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SUMMARY 

The universal optimality of non-proper block designs with nested rows 
and columns is studied under the usual homoscedastic modeL Some general 
methods of construction of universally optimal non-proper block designs with 
nested rows and columns are given. A catalogue of universally optimal 
proper/non-proper block designs with nested rows and columns is included. 
Two methods of construction of most balanced group divisible designs with 
nested rows and columns (MBGDN-RC designs) are given along with a 
catalogue of such designs. 

Key Words: Block designs with nested rows and columns, Universal 
optimality, Variance balance, Most balanced group divisible designs. 

I. Introduction 

Many a time the experimenters come across situations in which the 
experimental material cannot or need not be divided into blocks with equal 
number of experimental units but the elimination of heterogeneity in 'two 
directions is desirable within each block and is achieved by forming rows and 
columns within each block. For example, in agricultural field experiments, 
particularly experimenting in hilly areas, often it is found that the blocks formed 
are physically separate fields (say different farmers fields, some blocks in the 
plains and some in the terraces in the hilly tracks) and two (crossed) sources of 
variation are included in the analysis of data to account for heterogeneity in two 
directions within each field. However, it is indeed possible that the fields have 
unequal number of plots within them and, therefore, the fields cannot or need 
not be divided into equal number of rows and equal number of columns. In hilly 
areas when some fields are on the plains and some are on the hilly tracks it may 
happen that the number of plots within the fields may vary widely. For instance, 
the number of experimental units in the fields in the plain may be quite high 
while the number of plots possible on the fields that are on the terraces in the 
hills may be very small. To obtain efficient designs for these and similar 
situations is the problem addressed in this paper. 
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It is well known that block designs with nested rows and columns are 
useful in the experimental situations just described. A design 
dE D(v,b,PI,P2'''',Pb,q!,q2,'··,qb)' a class of connected designs in which v 

treatments denoted by 1, 2, ... , v are to be applied to a set of experimental units 
arranged in b blocks of sizes kJ =PJql' k z =PZq2 ... ·' kb =Pbqb' is said to be 

a block design with nested rows and columns with unequal block sizes or simply 
a nested row-column design with unequal block sizes. 

Earliest known nested row-column designs with equal block sizes are the 
lattice square designs. Several methods of construction of nested. row-column 
designs with equal block sizes can be found in Srivastava [18], Singh and 
Dey [15], Agarwal and Prasad [1, 2], Street [19], Ipinyomi and John [11], 
Cheng [8], Sreenath [16, 17], Uddin [20,21] and Uddin and Morgan [23]. 
Optimality studies of nested row-column designs with equal block sizes are 
recent and have been made by Chang and Notz [5, 6, 7], Bagchi et al. [3] and 
Morgan and Uddin [13]. These authors studied the optimality aspects in the 
class of connected designs D(v, b, p, q), with v treatments arranged in b blocks 
of common size k =pq. For the non-proper setting, the optimality aspects were 
studied by Uddin et al. [22] who gave several methods of construction of 
equireplicate balanced nested row-column designs with at most two block sizes 
and gave a catalogue of designs with v ~ 10, r ~ 10, PI ~ ql ~ v, pz ~ q2 ~ V • 

Some methods of construction of non-proper variance balanced nested row­
column designs are also given by Chakraborty [4]. 

This paper studies the universal optimality of block designs with nested 
rows and columns in a wider class of designs D= D(v, b, b 

O 

, n) under a linear, 
additive, fixed effects, homoscedastic model. Here D is the class of connected 
block designs with nested rows and columns having v treatments arranged in b 

o b b 
blocks, b (= Lqdj) columns and n (= LPdjqdj) experimental units, where 

~I ~l 

Pdj and qdj are the numbers of rows and columns respectively in the jib block of 

a design d E D. In proving the universal optimality. use is made of a sufficient 
condition of Kiefer [12, Proposition 1] and results of Gupta et al. [10] on 
universally optimal non-proper block designs. Further, some methods of 
construction of universally optimal non-proper nested row-column designs are 
given. A catalogue of proper and non-proper balanced block designs with nested 
rows and columns is given in Table l. Bagchi et al. [3] defined a most balanced 
group divisible design with nested rows and columns (MBGDN-RC design) and 
showed that an MBGDN-RC design, whenever it exists, is optimal with respect 
to all generalized criteria of type 1 and gave a method of construction of 
MBGDN-RC designs. In this paper two more methods of construction of 
MBGDN-RC designs are given and a catalogue is provided in Table 2. 

------.--.--.-- ..~..-.--..------------------­
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2. Preliminaries 

In the usual setting of block designs with nested rows and columns, 
suppose that v treatments are to be compared using a design d in which n 
experimental units are arranged in b blocks with jib block of size k.Jj = Pdjqdj, 
"if j =1(1 )b. Let Nd be the v x b incidence matrix of treatments versus blocks; 

b 

Nd\ the v x LPdj incidence matrix of treatments versus rows and NdZ the 
j=1 

b 

VX Lqdj incidence matrix of treatments versus columns. Qd and Pd denote 
j=l 

b b b b 

respectively the LPdjXLPdj and LqdjXLqdj diagonal matrices of row 
j=1 j=l j=l j=l 

b b 

sizes and column sizes given by Qd;: L + qd}Pdj' Pd = L + Pdjlqdj and 
j=1 j=l 

K.t = Diag(PdlqdlJ ... , Pdbqdb), the b x b diagonal matrix of block sizes. Here 

L+ denotes the direct sum of matrices. We also have R.J = Diag(rdh ... ,rdv), 

where rdi, i=l(l)v is the replication number of the ilb treatment. Under the usual 
homoscedastic, fixed effects. additive, linear model, the coefficient matrix of 
reduced normal equations for estimating linear functions of treatment effects 
using a block design with nested rows and columns is 

Cd =Rd -NdlQ~/N~l -Nd2P;/N~2 +NdK;lN~ 
(2.1) 

=Rd -Nd2PdIN~2 -Ld 

where Ld == Ndl QdlN~1 - NdKdIN~. It may be seen easily that Ld is non­

negative definite matrix. The matrix Cd is symmetric, non-negative definite with 
row and column sums zero, and for a connected design Rank (Cd) =v-I. 
Henceforth, we consider only connected designs. We may allow Pi > v for some 
or all j=l(l)b. 

Let B =B (v, b, n) denote the class of all connected block designs with v 
treatments, b blocks and n experimental units and B =B (v, b, k"... ,kb) denote 
the class of all connected block designs with v treatments, b blocks and the jib 
block size as kj, j =l(l)b. For a block design de: Bor B, Nd =«lldij» denotes the 
v x b treatments versus blocks incidence matrix, where lldij denotes the number 
of times the ith treatment is applied in the jib block, i =1(l)v ,j =1(1 lb. 
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Definition 2.1: (Gupta et al. [10]). A design dEB is called a Generalized 
Binary Balanced Block (GBBB) design if 

(i) ndij = int(kjlv) or int(kj Iv) + 1, 'V j =1(1)b 
b 

(ii) ~>dijndi'/kj =1.1 ,aconstant, 'V i:ti'=l(l)v (2.2) 
j=1 

Definition 2.2: (Gupta et al. [10]). A design d Egis called a Binary 
Balanced Block (BBB) design if 

(i) nd'j =0 or 1 
b 

(ii) L ndijndi'jlkdj =1. 2 ' a constant, 'V i:t i' =l(l)v (2.3) 
j=l 

where ~h ... , ~b denote the block sizes of the design d E g, with 
~1 +...+ ~b = n. With these defmitions, we now introduce generalized binary 
balanced block designs with nested rows and columns (GBBBN-RC design) and 
binary balanced block designs with nested rows and columns (BBBN-RC 
design). 

Definition 2.3: A design d E D is said to be a GBBBN-RC design if 

(i) Ld=NdlQ·IN~I-NdK-IN~ =0 

(ii) Nd2 is the incidence matrix of a GBBB design. 

Definition 2.4: A design d E Dis called a BBBN-RC design if 

(i) Ld = NdIQ;;IN~1 - NdK;;IN~ = 0 

(ii) Nd2 is the incidence matrix of a BBB design. 

3. Universally Optimal Designs 

In this section we prove the universal optimality of GBBBN-RC designs 
and BBBN-RC designs over D and D. We first state, as Theorem 3.1 and 
Corollary 3.1, the results obtained by Uddin et al. [22] on universal optimality of 
non-proper block designs with nested rows and columns. 

Theorem 3.1: Consider a design dOE D satisfying 


(0 Ld* = Nd'IQ-1N~'1 - Nd.K-IN~. =0 


(ii) Nd*2 is the incidence matrix of a block design which is universally optimal 
b 

over B(v, Lqj .PI1~1 '."'Pbl~b ). 
j=1 

The design d*, whenever it exists, is universally optimal over D. 

---------~- ...-~.-...~.-



248 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS 

Corollary 3.1: A GBBBN-RC design d* E D. whenever existent, is 
universally optimal over D(v, b, PIt...,Pb, q), ... ,qb)' 

If the column component design is binary, then using definitions 2.3 and 
2.4, the universal optimality can be established in a wider class of designs. 

Theorem 3.2: Consider a design dOE 0 satisfying 

(i) 	 L d, =Nd'IQ~!N~'I-Nd.K~!N~. =0 

(ii) 	 Nd"2 is the incidence matrix of a block design which is universally optimal 
overB(v, b", n). 

The design d* , whenever it exists, is universally optimal over O. 

Corollary 3.2: A BBBN-RC design d"E 0, whenever existent, is 
universally optimal over O(v, b, b", n). 

Proof: The proof follows from definition 2.3 and Theorem 3.3 of 
Gupta et al. [10]. 

A design d" of Theorem 3.1 is also universally optimal over O(v, b, b", n), 
b 

where n = Ipjqj provided Pj ~ v and q;= qdj' V j = 1(l)b. Similarly, a design d" 
j:1 

of Theorem 3.2 is also universally optimal in D(v, b, Ph .... Pb, qJ, ..., qb) 
ifPd'j =Pi and qd'j =qi' V j =(l)b. As a consequence of Theorem 3.2 and 

Corollary 3.2, all the designs hitherto known in the literature as universally 
optimal over D (v, b, p, q) and D (v, b, Ph ..., Ph, qh ... , qb) and binary with 
respect to columns are also universally optimal over 0 (v, b, b", n). Therefore, 
the UNRC designs [GBBBN-RC or BBBN-RC designs] given in Uddin 
el al. [22] are also optimal over 0 (v, b, b", n). In Table 1 of Uddin et al. [22] 
designs at serial numbers 3 and 5 with respective parameters 
v 4, bl = 2, PI 2, ql =2, b2 = 2, P2 == 2, q2 = 4, n = 24 and v == 4, b) =4, 

PI = 2, ql = 3, n =24 are optimal over 0 (4, 4, 12, 24). Similarly designs at 

serial numbers 10, 15 and 18 are universally optimal over 0 (5, 7, 20, 40). Other 
designs in Table 1 of Uddin et al. [22] can also be checked similarly. 

4. Methods ofConstruction 

This section gives some methods of constructing universally optimal 
BBBN-RC (GBBBN-RC) designs. It is easy to verify that for these designs the 
matrix Ld = 0, and therefore, ignoring block and row classifications and 
considering columns as blocks, we get a BBB (GBBB) design of 
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Gupta el al. [10]. Hence, using Theorem 3.2 (Theorem 3.0. these designs are 
universally optimal over D (D). 

Method 4.1: Consider a pairwise balanced binary block (PBBB) design 
with parameters v. bl' b2•· ... b., kll~t' k21~2 1"'1 k.l~,. A. For h = 1,2, ... ,s 

suppose that there exist row regular Generalized Youden Designs (GYD's) 

with parameters kh' Ph, qh. A'h , where A: denotes the common off diagonal 

elements of NN' and N is the incidence matrix of the column component block 

design and khlqh' where xlY means x divides y. Arrange the kh 

treatments belonging to each of the bh blocks of size kh of the PBBB design to 

form a row regular GYD (kh• Ph, qh. A·h ). Take the copies of the 

blocks so obtained of sizes respectively Plqh P2q2. ...• P.q. in the ratio 

cj)j : cj)2 : ... : cj)s' where cj)h =ah / c, ah = «L.C.M. of AI' A2, ... , As ) Ph / Ah ) and 

c = HCF of at. a2••••• as. Take the set of all blocks so obtained. The 
resulting design is a GBBBN-RC design with parameters v, 

b~ == cj)lb1, b; = cj)2b2' ... , b: = cj)sbs ,Pll~,b, ,p21~,b2 , ... , p.l~,b.' qll~lbl ,q2l~2b2 ' 

... , q.l~.b. and is universally optimal over D. 

If the row regular GYD's are binary with respect to columns then we get a 
BBBN-RC design with the above parameters that is universally optimal over 

s s s 

D(v,b =Lcj)hbh' Lcj)hbhqh' Lcj)hbhPhqh)' Latin Square designs (LSD's) and 
h=1 h=l h=l 

Youden Square designs (YSD's) are row regular GYD's and, therefore, can also 
be used either separately or in combination in place of row regular GYD's. In the 
above procedure using YSD's and LSD's in combination is useful in the 
situations when there exists a Youden square design (in number of treatments 
equal to one of the block sizes of a PBBB design) whose number of rows equals 
the other block size of the PBBB design. In fact, the designs TEl and TES in 
Uddin et al. [22] obtained through trial and error can be obtained using the 
above procedure. To be clearer, consider the following example. 

Example 4.1.1: Consider a PBBB design with parameters v =6,bj = 2, 

b2 =9. kl =3, k2 = 2 with block contents as (1, 2. 3). (4. 5, 6), (I, 4), (1, 5), 

(1,6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3. 6). Arrange the contents of the 
blocks of size 3 in a YSD (3, 2, 1) and the treatments from the blocks of size 2 
in a Latin square of side 2. Then taking the set of blocks obtained by taking 
copies of the blocks of sizes 6 and 4 in the ratio 2: I we get a BBBN-RC design 
with parameters v =6, bl =4, Pl =2, ql = 3, b2 =9, P2 = 2, q2 =2. This is infact 

the design TES in Uddin et al. [22}. 

~--------------~ ...-- .....--­
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Remark 4.1.1: Consider a PBBB design with parameters v, b, kh ... ,kb' A. 
For j = 1(1) b, arrange the contents of the t block as a Latin square of order kj • 

The resulting design is a BBBN-RC design with parameters v, b, Pj = ~ = kj, 
b b 

V j =1(1) b and is universally optimal over D (v, b, L k i' L k~ ). 
j=1 i=1 

Several methods of construction of PBBB designs are available in the 
literature. For a review of methods of construction of PBBB designs, one may 
refer to Parsad et al. [14]. A PBBB design can always be obtained using the 
following procedure: 

For given v, let Bj, ... , Bm be a partition of the set V = {I, ... , v} of v 
treatment labels such that the Ilh partition B) is of cardin31ity t) (~2), V 1=1(1)m, 
m
L tl = v and BI nBr =q,. For each pair of the sets B) and BI' (kl'=I(1) m) 
1=1 

form all possible pairs of treatments such that one treatment is from B) and the 
other from B),. This procedure gives a PBBB design with parameters 

m m 
v,b),k l =tl,Vi=l(1)m, bm+1=L Ltltl' , k +I =2. Now, following the 

1_11'>lal m

procedure of remark 4.1.1, we get a BBBN-RC design with parameters v, bl= 1, 
m m 	 I 

PI = tit ql = tit I = 1(1)m, bm+l = L L t)tl" Pm+1 = 2, qm+1 = 2, n = 1: b,p,q, . 
)=1 1'>1=1 	 szl 

m+1 * m+1 
This design is universally optimal over D (v, b = Lb., b = L b.q., 

,=1 .=1 

m+! 
n = L b.p.q.). If some of the tJ, say t of them, are equal to one, i.e. tm-HI = ... 

s-I 

m m 
= 1m = 1, then b i =I, PI = tit ql =tit 1= 1(1)m-t and bm-H) =	L L tit)' , Pm-HI =2, 

1=11'»=) 

m-t+1 
qm-Hl = 2, n = L b.p.q. and the design is universally optimal over 

s=1 

m-!+l m-!+! m-t+! 

D(v,b= Lb, ,b*= Lb.q.. n= Lb.p.q.). 
•=1 s=1 ,=1 

Example 4.1.2: There plways exists a BBBN-RC design with parameters 
v = 4, b l = 1, PI = 3, ql = 3, b2=3, P2 = 2, q2 =2. For v = 4 and tl = 3, t2 = 1 the 
design is 

123 14 24 34 
231 41 42 43 
312 

which is universally optimal over D (4, 4, 9, 21), It can easily be seen that 
fewer experimental units are required than for the designs catalogued in Uddin 
et al. [22] for the same variance of the estimated elementary contrasts. 
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Method 4.2: Consider a (k, ,k2, ... ,k ) resolvable binary balanceds 

block (BBB) design with parameters v,b"b2, ... , bS'rl,r2, ... ,rs,kl,k2,...,ks' 

Arrange the contents of the blocks of same set pertaining to blocks of sizes kh 

in the form of a kh x v array, where v is the number of blocks in one 

set of blocks of the kh resolvable portion of the BBB design. The resulting 

design is a BBBN-RC design with parameters v,b: = bl/v,p, =kl,q, = v, ... , 

Remark 4.2: The block design with nested rows and columns obtained 
from a (kl,k2 ,...,ks ) resolvable block design subjected to the procedure of 

method 4.3, retains the same characterization properties as those of the original 
block design, e.g. variance balance, partially balance, efficiency balance, etc. 

Example 4.2: Consider the (2,3) resolvable BBB design with parameters 
v = 6, b l =18, b2 = 6, rl =6, r2 =3, kl = 2, k2 = 3 given below with columns as 
blocks: 

135624 135246 135462 123456 
246135 462135 624135 345612 

561234 

Following the procedure of the above method, we get a BBBN-RC 
design with parameters v = 6, b l 3,PI = 2,q, =6, b2 =1, P2 3, q2 =6 that is 

universally optimal over D (6,4,24,54). 

Method 4.3: Consider a GBBBN-RC (BBBN-RC) design D (v. bl> ... , ~, 
... ,b., Ph ... , Ph, .... Ps, q ...... ~..... qs)' The row-wise union of any subset or all bh 
blocks (h=I(I)s) yields a GBBBN-RC (BBBN-RC) design. 

This method is an extension of Theorem 3.2.5 of Bagchi et al. [3] and 
Theorem 9 of Morgan and Uddin [13]. 

Example 4.3: Consider the BBBN-RC design with parameters v =5. b l = 1, 
~ = 7, PI = 3, P2 = 2, ql = 3 and q2 = 2 constructed using remark 4.1.1. The 
design is given as 

123 14 15 24 25 34 35 45 
231 41 .51 42 52 43 53 54 
312 

which is universally optimal over D(5. 8, 17, 37). Now in block number 2 to 7 
with two rows, we take the union of two blocks each and retain the contents of 
the block number 8. The resulting design is a BBBN-RC design 

----_.....__._- ...... -.__._-_._- ._­
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123 I 4 I 5 2425 3435 45 
231 4 I 5 I 4252 4353 54 
312 

which is universally optimal over () (5, 5, 17, 37). 

Remark 4.3.1: If there exist s BN-RC designs (Bagchi et al. [3]), ~(v, bh, 
s 

Ph, qh), V h =1(1)s, then D = UDb is a GBBBN-RC design which is universally 
b=1 

• S I I , I

optImal over D(v, b = Lbb,p,1b , ... ,p.lb ,q,1b , ...•qslb ). However. when a BN· 
h=1 I I I " 

RC design is binary in columns, then the resulting design is a BBBN·RC design 

that is universally opti.mal over () (v, b = ±bh,b' = ±bhqh' n) . 
h=l h=1 

Note: Theorem 3.1 of Uddin et al. [22] can easily be extended to construct 
a BBBN-RC design with s distinct block sizes by making s-groups of the blocks 
of the BIB design (v, b, r, k,A) and then taking s BNRC designs with 
parameters of the hth BNRC design as (k, ~. Ph, qiJ and 
Ah=bhPhqh(Ph-1)/(k(k-l» such that At /pJ=A 2 /P2=···=A./P•. 
However, example 1 in that paper seems to be incorrect, as it does not satisfy the 
condition A'l pi =A'I pll!. 

A catalogue of BBBN-RC designs for v S; 10,£ S; 10, 

PI S; ql S; 10, P2 S; q2 S; 10 and P jq j S; 20, j = 1,2, where r denotes the average 

replication number, have been given in Table 1. Some proper block designs 
with nested rows and columns have also been included. 

5. Methods ofConstruction ofMBGDN-RC Designs 

Due to combinatorial problems, it may not always be possible to get a 
GBBBN-RC design or a BBBN-RC design or such a design may require a large 
number of experimental units. Therefore, one has to use partially balanced 
designs. Bagchi et al. [3] showed that a most balanced group divisible design 
with nested rows and columns (MBGDN-RC design), whenever existent, is 
optimal according to Type I optimality criteria. A MBGDN-RC design is 
defined as below: 

Definition 5.1: A design dE D is said to be a MBGDN -RC design if 

(i) Ld =Nd*l Q-l N~*l - Nd*K-1 N~. =0 
(ii) Nd2 is the incidence matrix of a most balanced group divisible design. 

~-- -- -~~--------
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In this section, we give some methods of construction of MBGDN-RC 
designs. 

Method 5.1: Consider a most balanced group divisible design with 
parameters v, b, r, k, A) , A2 = AI +1 and a YSD (k, p, A=I). Rearrange the 

contents of the t block of the most balanced group divisible design as a Youden 
Square design in p rows and k columns. Repeat this process for all j = 1,2, ... ,b. 
The resulting design is a MBGDN-RC design with parameters 
v* = v, b* b, r* =rp, p* = p, q* =k, AI' A2 =AI +1. 

Example 5.1: Consider the group divisible design SRI8 with parameters 
v = 6, b = 4, r =2, k =3, m = 3, n =2, Al 0, A2 =1. There also exists a 
Youden square design (3,2,1). Then following the procedure of method 5.1, we 
get a MBGDN-RC design with parameters v =6, b =4, P =2, q =3. The design 

is as follows: 

123 156 246 345 

231 561 462 453 


Method 5.2: A MBGDN-RC design with parameters v, b, p = k, 

q =v, Ai' A2 =A) +1 can easily be obtained from a k-resolvable most balanced 

group divisible design with parameters v, b, r, k, AI' A2 =A) + 1, following the 

procedure of Method 4.3. 

Example 5.2: Consider a group divisible design R52 (Clatworthy [9]) with 
parameters v = 6, b =18, r = 9, k = 3, m =2, n =3,A1 = 3,A2 =4. This design 

is one resolvable and there will be 9-sets of 2 blocks each such that each 
treatment is replicated once in each group. Now regrouping these sets into 3 
groups such that there are 6 blocks within each group, we get a 3-reolvable 
group divisible design. Following the procedure of the above method, we get a 
MBGDN-RC design with parameters v =6, b = 3, p = 3, q =6, r =9, 
Al =3, A2 = 4. The design is given as follows: 

145326 351246 125364 
251634 164352 346251 
362451 425631 651432 

A catalogue of MBGDN-RC designs for v S 10, r S 10, p S q S 10 and 

pq S 20 has been given in Table 2. In the tables PBBBD denotes pairwise 

balanced binary block design, YSD denotes the Youden Square design, S#, SR#, 
R# denote respectively the singular, semi-regular and regular group divisible 
designs given in Clatworthy [9]. BMS# is the method from Bagchi et al. [3]. 

~------ --- .....~~ ..... -- .... ------------.....--.. -- .....~ 
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