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SUMMARY 

Using predictive approach described by Basu [I], we focus attention on 
the creation of ratio-type estimators of a finite population mean in the presence 
of two auxiliary variables under a two-phase sampling procedure. We also report 
analytical as well as numerical studies to examine performance of the new 
estimators obtained. 
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1. Introduction 

Let y and x denote study variable and auxiliary variable taking values Yj and 

Xi (1 :5 i :5 N) respectively for the ith unit of a finite population U. When the two 

variables are strongly related but no information is available on the population 

mean X of x, we seek to estimate the population mean Yof y using a two-phase 

sampling mechanism. In many practical situations even if X is unknown, 
information on an additional auxiliary variable z, closely related to x, is readily 

available on all units of U such that Zj denotes its value on unit i and Z as the 
known population mean. For instance, if the elements of U are hospitals, and Yi' Xi 

and Zj are respectively the number of deaths, number of patients admitted and 
number of available beds relating to the ith hospital, then information on Zj's can 
be collected easily from the official records of the Health Department. Allowing 
simple random sampling (WOR) design in each phase our two-phase sampling 
scheme in this case will be as follows: 

(a) 	 The first phase sample s' of size n' (n' < N) is drawn from U to observe x 
andz. 

(b) 	 The second phase sample s of size n (n < n') is drawn from s' to observe y 
only. 
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Basic contributions to the estimation of population mean in this area were 
given by Chand [2], Kiregyera [4,5] and subsequently studied by others. In many 
paper.s, the authors usually tried to develop estimators from a classical two-phase 

sampling estimators simply replacing x' by an improved estimator of X treating Z 

as an auxiliary variable. Bu~ in this work, the point of departure is different. The 
auxiliary variables are used to build up estimators under the predictive approach 
advocated by Basu [1]. 

2. Predictive Approach and Estimators 

A typical attempt in this approach is to express Y as 

(2.1) 

by decomposing U into three mutually exclusive domains 

s,r2 =S (l s' and r1 =U - s' of n, (n' - n) and (N - n') units respectively, where 

s = U -s denotes the collection of units in U which are not included in s. Writing 

(n'-n)Y2 =L Yi and (N-n')Yl =L Yi we have 
iEf2 iefl 

(2.2) 

n n' 
where f = Nand f':: N . Since the first component of the right hand side of (2.2) 

is exactly known, the problem is therefore to predict the quantities Y) and Y2 

!!:.om the sample data. 1fT1 and T 2 are their implied predictors, then an estimator of 
Y under our predictive approach is provided by the following equation: 

Y == fy+(f/-f)T2 +(1-f')T1 (2.3) 
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~ 

If s =s' =U, we note that y = Y, the target of our prediction, i.e., if the 

whole population is surveyed. On the other hand, if no additivnal information on 

U is available, the simplest but obvious choice for both T\ and T2 would be Y so 
~ 

that Y =y, the expansion estimator of Y. 

Under classical approach, there are many altemative ways ofselecting suitable 
~ 

predictors in terms of both auxiliary variables whereupon Y will be determined 
by the predictive equation (2.3). But, our aim is just to study superiority of the 
method of estimation employed here over the earlier ones. Thus, for simplicity, 
assume that y, x and z are so related that, we have enough scope for considering 
ratio-type estimators as the predictors for our purpose. 

Since information on x is available at the sample level, we predict y-values 

-X2
in the domain r2 using x-values only by taking T2 y--::--, where 

x 

(n' - n))(2 =L xi' But, the auxiliary information on z is available at the 

population le~:{:Accordingly, we make three different selections for T \ and obtain 

the resulting estimators for Y. 

(i) Let T\ !,ZI' then Yturns out to be YII = f'CYTR - y)+y :, where 
z Z 

(N - n/)Z I = L Zj and Y TR = Y~ is the classical two-phase sampling ratio 
. x 
I er1 

estimator. 

_X' Z _ 
Oi) Let Tl =Y _ _ I =YRR (say) 

x z 

Then Y reduces to an estimator Y12 = f' YTR +(I-f/)YRR' which is an 

weighted combination of YTR and YRR with respective weights f' and I-f'. The 

estimator Y RR is the well known ratio-in-ratio estimator suggested by Chand [2]. 

(iii) Let Tl =Y~ ~! .Then on simplification, Yreduces to YRR. showing that 
x z 

the customary ratio-in-ratio estimator YRR of Y is now known to be endowed 
with a predictive character under (2.3). 
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The above selections for TI and T2 (although made independently) are not 
unique. Gathering information an x and z, one may opt for other ratio-type predictors 

and create an infinite number of estimators for Y . 

3. Asymptotic Efficiency of YII and Y12 

Omitting details of the calculations (suppressed to save space) the mean square 

errors of y" and Y12 to a first order of approximation are obtained as follows: 

M(YlI) =y2 [q,(c; -2f' Pyx CyCx +f,2 C;) 

+ <I>'(2f' Pyx CyC x _f'z C~ +C; -2pyz CyCz )] (3.1) 

- -2[nJ 2 2)M(Y12) = Y ",\Cy -2pyx Cy C x +Cx 

+ <I>'(2Pyx C y C x - C~ +(I-f,)2 C; -2(I-f')pyz Cy Cz)] (3.2) 

where <I> (.!.-~).<I>' (~-~)
n N n' N 

Cy• Cx' Cz are the coefficient of variations and Pyx' Pyz, Pxz are the correlation 

coefficients. 

To the same order of approximation, the mean square error expressions for 

YTR and YRR (as available in the literature) are given by 

(3.4) 

From (3.1), (3.3) and (3.4) it may be seen that M(Yll) < M(YTR) if 

l+f' 1 
Dyx <--andDyz >- (3.5)

2 2 

l+f' 
Dyx <-- (3.6) 

2 / 

--~.......~....... --..------------­
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_ Cy _ Cy 1+f' 1 
where Dyx - Pyx -C and Dyz - Pyz -. Thus, when Dyx < and Dyz > , 

x Cz 2' 2 

Yll would be more efficient than both YTR and YRR. 

Since 0 ~ f' ~ 1, we must have Dyx < 1 for YI1 to be more precise than both 

1
YTR and YRR provided Dyz > 2' But choice ofa higher value of f' alwaysleads 

to an undue increase in the cost of the survey. So, a good apriori knowledge on Dyx 

(if available) can be utilized to determine the value of f' according to the restriction 

2Dyx -1 < f'. For example, ifDyx =0.6 then we may choose f' > 0.20. But, when 

1+f' 
Dyx < 0.5, Dyx is always less than -2-' Thus, we conclude that Yll may be 

more efficient than Yand YTR even if YTR is less efficient than y. 

From (3.2), (3.3) and (3.4) it may also be seen that M(YI2) < M(YTR) 

I-f' 
if Dyz <-2- (3.7) 

and M(Y12) < M(YRR) if 

2-f' 
(3.8)D yz <-2­

Now we find that in situations where M(YRR) < M(YTR) i.e. when 

1 _ 
Dyz < 2'Y12 can also be more precise than YTR. and both YTR and YRR. if 

l-f' 2-f' 
--<D <-- (3.9)2 yz 2 

Hence, for our purpose, we can select a suitable value of f' according to the 
restriction 

1-2DyZ < f' <2(1-Dyz ) (3.10) 

if a good guess value of Dyz is available. 

Finally from (3.1) and (3.2) we conclude that M(yu) > M(Yll) if 

1+f' 2-f' 
Dyx < -- and Dyz >-­

2 2 

_.._--.- --------- .._----._----­
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(3.11) 

and M(Ylz) < M(YII) if 

I+f' 2-f' 
Dyx > -2- and Dyz < -2­

f' < 2Dyx -I and 2(I-Dyz ) (3.12) 

4. Numerical Illustrations 

To demonstrate the gain in precision of new estimators Y11 and Y12 over 

their competitors YTR and YRR numerically, we consider three sets of data. The 
first two sets of the data have been taken from Fisher (3], whereas the third set has 
been taken from Shukla (6]. 

Data Set I: Consisting ofmeasurements on three variables namely sepal width 
(y), sepal length (x) and petal length (z) for 50 Iris flowers (versicolor) such that 

-
Y =2.770, C

2 
y =0.012566, C 

2 
x 0.007343, C; =0.011924, Pyx:::: 0.5259 

Pyz = 0.5605, Pxz = 0.7540 

Data Set II: Consisting of measurements of petal width (y), sepal width (x) 
and petal length (z) on 50 Iris flowers (virginica) with 

Y=2.026, C~ =0.018009, C! 0.011524, C; :::: 0.009683, Pyx =0.5377 

Pyz = 0.3221, Pxz = 0.4010 

Data Set III: Consisting of measurements on yield of fiber (y), height (x) and 
base diameter (z) for 50 jute plants (capsularies), such that 

- 2 2 2
Y =2.5840, C y =0.0866, C x =0.1163, Cz = 0.0170 

Pyx =0.4800, Pyz =0.3700, Pxz =0.7300 

The combinations of n' and n for data sets I, II, III are respectively taken as 
(20, 10), (18, 8) and (I5, 8) and the relative efficiencies of different estimators 
with respect to the expansion estimators Yare displayed in Table 4.1. 

Findings of Table 4.1 show that YI2 attains the maximum precision amongst 

all for the first two data sets. YII is better than y, YTR and YRR in data set I, 

--_..- .. _-- -.~~.--..-~-.--------------
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Table 4.1. Relative efficiency of different estimators w.r.t. y (in %) 

Data set Y YTR YRR YII Y12 

I 100 116 124 126 134 

II 100 117 114 116 120 

III 100 89 94 133 113 

whereas its performance compared to YTR is poor in data set II as the conditions in 

(3.5) are not fulfilled. For the third data set Yll is the most efficient followed by 

Y12' But in this case both YTR and YRR are less efficient than y. However, the 

empirical findings of the study essentially show that the estimators Yll and Y12 
may be superior to Y even if YTR and YRR are inferior to y. 
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