A Generalised Chain Estimator for Finite Population Mean in Two Phase Sampling

Arun K. Singh, Housila P. Singh¹ and Lakshmi N. Upadhyaya²
Nagaland University, Medziphema-797 106
(Received: May, 2001)

SUMMARY

This paper proposes a generalized class of chain estimators for finite population mean using two auxiliary variates in two phase sampling and analyses its properties.

Key words: Auxiliary character, Study character, Two phase sampling, Mean squared error.

1. Introduction

Consider a finite population $U = \{U_1, U_2, ..., U_i, ..., U_N\}$ Let y and x be the study and auxiliary variables, taking values y_i and x_i respectively for the i^{th} unit. When the two variables are strongly related but the population mean \overline{X} of x is not known, we seek to estimate the population mean \overline{Y} of y from a sample s_n , obtained through a two phase selection. Allowing simple random sampling without replacement scheme in each phase, the double sampling scheme will be as follows

- (a) The first phase sample $s'_n (s'_n \subset U)$ of fixed size n' is drawn to observe only x in order to obtain a good estimate of \overline{X} .
- (b) Given s'_n , the second phase sample s_n ($s_n \subset s'_n$) of fixed size n is drawn to observe y only.

Sometimes even if \overline{X} is unknown, information on a second auxiliary variable z closely related to x but compared to x remotely related to y (i. e. $\rho_{yx} > \rho_{yz}$) is readily available. This type of situation has been briefly

School of Studies in Statistics, Vikram University, Ujjain - 456 010, M. P.

^{2.} Indian School of Mines, Dhanbad - 826 004, Jharkhand

discussed by, among others, Chand [1], Kiregyera ([3], [4]) and Sahoo and Sahoo [6]. Let \overline{Z} , be the population mean of second auxiliary variable z. Let $\overline{y} = \sum_{i=1}^{n} y_i / n$, $\overline{x} = \sum_{i=1}^{n} x_i / n$ be the unbiased estimators of \overline{Y} and \overline{X} , the

population mean of y and x, respectively, based on s_n and let $\overline{x}' = \sum_{i=1}^{n'} x_i / n'$

and $\overline{z}' = \sum_{i=1}^{n'} z_i / n'$ be the unbiased estimators of population means \overline{Y} and \overline{Z} respectively based on s'_n .

By analogy, if the correlation x and z is highly positive, $\left(\frac{\overline{x}'}{\overline{z}'}\right)\overline{Z}$ will estimate \overline{X} more precisely than \overline{x}' . Accordingly, Chand [1] has chained $\left(\frac{\overline{x}'}{\overline{z}'}\right)\overline{Z}$ into $\frac{\overline{y}}{\overline{x}}$ and developed a chain ratio-type estimator

$$\overline{y}_1 = \left(\frac{\overline{y}}{\overline{x}}\right) \left(\frac{\overline{x}'}{\overline{z}'}\right) \overline{Z} \tag{1.1}$$

By chaining a regression estimator $\overline{x}' + b'_{xz} (\overline{Z} - \overline{z}')$ of \overline{X} into $\frac{\overline{y}}{\overline{x}}$, Kiregyra [3] derived a chain ratio-to-regression estimator

$$\overline{y}_2 = \left(\frac{\overline{y}}{\overline{x}}\right) \left[\overline{x}' + b'_{xz} \left(\overline{Z} - \overline{z}\right)\right]$$
 (1.2)

where $b'_{xz} = \sum_{i=1}^{n'} (x_i - \overline{x})(z_i - \overline{z}') / \sum_{i=1}^{n'} (z_i - \overline{z}')^2$ is the estimate of population

regression coefficient of x on z. Kiregyera [4] also extended this formulation to obtain a ratio-in-regression estimator

$$\overline{y}_{3} = \overline{y} + b_{yx} \left[\left(\frac{\overline{x}'}{\overline{z}'} \right) \overline{Z} - \overline{x} \right]$$
 (1.3)

where $b_{yx} = \sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x}) / \sum_{i=1}^{n} (x_i - \overline{x})^2$ is the estimate of population regression coefficient of y on x.

Motivated by Das and Tripathi [2] we have suggested a class of chain regression estimators of \overline{Y} and discussed its properties.

2. The Proposed Class of Estimators and its Properties

Following Das and Tripathi [2], we suggest a class of ratio-in-regression type estimators for population mean \overline{Y} as

$$\overline{y}_{t} = \overline{y} + b_{yx} \left[\frac{\left\{ \overline{x}' - t_{1} \left(\overline{z}' - \overline{Z} \right) \right\}}{\left\{ \overline{z}' - t_{2} \left(\overline{z}' - \overline{Z} \right) \right\}^{\alpha}} \left(\overline{Z} \right)^{\alpha} - \overline{x} \right]$$
(2.1)

where α is a suitably chosen constant and t_1 and t_2 are suitably chosen statistics such that their means exist (which may in particular be constant).

The mean squared error of \overline{y}_t , to the first degree of approximation, is given by

$$MSE(\overline{y}_{t}) = \overline{Y}^{2} \left[\lambda C_{y}^{2} - (\lambda - \lambda')C^{2}C_{x}^{2} + \lambda' CC_{z}^{2}\gamma \left(\gamma C - 2C^{*} \right) \right], \qquad (2.2)$$

$$where \quad C = \rho_{yx} \frac{C_{y}}{C_{x}}, \quad C^{*} = \rho_{yz} \frac{C_{y}}{C_{z}}, \quad \rho_{yx} = \frac{S_{yx}}{\left(S_{y}S_{x} \right)}, \quad \rho_{yz} = \frac{S_{yz}}{\left(S_{y}S_{z} \right)}$$

$$S_{yv} = \sum_{i=1}^{N} \left(y_{i} - \overline{Y} \right) \left(v_{i} - \overline{V} \right); \quad v = x, z$$

$$S_{u}^{2} = \sum_{i=1}^{N} \left(u_{i} - \overline{U} \right)^{2} / (N - 1), \quad u = x, y, z$$

$$C_{u} = \frac{S_{u}}{U}; \quad u = x, y, z \qquad \lambda = \frac{(N - n)}{Nn} \qquad \lambda' = \frac{(N - n')}{Nn'}$$

$$\gamma = \left[R \left(E_{0}t_{1} \right) + \alpha \left(1 - \left(E_{0}t_{2} \right) \right) \right] \qquad R = \frac{\overline{Z}}{\overline{X}}$$

$$Et_{i} = \left(E_{0}t_{i} \right) + O(n^{-q_{i}}), \quad q_{i} > 0, \quad i = 1, 2$$

and (E_0t_i) is a constant (parameter) not depending on n.

The $MSE(\bar{y}_t)$ at (2.2) is minimised for

$$\gamma = \left(\frac{C^*}{C}\right) \tag{2.3}$$

Thus the resulting (minimum) MSE of \overline{y} , is given by

min. MSE
$$(\overline{y}_t) = \overline{Y}^2 \left[\lambda C_y^2 - (\lambda - \lambda') C^2 C_x^2 - \lambda' C_z^2 C^{*2} \right]$$
 (2.4)

A large number of estimators may be identified as particular cases of the suggested class of estimators \overline{y}_t . Few examples are

$$\begin{split} & \overline{y}_{t}^{(1)} = \overline{y} + b_{yx} \left\{ \overline{x}' \left(\frac{\overline{Z}}{\overline{z}'} \right) - \overline{x} \right\} \\ & \overline{y}_{t}^{(2)} = \overline{y} + b_{yx} \left[\overline{x}' \left\{ 2 - \left(\frac{\overline{Z}}{\overline{z}'} \right)^{\alpha_{1}} \right\} - \overline{x} \right] \\ & \overline{y}_{t}^{(3)} = \overline{y} + b_{yx} \left\{ \overline{x}' \left(\frac{\overline{Z}}{\overline{Z} + \alpha_{1}} \left(\overline{z}' - \overline{Z} \right) \right\} \right\} - \overline{x} \right\} \\ & \overline{y}_{t}^{(4)} = \overline{y} + b_{yx} \left[\left\{ \alpha_{1} \overline{x}' + \left(1 - \alpha_{1} \right) \overline{x}' \left(\frac{\overline{Z}}{\overline{z}'} \right)^{\alpha_{2}} - \overline{x} \right\} \right] \end{split}$$

etc. where α_1 and α_2 are suitably chosen constants.

3. Efficiency Comparisons

To compare the proposed estimator with \overline{y}_i (i = 1, 2, 3) we write the MSE to the first degree of approximation, as

$$MSE(\overline{y}) = \lambda \overline{Y}^2 C_y^2$$
 (3.1)

$$MSE(\overline{y}_1) = \overline{Y}^2 \left[\lambda C_y^2 + (\lambda - \lambda') C_x^2 (1 - 2C) + \lambda' C_z^2 (1 - 2C^*) \right]$$
(3.2)

$$MSE(\overline{y}_{2}) = \overline{Y}^{2} \left[\lambda C_{y}^{2} + (\lambda - \lambda') C_{x}^{2} (1 - 2C) + \lambda' C^{**} C_{z}^{2} (C^{**} - 2C^{*}) \right] (3.3)$$

$$MSE(\overline{y}_3) = \overline{Y}^2 \left[\lambda C_y^2 - (\lambda - \lambda') C^2 C_x^2 + \lambda' C C_z^2 \left(C - 2 C^* \right) \right]$$
(3.4)

From (2.4), (3.1), (3.2), (3.3) and (3.4), it can be easily shown that the proposed class of estimators \overline{y}_t is more efficient than usual unbiased estimator \overline{y}_t , Chand's [1] estimator \overline{y}_1 , Kiregyera's ([3], [4]) estimators \overline{y}_2 and \overline{y}_3 .

If the constant γ does not coincide with the exact optimum value $\left(\frac{C^*}{C}\right)$, then the suggested estimator \overline{y}_t is more efficient than

(i) The usual unbiased estimator
$$\overline{y}$$
 if $\left[\gamma^2 - 2\gamma \left(\frac{C^*}{C} \right) - \frac{(\lambda - \lambda')}{\lambda'} \left(\frac{C_x^2}{C_z^2} \right) \right] < 0$

(ii) Chand's [1] chain ratio estimator \overline{y}_1 if

either
$$\frac{\left(2C^*-1\right)}{C} < \gamma < \frac{1}{C}$$

or $\frac{1}{C} < \gamma < \frac{\left(2C^*-1\right)}{C}$

(iii) Kiregyera's [3] estimator \overline{y}_2 if

$$\left[\gamma^2 - 2\gamma \left(\frac{C^*}{C} \right) - \left\{ \frac{(\lambda - \lambda')}{\lambda'} \frac{C_x^2}{C_z^2} (1 - C)^2 + C^{**} \left(C^{**} - 2C^* \right) \right\} \right] < 0$$

(iv) Kiregyera's [4] estimator \overline{y}_3 if

either
$$1 < \gamma < \left(\frac{2C^*}{C} - 1\right)$$

or $\left(\frac{2C^*}{C} - 1\right) < \gamma < 1$

4. Empirical Study

To examine the efficiency of the suggested estimator over other estimators \overline{y} , \overline{y}_1 , \overline{y}_2 and \overline{y}_3 we have considered the data earlier used by Chand [1].

y: bushels of corn harvested in 1964

x: acres under corn in 1964

z: acres of corn harvested for grain in 1959

 $\rho_{yx}=0.92, \rho_{yz}=0.89, \rho_{xy}=0.98, n=60, n'=120 \quad and \quad N \quad is \quad very \quad large.$ We have computed the relative efficiency of various estimators of \overline{Y} with respect to \overline{y} and displayed in Table 4.1.

Table 4.1 clearly indicates that the proposed estimator \overline{y}_t is more efficient than rest of the estimators.

		•			•
Estimator	ÿ	\overline{y}_1	\overline{y}_2	\overline{y}_3	$\overline{\overline{y}}_t$
$RE(., \overline{y}) \times 100$	100.00	371.90	525.24	224.79	553.25 (optimum $\gamma = 1.3696$)

Table 4.1. Relative efficiency (%) of various estimators of \overline{Y} with respect to \overline{y}

ACKNOWLEDGEMENTS

Authors express their thanks to the referee for useful suggestions in improving the paper.

REFERENCES

- [1] Chand, L. (1975). Some ratio-type estimators based on two or more auxiliary variables. Ph.D. Dissertation, Iowa State University, Ames, Iowa.
- [2] Das, A.K. and Tripathi, T.P. (1979). A class of estimators for population mean when mean of an auxiliary character is known. *Math. Tech. Report No. 22/79*, ISI, Calcutta.
- [3] Kiregyera, B. (1980). A chain ratio-type estimator of finite population double sampling using two auxiliary variables. *Metrika*, 27, 217-223.
- [4] Kiregyera, B. (1984). Regression type estimators using two auxiliary vaiables and the model of double sampling. *Metrika*, 31, 215-226.
- [5] Sahoo, J. and Sahoo, L.N. (1993). A class of estimators in two-phase sampling using two auxiliary variables. *Jour. Ind. Statist. Assoc.*, 31, 107-114.