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SUMMARY

The universal optimality of non-proper block designs with nested rows
and columns is studied under the usual homoscedastic model. Some general
methods of construction of universally optimal non-proper block designs with
nested rows and columns are given. A catalogue of universally optimal
proper/non-proper block designs with nested rows and columns is included.
Two methods of construction of most balanced group divisible designs with
nested rows and columns (MBGDN-RC designs) are given along with a
catalogue of such designs.

Key Words: Block designs with nested rows and colummns, Universal
optimality, Variance balance, Most balanced group divisible designs.

1. Introduction

Many a time the experimenters come across situations in which the
experimental material cannot or need not be divided into blocks with equal
number of experimental units but the elimination of heterogeneity in two
directions is desirable within each block and is achieved by forming rows and
columns within each block. For example, in agricultural field experiments,
particularly experimenting in hilly areas, often it is found that the blocks formed
are physically separate fields (say different farmers fields, some blocks in the
plains and some in the terraces in the hilly tracks) and two (crossed) sources of
variation are included in the analysis of data to account for heterogeneity in two
directions within each field. However, it is indeed possible that the fields have
unequal number of plots within them and, therefore, the fields cannot or need
not be divided into equal number of rows and equal number of columns. In hilly
areas when some fields are on the plains and some are on the hilly tracks it may
happen that the number of plots within the fields may vary widely. For instance,
the number of experimental units in the fields in the plain may be quite high
while the number of plots possible on the fields that are on the terraces in the
hills may be very small. To obtain efficient designs for these and similar
situations is the problem addressed in this paper.
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it is well known that block designs with nested rows and columns are
useful in the experimental situations just described. A design
d e D(v,b, pl,p2,~-~,pb,q!,q2,--~,qb), a class of connected designs in which v
treatments denoted by 1, 2, ..., v are to be applied to a set of experimental units
arranged in b blocks of sizes k; =pq,, k, =p,q,..:*, k, =p,q, . is said to be

a block design with nested rows and columns with unequal block sizes or simply
a nested row-column design with unequal block sizes.

Earliest known nested row-column designs with equal block sizes are the
lattice square designs. Several methods of construction of nested row-column
designs with equal block sizes can be found in Srivastava [18], Singh and
Dey [15], Agarwal and Prasad [1, 2], Street [19], Ipinyomi and John [11],
Cheng [8], Sreenath [16, 17}, Uddin [20,21] and Uddin and Morgan [23].
Optimality studies of nested row-column designs with equal block sizes are
recent and have been made by Chang and Notz [5, 6, 7], Bagchi et al. [3] and
Morgan and Uddin [13]. These authors studied the optimality aspects in the
class of connected designs D(v, b, p, q), with v treatments arranged in b blocks
of common size k = pg. For the non-proper setting, the optimality aspects were
studied by Uddin ef al. [22] who gave several methods of construction of
equireplicate balanced nested row-column designs with at most two block sizes
and gave a catalogue of designs with v<10,r<10, p; €q, Sv,p, £q,; SV,

Some methods of construction of non-proper variance balanced nested row-
column designs are also given by Chakraborty [4].

This paper studies the universal optimality of block designs with nested
rows and columns in a wider class of designs § = P (v, b, b", n) under a linear,
additive, fixed effects, homoscedastic model. Here D is the class of connected
block designs with nested rows and columns having v treatments arranged in b

. b b
blocks, b(=Xqy) columns and n (= ¥p,q, ) experimental units, where
i j=i

pg; and q; are the numbers of rows and columns respectively in the j™ block of

a design d € D. In proving the universal optimality, use is made of a sufficient
condition of Kiefer [12, Proposition 1] and results of Gupta et al. [10] on
universally optimal non-proper block designs. Further, some methods of
construction of universally optimal non-proper nested row-column designs are
given. A catalogue of proper and non-proper balanced block designs with nested
rows and columns is given in Table 1. Bagchi et al. [3] defined a most balanced
group divisible design with nested rows and columns (MBGDN-RC design) and
showed that an MBGDN-RC design, whenever it exists, is optimal with respect
to all generalized criteria of type 1 and gave a method of construction of
MBGDN-RC designs. In this paper two more methods of construction of
MBGDN-RC designs are given and a catalogue is provided in Table 2.
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2. Preliminaries

In the usual setting of block designs with nested rows and columns,
suppose that v treatments are to be compared usmg a design d in which n
experimental units are arranged in b blocks with j™ block of size kg = palap

V j= I(1)b. Let Ny be the v x b incidence matrix of treatments versus blocks;

b
Ny the v x ¥p, incidence matrix of treatments versus rows and Ng the
j=t

vqudj incidence matrix of treatments versus columns. Qg and Py denote
j=1

respectively the 2 Pg xz Py and E%sz%g diagonal matrices of row
=1 i=l = i=

. » . b + b +

sizes and column sizes given by Qu = 2 Qqlp, P = 2 Paly, and
j=l j=t

Ka=Diag(paiQais - » PanGan), the b x b diagonal matrix of block sizes. Here

+ . - :
2 denotes the direct sum of matrices. We also have Ry = Diag(ryy,....T4v),

where 1y, i=1(1)v is the replication number of the i treatment. Under the usual
homoscedastic, fixed effects, additive, linear model, the coefficient matrix of
reduced normal equations for estimating linear functions of treatment effects
using a block design with nested rows and columns is

Cq =Ry —NyQy Ny - Ny, PNy, + NSK Ny

s 2.1

=Ry -NgpPy Ny, -Ly
where Ly =Ny, Q3'Nj; ~N,K7'Nj;. It may be seen easily that Ly is non-
negative definite matrix. The matrix Cq4 is symmetric, non-negative definite with
row and column sums zero, and for a connected design Rank (Cy) = v - L.

Henceforth, we consider only connected designs. We may allow p; > v for some
orall j=1(1)b.

Let 8 = B (v, b, n) denote the class of all connected block designs with v
treatments, b blocks and n experimental units and B = B (v, b, ki,...,kp) denote
the class of all connected block designs with v treatments, b blocks and the j®
block size as kj, j = 1(1)b. For a block design de B or B, Ng= ((ng;)) denotes the
vXb treatrnents versus blocks incidence matnx where ng; denotes the number

of times the i treatment is applied in the j j block,i= 1{1)v,j=1(1)b.
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Definition 2.1; (Gupta et al. [10]). A design d € B is called a Generalized
Binary Balanced Block (GBBB) design if

(i) ng=intkj/v)orint(k;/v)+1, V j=1(1)b

b
(i) 3 ngng;/k;=A ,aconstant, ¥ ixi’=1(1)v 22)
i1

Definition 2.2: (Gupta et al. [10]). A design d € 8 is called a Binary
Balanced Block (BBB) design if
(i) Ny = Oorl
b
@) Y ngngyfky =A, ,aconstant, V i# i = I(1v (2.3)
=t
where kg, .., kg denote the block sizes of the design d € B, with
ka1 +...+ kap = n. With these definitions, we now introduce generalized binary
balanced block designs with nested rows and columns (GBBBN-RC design) and
hinary balanced block designs with nested rows and columns (BBBN-RC
design).
Definition 2.3: A designd € D is said to be a GBBBN-RC design if
() La=N4,Q 'Nj; -N,K Ny =0
(ii) Ny is the incidence matrix of a GBBB design.
Definition 2.4: A design d € D is called a BBBN-RC design if
(i) Lyg= NdeslN:n - NGKSIN; =0
(ii) Ny is the incidence matrix of a BBB design.

3. Universally Optimal Designs

In this section we prove the universal optimality of GBBBN-RC designs
and BBBN-RC designs over D and D, We first state, as Theorem 3.1 and
Corollary 3.1, the results obtained by Uddin et gl. {22] on universal optimality of
non-proper block designs with nested rows and columns.

Theorem 3.1: Consider a design d’e D satisfying
(i) Le»= Ny Q'Nj, - N KN =0
(i1) Ny is the incidence matrix of a block design which is universally optimal
b
/ 14
over B(v, Elqj s Plg s Polg, ).
=

The design d*, whenever it exists, is universally optimal over D.
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Corollary 3.1: A GBBBN-RC design d* € D, whenever existent, is
universally optimal over D{(v, b, pi,...;Pbs Q15---»0p)-

If the column component design is binary, then using definitions 2.3 and
2.4, the universal optimality can be established in a wider class of designs.

Theorem 3.2: Consider a design d’e § satisfying
() Ly =NgQpN. -N.KIN.=0

(ii} Ny is the incidence matrix of a block design which is universally optimal
over B(v,b’, n).

The design d*, whenever it exists, is universally optimal over §.

Corollary 3.2: A BBBN-RC design d’e D, whenever existent, is
universally optimal over (v, b, b", n).

Proof: The proof follows from definition 2.3 and Theorem 3.3 of
Gupta et al, [10].

A design d” of Theorem 3.1 is also universally optimal over P(v, b, b", n),

b -

where n =3 p,q; provided p; < v and g;=qqj, V j = 1(1)b. Similarly, a design d
j=1

of Theorem 3.2 is also universally optimal in IXv, b, py, ..., p{,, qis s Gn)
ifpy; =p; and q,., =q;, Vj=(l)b. As a consequence of Theorem 3.2 and

Corollary 3.2, all the designs hitherto known in the literature as universally
optimal over D (v, b, p, @) and D {v, b, p, ..., P»» Gi; -.-» Q) and binary with
respect to columns are also universally optimal over § (v, b, b’, n). Therefore,
the UNRC designs [GBBBN-RC or BBBN-RC designs] given in Uddin
el al. [22] are also optimal over D (v, b, b, n). In Table 1 of Uddin et al. [22]
designs at serial numbers 3 and 5 with respective parameters
v=4,b,=2,p,=2,q=2,b;=2,p,=2,q, =4, n = 24 and v=4,b, =4
p;=2, q =3, n=24 are optimal over # (4, 4, 12, 24). Similarly designs at
serial numbers 10, 15 and 18 are universally optimal over # (5, 7, 20, 40). Other
designs in Table 1 of Uddin ez al. [22] can also be checked similarly.

4. Methods of Construction

This section gives some methods of constructing universally optimal
BBBN-RC (GBBBN-RC) designs. It is easy to verify that for these designs the
matrix Ly = 0, and therefore, ignoring block and row classifications and
considering columns as blocks, we get a BBB (GBBB) design of
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Gupta el al. [10]. Hence, using Theorem 3.2 (Theorem 3.1), these designs are
universally optimal over D (D).

Method 4.1: Consider a pairwise balanced binary block (PBBB) design
with parameters v, by, by,--+,b,, ki1j . kp1j ... k1, , A Forh=12,..;s
suppose that there exist row regular Generalized Youden Designs (GYD’s)
with parameters Ky, Pn Qn Ay, where X, denotes the common off diagonal
elements of NN and N is the incidence matrix of the column component block
design and k,|q,, where x[y means x divides y. Arrange the ky

treatments belonging to each of the by, blocks of size k, of the PBBB design to

form a row regular GYD (ky, pn qn A,). Take the copies of the
blocks so obtained of sizes respectively piq;, po9» ... P.4,in the ratio
O, 10, 5.1 0,, where ¢, =8, /¢, 8, =((LCM.of A, A,,....A,)p, /A, ) and
¢= HCF of 8,, 9, ..., 6. Take the set of all blocks so obtained. The
resulting design  is a GBBBN-RC design  with  parameters v,
by = ;by, by =,by, by = q)sbs*pll;!b, s P2 1;2b2 ""’psl;‘b‘ , ‘hlfnlb, »Q21:32b2o
«» 4,13, and is universally optimal over D.

If the row regular GYD's are binary with respect to columns then we get a
BBBN-RC design with the above parameters that is universally optimal over

S $ 3
D (v,b= Ecbhbh,zq}hbhqh,ztbhbhphqh) . Latin Square designs (LSD's) and
h=1 h=1 h=1

Youden Square designs (YSD's) are row regular GYD's and, therefore, can also
be used either separately or in combination in place of row regular GYD's. In the
above procedure using YSD's and LSD's in combination is useful in the
situations when there exists a Youden square design (in number of treatments
equal to one of the block sizes of a PBBB design) whose number of rows equals
the other block size of the PBBB design. In fact, the designs TEl and TES in
Uddin et al. [22] obtained through trial and error can be obtained using the
above procedure. To be clearer, consider the following example.

Example 4.1.1: Consider a PBBB design with parameters v =6,b, = 2,
b, =9k, =3,k, =2 with block contents as (1, 2, 3), (4, 5, 6), (1, 4), (1, 5),
(1, 6), (2, 4), (2, 5), (2, 6), (3, B, (3, 5), (3. 6). Arrange the contents of the
blocks of size 3 in a YSD (3, 2, 1) and the treatments from the blocks of size 2
in a Latin square of side 2. Then taking the set of blocks obtained by taking
copies of the blocks of sizes 6 and 4 in the ratio 2;1 we get a BBBN-RC design
with parameters v=6,b, =4,p, =2,q,=3,b, =9,p, =2,q, =2. This is infact
the design TE8 in Uddin er al. [22].
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Remark 4.1.1: Consider a PBBB design with parameters v, b, ky, ... , ks, A
For j = 1{1) b, arrange the contents of the j™ block as a Latin square of order k;.
The resulting design is a BBBN-RC design with parameters v, b,p=q= k;,

V j =1(1) b and is universally optimal over # (v, b, 2‘,kj,}_‘,k2 ).

= j=1

Several methods of construction of PBBB designs are available in the
literature. For a review of methods of construction of PBBB designs, one may
refer to Parsad e al. [14]. A PBBB design can always be obtained using the
following procedure:

For given v, let By, ... , B, be a partition of the set V = {1, ..., vjofv
treatment labels such that the I partition B, is of cardinality { (2 2), V I=1(1)m,

;?_n)t, =v and B; "By =¢. For each pair of the sets B and B, (I<I'=1(}) m)

I=l

form all possible pairs of treatments such that one treatment is from B; and the

other from By. This procedure gives a PBBB design with parameters

v.b.k, =t,,V1=1()m, b, =3 $t,t,, k,, =2. Now, following the
=l I'ol=l

procedure of remark 4.1.1, we get a BBBN-RC design with parameters v, b= 1,

LU m!
Pl =1y, q! =1, 1= 1(l)m» bm«l—l= 2 Zt]t]'s Pm+1 = 2’ qm+l = 2s n= Elbspsqs .
=1 I'>i=1 =

m+l » m#l
This design is universally optimal over & (v, b =E+bs, b =§bsqs,
g

s=1

m+l
n= Y b.p,q,). If some of the t;, say t of them, are equal to one, i.e. tyy; =..
5]

=ty=1,then by =1, pi=1t;, q=t;, | = 1{1)m-t and by = %I%t ity s Pon1 = 2,
m-t4]

Omi1 = 2, n= Ebspsq8 and the design is universally optimal over

m-i+l

D(va=mi*é)s ,b¥* = stqs,ﬂ— Ebspxqs

s=1

Example 4.1.2: There always exists a BBBN-RC design with parameters
v=4,bi=L,p=3,q=3, =3, p;=2,q;=2.Forv=4and t;=3, t,= | the
design is

123 14 24 34
231 41 42 43
312

which is universally optimal over & (4, 4, 9, 21). It can easily be seen that
fewer experimental units are required than for the designs catalogued in Uddin
et al. [22] for the same variance of the estimated elementary contrasts.
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Method 4.2: Consider a (k;,k,....k,) resolvable binary balanced
block (BBB) design with parameters v,b;,b,,....bs, 1,000 KLk k.
Arrange the contents of the blocks of same set pertaining to blocks of sizes k,
in the form of a k,xv array, where v is the number of blocks in one
set of blocks of the k,resolvable portion of the BBB design. The resulting

design is a BBBN-RC design with parameters v,b’ =b,/v,p, =k,,q, =V, ...,
b: m]-‘)s‘iwvsps =ks’ gs = V.

Remark 4.2: The block design with nested rows and columns obtained
from a (k,,k,,...k,) resolvable block design subjected to the procedure of

method 4.3, retains the same characterization properties as those of the original
block design, e.g. variance balance, partially balance, efficiency balance, etc.

Example 4.2: Consider the (2,3) resolvable BBB design with parameters
v=6,b; =18, by=6,1,=6,1, =3,k, =2,k, =3 given below with columns as
blocks:

135624 135246 135462 123456
246135 462135 624135 345612
561234

Following the procedure of the above method, we get a BBBN-RC
design with parameters v=6,b, =3,p, =2,q, =6, b, =1, p, =3,q,=6 thatis
universally optimal over D (6, 4, 24, 54).

Method 4.3: Consider a GBBBN-RC (BBBN-RC) design D (v, b, ..., by,
wrsDgs Pls vess Dhy -vs Pss Qs -oes Qhs +os s)- The row-wise union of any subset or all by,
blocks (h=1(1)s) yields a GBBBN-RC (BBBN-RC) design.

This method is an extension of Theorem 3.2.5 of Bagchi er al. [3] and
Theorem 9 of Morgan and Uddin {13].

Example 4.3: Consider the BBBN-RC design with parameters v=15,b;= 1,
by=7,p1=3p2=2,q =3 and q; = 2 constructed using remark 4.1.1. The
design is given as

123 14 15 24 25 34 35 45
231 41 51 42 52 43 53 54
312

which is universally optimal over D (5, 8, 17, 37). Now in block number 2 to 7
with two rows, we take the union of two blocks each and retain the contents of
the block number 8. The resulting design is a BBBN-RC design
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123 1415 2425 3435 45
231 4151 4252 4353 54
312

which is universally optimal over D (5, 5, 17, 37).

Remark 4.3.1: If there exist s BN-RC designs (Bagchi et al. [3]), Du(v, bn,
Phs Qn), ¥ h =1{1)s, then D = CJDh is a GBBBN-RC design which is universally
he=i

optimal over D(v,b = ibh,pilf,' yoDs15 51y, 50, 1, ). However, when a BN-
h=t
RC design is binary in columns, then the resulting design is a BBBN-RC design
that is universally optimal over & (v, b = Es)bh,b' = ibhqh,n) .
h=i h=l

Note: Theorem 3.1 of Uddin et al. [22] can easily be extended to construct
a BBBN-RC design with s distinct block sizes by making s-groups of the blocks
of the BIB design (v,b,r,k,A) and then taking s BNRC designs with
parameters of the h™ BNRC design as (k, b, pn qn and
Ay =b,pq(p, —~D/Ak(k-1)) such that A, /p,=A,/p,==A/p,.
However, example 1 in that paper seems to be incorrect, as it does not satisfy the
condition A'/p =A"/p".

A catalogue of BBBN-RC designs for v<10,r£10,
p1<q,510,p, £q, s10and p;q; $20,j=12, where rdenotes the average

replication number, have been given in Table 1. Some proper block designs
with nested rows and columns have also been included.

5. Methods of Construction of MBGDN-RC Designs

Due to combinatorial problems, it may not always be possible to get a
GBBBN-RC design or a BBBN-RC design or such a design may require a large
number of experimental units. Therefore, one has to use partially balanced
designs. Bagchi er al. [3] showed that a most balanced group divisible design
with nested rows and columns (MBGDN-RC design), whenever existent, is
optimal according to Type 1 optimality criteria. A MBGDN-RC design is
defined as below:

Definition 5.1: A design d €D is said to be a MBGDN-RC design if
(i) Ld = Nd"’l (1-1 N:i"l - Nda I(_l N:«p = 0
(ii) Ny is the incidence matrix of a most balanced group divisible design.
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In this section, we give some methods of construction of MBGDN-RC
designs.

Method 5.1: Consider a most balanced group divisible design with
parameters v,b,r,k,A;,A,=A;+1 and a YSD (k,p,A=1). Rearrange the
contents of the j™ block of the most balanced group divisible design as a Youden
Square design in p rows and k columns. Repeat this process for all j=1,2,...,b.
The resulting design is a MBGDN-RC design with parameters
vE=vy b¥=b, rf=1p,p*=p,q*=k,A;, A, =A +1L.

Example 5.1: Consider the group divisible design SR18 with parameters
v=6,b=4,r=2k=3 m=3n=2, A =0,A,=1. There also exists a
Youden square design (3,2,1). Then following the procedure of method 5.1, we
get a MBGDN-RC design with parameters v=6,b=4,p=2,q=3. The design
is as follows:

123 156 246 345
231 561 462 453

Method 5.2: A MBGDN-RC design with parameters v, b,p=k,
q =V, A, A, =A, +1can easily be obtained from a k-resolvable most balanced

group divisible design with parameters v,b, r,k, A, A, =A; +1, following the
procedure of Method 4.3.

Example 5.2: Consider a group divisible design R52 (Clatworthy {9]) with
parameters v=6,b=18,r=9,k=3, m=2,n=3,A; =3,A, =4. This design
is one resolvable and there will be 9-sets of 2 blocks each such that each
treatment is replicated once in each group. Now regrouping these sets into 3
groups such that there are 6 blocks within each group, we get a 3-reolvable
group divisible design. Following the procedure of the above method, we get a
MBGDN-RC design with parameters v = 6, b =3, p=3,q=6,r=9,
A;=3,A, =4. The design is given as follows:

145326 351246 125364
251634 164352 346251
362451 425631 651432

A catalogue of MBGDN-RC designs for v<10,r<10,p£q<10 and
pq 20 has been given in Table 2. In the tables PBBBD denotes pairwise

balanced binary block design, YSD denotes the Youden Square design, S#, SR#,
R# denote respectively the singular, semi-regular and regular group divisible
designs given in Clatworthy [9]. BMS# is the method from Bagchi et al. [3].
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