the 
results are reported in Table 1. A perusal indicates that TCM performs the best 
as is evident from the values of three goodness of fit criteria. The maximum 
values for CNM imply that this model is not appropriate for describing the 
present data set. Thus, apart from cyclical fluctuations and noise, there is 
definitely presence of a trend component. The estimate of slope (PI) for 

TCM, i.e. ~ = -0.39, being negative, indicates a declining trend. The frequency 

estimate )" = 1.26 corresponds to a period of 2 1t I)", i.e. approximately 5 years. 
Further, p =0.96, being strictly less than unity, indicates that forecast function 

is a damped sine, or cosine wave. The situation is analogous to that of the AR(l) 
forecast function and indeed the condition that p be strictly less than unity is the 

one which is needed for stationarity. For comparing the performance of TCM 
with its corresponding analogue, ARlMA (2, 2, 4) model is fitted to the given 
data using SAS [7] statistical software package. Estimation of parameters is 
carried out using Melard's algorithm (Box et al. [1]). Parameter estimates of 
ARIMA (2, 2, 4) model are 

Constant = - 0.41, AR 1 = 0.34, AR 2 = 0.30 

MA 1 =-.09, MA 2 =1.37, MA 3 =0.18, MA 4 = - 0.46 

Fig.2 displays the graph of autocorrelations on first to sixth lags for fitted 
ARIMA (2, 2, 4) model in respect of original as well as second order differenced 
series. It may be noted that for both the series, there is a spike at lag 5, which 
gives an indication of a possible five-year cycle [7]. Further, goodness of fit 
statistics for this model are 

AIC =317.23, SBC =331.77, SE =3.37 

Thus, TCM performs much better than ARIMA (2, 2, 4) model. A 
comparison of forecasts with actual values for the next 8 years from 1991-92 
onwards on the basis of ARIMA (2, 2, 4) model and TCM, presented in Table 1, 
also reflect the superiority of TCM over ARIMA (2, 2, 4) model. Thus TCM is 
the best model for describing cyclical fluctuations in all"India lac production 
data. To get visual insight, the graphs of fitted TCM and residuals respectively 
are exhibited in Figs.l and 3. 

http://www.econ.vu.nUSTAMP.htmis
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Table 1. Summary statistics for structural time-series models 

(i) Estimation of parameters: 

Parameter CNM TCM CTM 

J.LI (level) 18.86 15.41 14.76 

III (slope) 2.03 -0.39 0.88 

WI (cycle) 3.89 2.15 3.06 

0 2 52.76 
e 

33.54 45.73 

0 
2 
'1 

8.15 7.95 

0 2 1.25 2.86 3.48 
~ 

Cycle Variance 10.77 10.63 8.29 

Cycle Frequency 1.25 1.26 1.26 

Cycle Amplitude 4.80 4.35 3.64 

p 0.97 0.96 0.97 

(ii) Goodness of'fit statistics: 

AIC 270.02 246.87 261.75 

SBC 282.39 262.37 273.75 

SE 5.83 3.24 4.08 

(iii) Forecast values (in thousand tonnes) for TCM : 

Year Actual values Forecast by TCM Forecast by 
ARIMA (2, 2, 4) 

1991-92 10.81 14.11 14.25 

1992-93 11.68 12.40 13.97 

1993-94 20.52 17.26 13.32 

1994-95 22.46 16.14 12.81 

1995-96 20.05 17.79 12.23 

1996-97 19.76 17.30 11.67 

1997-98 17.55 13.15 11.09 

1998-99 10.36 10.29 10.52 

--~- ... ~--....~- ..--­....- ---------­
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Fig. 1. Grapb of trend plus cycle model along with all-India lac production data 
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Fig. 2. Autocorrelations on fIrst to six lags for fitted ARIMA (2, 2, 4) model 
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Fig. 3. Graph ofresiduals oftrend plus cycle model over time 

4. Concluding Remarks 

The methodology is discussed for describing time-series data with marked 
cyclical fluctuations. As an illustration, the methodology is applied to all-India 
lac production data. Some descriptive studies do exist in the literature 
concerning lac population growth but these have dealt with only one aspect, i.e. 
either cyclic fluctuations or declining trend. This is probably for the first time 
that we have analytically demonstrated using sophisticated statistical tools that, 
apart from a declining tend, there are prominent five-year cycles in all-India lac 
production. One plausible reason for such cycles is the existence of cyclical 
fluctuations in various factors, like temperature, humidity, and rainfall; all these 
have a marked influence on lac production. In reality, the lac production system 
is a three-species interacting system comprising trees (i.e. food for the lac 
insect), lac insect, and predators of lac insect. Thus there is a need to study the 
multivariate extension of 'Structural time-series models'. Appropriate estimation 
procedures along with relevant computer programs to handle such situations also 
have to be developed. Simultaneously, detailed time-series data concerning 
above-mentioned species is also required. Then only it may be possible to assign 
a biological explanation for the cyclical behaviour of lac production. However, 
it is hoped that, in due course of time, research workers in other disciplines 
would also start applying 'Structural time-series models' in their data analysis. 

--_....__....- .... _-_ ...._--_.... 
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