Mean Estimation in Deeply Stratified Population Under Post-Stratification

D. Shukla and Manish Trivedi
Dr. Hari Singh Gour University, Sagar, (M.P.), 470003

(Received : August, 1999)

Abstract

SUMMARY Suppose a population is stratified according to two attributes, each having three levels, in particular, then it constitutes a 3×3 deep stratification and interesting for survey practitioners being close to reality. This paper, presents the problem of mean estimation under above population, when frames of each 3×3 stratum are assumed to be unknown. An estimation strategy has been proposed using the post-stratified sampling scheme. The optimum properties are examined and relative efficiencies are compared. Mathematical finding is numerically supported.

Key words : Post-stratification, SRSWOR, Optimal, Deep stratification.

1. Introduction

We assume existence of a 3×3 deeply stratified population of size N in particular. Let $\mathrm{Y}_{\mathrm{ijk}}$ be the $\mathrm{k}^{\text {th }}$ value of $(\mathrm{i}, \mathrm{j})^{\text {th }}$ strata having size N_{ij} of a variable Y under study ($\mathrm{i}=1,2,3 ; \mathrm{j}=1,2,3$ and $\mathrm{k}=1,2, \ldots, \mathrm{~N}_{\mathrm{ij}}$). A random sample of size n is drawn by SRSWOR and post-stratified into $n_{i j}$ units such that

$$
\mathrm{n}_{\mathrm{ij}}\left(\sum_{\mathrm{i}=1}^{3} \sum_{\mathrm{j}=1}^{3} \mathrm{n}_{\mathrm{ij}}=\mathrm{n}\right) \text { comes from } \mathrm{N}_{\mathrm{ij}}\left(\sum_{\mathrm{i}=1}^{3} \sum_{\mathrm{j}=1}^{3} \mathrm{~N}_{\mathrm{ij}}=\mathrm{N}\right)
$$

Let \bar{Y}_{ij} be the mean and $\mathrm{S}_{\mathrm{ij}}^{2}$ be the population mean square of $(\mathrm{i}, \mathrm{j})^{\text {th }}$ strata. Also, $\overline{\mathrm{Y}}$ and S^{2} represent entire population mean and population mean square along-with \bar{y}_{ij} and $\overline{\mathrm{y}}$ as sample means based on n_{ij} and n units respectively.

Moreover,

$$
N_{i .}\left(=\sum_{j=1}^{3} N_{i j}\right), N_{\cdot j}\left(=\sum_{i=1}^{3} N_{i j}\right), n_{i \cdot}\left(=\sum_{j=1}^{3} n_{i j}\right)
$$

$n_{. j}\left(=\sum_{i=1}^{3} n_{i j}\right)$ are row and column totals and $\bar{Y}_{i,}, \bar{Y}_{. j}, \bar{y}_{i}, \overline{\mathrm{y}}_{\mathrm{j}}$ are population and sample means based on them respectively.

1.1 An Example

In an educational survey, students are classified as per their Academic-merit and Economic-background. Let an educational institution has P_{1} proportion of meritorious students, P_{2} average and P_{3} below average students ($P_{1}+P_{2}+P_{3}=1$). Whereas same has P_{4} proportion of economically poor students, P_{5} from middleclass income and P_{6} from above middle-income level ($P_{4}+P_{5}+P_{6}=1$). This constitutes 3×3 classification where $P_{m}(m=1,2, \ldots .6)$ are known alongwith total strength of students in the institution but, each cell frequency and cell-frames are unknown. The survey practitioner wants to estimate the average monthly expenditure of students by an effective utilization of prior information on proportions $\mathrm{P}_{\mathrm{m}}^{\mathrm{s}}$.

2. Derivation of Some Useful Theorems

With usual notations,
$W_{i j}=\left(\frac{N_{i j}}{N}\right), W_{i .}=\left(\frac{N_{i .}}{N}\right), W_{. j}=\left(\frac{N_{. j}}{N}\right), p_{i j}=\left(\frac{n_{i j}}{n}\right), p_{i .}=\left(\frac{n_{i .}}{n}\right)$ and $p_{. j}=\left(\frac{n_{\cdot j}}{n}\right)$
assume sample n is large enough to support following

$$
\begin{equation*}
\mathrm{p}_{\mathrm{ij}}=\mathrm{W}_{\mathrm{ij}}\left(1+\varepsilon_{i j}\right), \mathrm{P}_{\mathrm{i}^{\prime} j}=\mathrm{W}_{\mathrm{i}^{\prime} j}\left(1+\varepsilon_{\mathrm{i}^{\prime j}}\right), \mathrm{p}_{\mathrm{ij}}{ }^{\prime}=\mathrm{W}_{\mathrm{ij}}{ }^{\prime}\left(1+\varepsilon_{\mathrm{ij}^{\prime}}\right) \tag{2.1}
\end{equation*}
$$

where, $E\left[\varepsilon_{i j}\right]=E\left[\varepsilon_{i^{\prime} j}\right]=E\left[\varepsilon_{i^{\prime}}\right]=0 ; i \neq i^{\prime}=1,2,3 ; j \neq j^{\prime}=1,2,3$

$$
\left.\begin{array}{c}
E\left[\varepsilon_{i j}^{2}\right]=\left(\frac{1}{W_{i j}^{2}}\right)\left[\frac{(N-n) W_{i j}\left(1-W_{i j}\right)}{(N-1) n}\right] ; E\left[\varepsilon_{i^{\prime} j}^{2}\right]=\left(\frac{1}{W_{i^{\prime} j}^{2}}\right)\left[\frac{(N-n) W_{i^{\prime} j}\left(1-W_{i^{\prime} j}\right.}{(N-1) n}\right] \\
E\left[\varepsilon_{i^{\prime}}^{2}\right]=\left(\frac{1}{W_{i^{\prime}}^{2}}\right)\left[\frac{(N-n) W_{i^{\prime}}}{\left(1-W_{i j^{\prime}}\right)}\right. \\
(N-1) n
\end{array}\right]
$$

$$
\begin{aligned}
& E\left[\varepsilon_{i^{\prime} j} \varepsilon_{i^{\prime}}\right]=\left\{\frac{-1}{W_{i i^{\prime}} W_{i j^{\prime}}}\right\}\left[\frac{(N-n) W_{i^{\prime}} W_{i^{\prime} j}}{(N-1) n}\right] \\
& E\left[\varepsilon_{i^{\prime} j} \varepsilon_{i j}\right]=\left\{\frac{-1}{W_{i j} W_{i^{\prime} j}}\right\}\left[\frac{(N-n) W_{i j} W_{i^{\prime} j}}{(N-1) n}\right] \\
& E\left[\varepsilon_{i j} \varepsilon_{i j^{\prime}}\right]=\left\{\frac{-1}{W_{i j} W_{i j^{\prime}}}\right\}\left[\frac{(N-n) W_{i j^{\prime}} W_{i j}}{(N-1) n}\right]
\end{aligned}
$$

2.1 Justification

For sample mean \bar{y} based on n units and $E(\bar{y})=\bar{Y}$, Sukhatme et al. [2] have used one of approximations as $\overline{\mathrm{y}}=\overline{\mathrm{Y}}(1+\varepsilon), \mathrm{E}(\varepsilon)=0$, assuming sample size large and derived expressions of m.s.e. for ratio, product and regression estimators upto first and second order of approximations. If, in particular, for an attribute A in the same population, suppose

$$
\begin{aligned}
Y_{i} & =1 \text { if } \mathrm{i}^{\text {th }} \text { population unit possess } A \\
& =0 \text { otherwise }
\end{aligned}
$$

then $\bar{y}=w, E(w)=W$ holds $w h e r e$ and W are sample and population proportions respectively with respect to A . Without loss of generality, one can write $w=W\left(1+\varepsilon^{\prime}\right), E\left(\varepsilon^{\prime}\right)=0$ for a large n.

Theorem 2.1: Using (2.1) and avoiding terms of higher order, an approximate result, for $\mathrm{j} \neq \mathrm{j}^{\prime}$, is

$$
A_{i j\left(j^{\prime}\right)}=E\left[\frac{p_{i j^{\prime}}}{p_{i j}}\right]=\frac{W_{i j}}{W_{i j}}\left[1+\frac{\operatorname{Var}\left(p_{i j}\right)}{W_{i j}^{2}}-\frac{\operatorname{Cov}\left(p_{i j} p_{i j^{\prime}}\right)}{W_{i j} W_{i j^{\prime}}}\right]
$$

Proof:

$$
E\left[\frac{p_{i j^{\prime}}}{p_{i j}}\right]=E\left[\frac{W_{i j}\left(1+\varepsilon_{i j}\right)}{W_{i j}\left(1+\varepsilon_{i j}\right)}\right]=\frac{W_{i j^{\prime}}}{W_{i j}} E\left[1+\varepsilon_{i j^{\prime}}-\varepsilon_{i j}-\varepsilon_{i j} \varepsilon_{i j^{\prime}}+\varepsilon_{i j}^{2}+\varepsilon_{i j}^{2} \varepsilon_{i j^{\prime}} \ldots\right]
$$

Avoiding all higher order terms $\left[\left(\varepsilon_{i j}\right)^{\mathrm{r}}\left(\varepsilon_{\mathrm{ij}}\right)^{\mathrm{s}}\right]$ for $(\mathrm{r}+\mathrm{s})>2$, theorem holds.

Theorem 2.2 : Using (2.1), an approximate result, for $\mathrm{j} \neq \mathrm{j}^{\prime}$ is

$$
B_{i j\left(j^{\prime}\right)}=E\left[\frac{p_{i j^{\prime}}^{2}}{p_{i j}}\right]=\frac{W_{i j^{\prime}}^{2}}{W_{i j}}\left[1+\frac{\operatorname{Var}\left(p_{i j}\right)}{W_{i j}^{2}}+\frac{\operatorname{Var}\left(p_{i j^{\prime}}\right)}{W_{i j^{\prime}}^{2}}-\frac{2 \operatorname{Cov}\left(p_{i j} p_{i j^{\prime}}\right)}{W_{i j} W_{i j^{\prime}}}\right]
$$

Proof:
$E\left[\frac{p_{i j^{\prime}}^{2}}{p_{i j}}\right]=E\left[\frac{W_{i j^{\prime}}^{2}\left(1+\varepsilon_{i j^{\prime}}\right)^{2}}{W_{i j}\left(1+\varepsilon_{i j}\right)}\right]=\frac{W_{i j^{\prime}}^{2}}{W_{i j}} E\left[1+\varepsilon_{i j^{\prime}}^{2}+2 \varepsilon_{i j^{\prime}}-\varepsilon_{i j}-2 \varepsilon_{i j} \varepsilon_{i j^{\prime}}+\varepsilon_{i j}^{2}+\ldots\right]$
Avoiding $\left[\left(\varepsilon_{i j}\right)^{r}\left(\varepsilon_{i j}\right)^{s}\right]$ for $(r+s)>2$, theorem holds.
Theorem 2.3 : Using (2.1), an approximate result, for $\mathrm{i} \neq \mathrm{i}^{\prime}, \mathrm{j} \neq \mathrm{j}^{\prime}$, is

$$
\begin{aligned}
& C_{i j\left(i^{\prime} j^{\prime}\right)}=E\left[\frac{p_{i j^{\prime}} p_{i^{\prime} j}}{p_{i j}}\right]=\frac{W_{i j^{\prime}} W_{i^{\prime} j}}{W_{i j}}\left[1+\frac{\operatorname{Var}\left(p_{i j}\right)}{W_{i j}^{2}}+\frac{\operatorname{Cov}\left(p_{i^{\prime} j} p_{i^{\prime}}\right)}{W_{i^{\prime} j} W_{i^{\prime}}}\right. \\
& \left.-\frac{\operatorname{Cov}\left(p_{i j} p_{i^{\prime} j}\right)}{W_{i j} W_{i^{\prime} j}}-\frac{\operatorname{Cov}\left(p_{i j} p_{i^{\prime}}\right)}{W_{i j} W_{i j^{\prime}}}\right] \\
& \text { Proof: } \mathrm{E}\left[\frac{\mathrm{P}_{\mathrm{i}^{\prime}} \mathrm{P}_{\mathrm{ij}^{\prime}}}{\mathrm{P}_{\mathrm{ij}}}\right]=\mathrm{E}\left[\frac{\mathrm{~W}_{\mathrm{ij}^{\prime}}\left(1+\varepsilon_{\mathrm{i}^{\prime} \mathrm{j}}\right) \mathrm{W}_{\mathrm{ij}^{\prime}}\left(1+\varepsilon_{\mathrm{ij}^{\prime}}\right)}{\mathrm{W}_{\mathrm{ij}}\left(1+\varepsilon_{i j}\right)}\right] \\
& =\frac{W_{i i^{\prime}} W_{i j^{\prime}}}{W_{i j}} E\left[1+\varepsilon_{i^{\prime} j}+\varepsilon_{i j^{\prime}}+\varepsilon_{i^{\prime} j} \varepsilon_{i j}-\varepsilon_{i j}-\varepsilon_{i j} \varepsilon_{i^{\prime} j}-\varepsilon_{i j} \varepsilon_{i j^{\prime}}+\varepsilon_{i j}^{2} \ldots\right]
\end{aligned}
$$

On avoiding terms $\left[\left(\varepsilon_{\mathrm{ij}}\right)^{\mathrm{r}}\left(\varepsilon_{\mathrm{ij}^{\prime}}\right)^{\mathrm{s}}\left(\varepsilon_{\mathrm{i}^{\prime} \mathrm{j}}\right)^{\mathrm{t}}\right]$ for $(\mathrm{r}+\mathrm{s}+\mathrm{t})>2$, we get result.

2.2 Some Symbols

$$
D_{i j}=E\left[\frac{1}{n_{i j}}\right]=\frac{1}{n W_{i j}}+\frac{(N-n)\left(1-W_{i j}\right)}{(N-1) n^{2} W_{i j}^{2}}
$$

$$
\begin{aligned}
& F_{i .}=E\left[\frac{p_{i .}^{2}}{N_{i j}}\right]=\left\{\frac{1}{N_{i j}}\right)\left\{\frac{(N-n)}{(N-1)} \frac{W_{i} \cdot\left(1-W_{i .}\right)}{n}+W_{i .}^{2}\right\} \\
& F_{. j}=E\left[\frac{p_{. j}^{2}}{N_{i j}}\right]=\left(\frac{1}{N_{i j}}\right)\left\{\frac{(N-n)}{(N-1)} \frac{W_{. j}\left(1-W_{. j}\right)}{n}+W_{. j}^{2}\right\} ; M_{i}=\sum_{j=1}^{3} \bar{Y}_{i j} \\
& F_{i j}=E\left[\frac{p_{i .} p_{. j}}{N_{i j}}\right]=\left(\frac{1}{N_{i j}}\right)\left\{\operatorname{Cov}\left(p_{i .} p_{. j}\right)+E\left(p_{i .}\right) E\left(p_{. j}\right)\right\} ; M_{j}=\sum_{i=1}^{3} \bar{Y}_{i j}
\end{aligned}
$$

3. Proposed Estimation Strategy

To recall assumptions are (a) a setup of 3×3 deeply stratified population N (b) frame of N units available for non-stratifying variable (c) sample size n is large (d) stratum sizes N_{ij} are unknown but information about $\mathrm{N}_{\mathrm{i} .}$ and N_{j} are known by some other sources.

To estimate \bar{Y} a Deeply stratified Post-stratified estimator is

$$
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{dps}}=\sum_{\mathrm{i}=1}^{3} \sum_{\mathrm{j}=1}^{3} \mathrm{w}_{\mathrm{\alpha ij}} \overline{\mathrm{y}}_{\mathrm{ij}} \tag{3.1}
\end{equation*}
$$

where $\mathrm{W}_{\boldsymbol{\alpha i j}}=\left[\left(\frac{\alpha}{2}\right)\left\{\left(\frac{\mathbf{n}_{\mathbf{i} .}}{\mathrm{n}}\right)+\left(\frac{\mathbf{N}_{\mathbf{i} .}}{\mathrm{N}}\right)\right\}+\left(\frac{1-\alpha}{2}\right)\left[\left\{\left(\frac{\mathbf{n}_{. \mathrm{j}}}{\mathrm{n}}\right)+\left(\frac{\mathbf{N}_{. \mathrm{j}}}{\mathbf{N}^{\prime}}\right)\right\}\right]\right.$
The constant α be suitably chosen such that $0 \leq \alpha \leq 1$.

3.1 Motivation

I. The usual post-stratified estimator for a 3×3 set-up is

$$
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{ps}}=\sum_{\mathrm{i}=1}^{3} \sum_{\mathrm{j}=1}^{3} \mathrm{w}_{\mathrm{ij}} \overline{\mathrm{y}}_{\mathrm{ij}} \tag{3.2}
\end{equation*}
$$

with $W_{i j}=\left(\frac{N_{i j}}{N}\right)$ which essentially requires a knowledge of $N_{i j}$
II. When only information of N_{i} and N_{j} available but not N_{ij}, the usual estimator (3.2) fails to perform estimation.
III. The information $\mathrm{N}_{\mathrm{i} \text {. }}$ and N_{j} are more common to be priorly known.
IV. An effective utilization of known N_{i} and N_{i} for estimation of \bar{Y}, is required.
V. A contribution by Agrawal and Panda [1] supports for choosing $W_{\text {aij }}$ in the present form.
3.2 Properties of Strategy
(I) At $\alpha=1$, estimator $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1}$ with $\mathrm{W}_{\mathrm{ijj}}=\left(\frac{1}{2}\right)\left[\frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{n}}+\frac{\mathrm{N}_{\mathrm{i}}}{\mathrm{N}}\right]$
(II) At $\alpha=0$, estimator $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{0}$ with $\mathrm{W}_{0 \mathrm{ij}}=\left(\frac{1}{2}\right)\left[\frac{\mathrm{n}_{\cdot j}}{\mathrm{n}}+\frac{\mathrm{N}_{\cdot \mathrm{j}}}{\mathrm{N}}\right]$
(III) At $\alpha=\frac{1}{2}$, estimator $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1 / 2}$ with

$$
W_{1 / 2 i j}=\left(\frac{1}{4}\right)\left[\left\{\frac{n_{i .}}{n}+\frac{N_{i .}}{N}\right\}+\left\{\frac{n_{. j}}{n}+\frac{N_{. j}}{N}\right\}\right]
$$

We have $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1}$ purely based on row totals, $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{0}$ on column totals and $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1 / 2}$ on an average of these two.

Theorem 3.1: The estimator $\overline{\mathrm{y}}_{\mathrm{dps}}$ is biased for $\overline{\mathrm{Y}}$.
Proof: Denote $\mathrm{E}\left[(.) / \mathrm{n}_{\mathrm{ij}}\right]$ as a conditional expectation given n_{ij}

$$
\begin{aligned}
E\left(\bar{y}_{\mathrm{dps}}\right) & =E\left[E\left\{\frac{\left(\bar{y}_{\mathrm{dps}}\right)}{n_{i j}}\right\}\right]=E\left[\frac{\left\{\sum_{i=1}^{3} \sum_{j=1}^{3} W_{\alpha \mathrm{dij}} E\left(\bar{y}_{\mathrm{ij}}\right)\right\}}{n_{\mathrm{ij}}}\right] \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} E\left(W_{\alpha \mathrm{ij}}\right) \bar{Y}_{\mathrm{ijj}}=\bar{Y}+\alpha V_{1}+(1-\alpha) V_{2}
\end{aligned}
$$

where, $V_{1}=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{j^{\prime}=1}^{3} W_{i j} \bar{Y}_{\mathrm{ij}^{\prime}} ; \mathrm{V}_{2}=\sum_{i=1}^{3} \sum_{i^{\prime}=1}^{3} \sum_{j=1}^{3} W_{i j} \bar{Y}_{i^{\prime} j}$

Theorem 3.2: The Mean square error of $\overline{\mathrm{y}}_{\mathrm{dps}}$ is

$$
\begin{aligned}
\mathrm{M}\left(\bar{y}_{\mathrm{dps}}\right)=\left(\frac{1}{4}\right)\left[\left(\mathrm{U}_{1}+\mathrm{U}_{2}\right)+\alpha^{2}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right.\right. & \left.+4 \mathrm{~V}_{1}^{2}\right)+(1-\alpha)^{2}\left(\mathrm{~S}_{1}+\mathrm{S}_{2}+4 \mathrm{~V}_{2}^{2}\right) \\
+ & \left.2 \alpha(1-\alpha)\left(\mathrm{T}_{1}+\mathrm{T}_{2}+4 \mathrm{~V}_{1} \mathrm{~V}_{2}\right)\right]
\end{aligned}
$$

where,

$$
\begin{aligned}
& \mathrm{U}_{1}=\left[\left(\frac{11}{\mathrm{n}}\right)-\left(\frac{15}{\mathrm{~N}}\right)\right] \sum_{\mathrm{i}=1}^{3} \sum_{\mathrm{j}=1}^{3} \mathrm{w}_{\mathrm{ij}} \mathrm{~S}_{\mathrm{ij}}^{2}, \mathrm{U}_{2}=0 \text { (considered for symmetry) } \\
& R_{1}=\sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left(\frac{1}{n}\right) B_{i j\left(j^{\prime}\right)} S_{i j}^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} w_{i .}^{2} D_{i j} S_{i j}^{2}+\sum_{i \neq i^{\prime}=1 j \neq j^{\prime}=1}^{3} \sum_{n}^{3}\left(\frac{2}{n}\right) c_{i j\left(i^{\prime}, j^{\prime}\right)^{\prime}}^{2} \\
& +\left(\frac{2}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} W_{i .} A_{i j\left(j^{\prime}\right)} S_{i j}^{2}-\sum_{i=1}^{3} \sum_{j=1}^{3} F_{i .} S_{i j}^{2} \\
& -\left(\frac{3}{N}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left\{\frac{\left(w_{i^{\prime}}^{2} s_{i j}^{2}\right)}{w_{i j}}\right\}-\left(\frac{6}{N}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left(\frac{w_{i^{\prime} j} w_{i j^{\prime}}}{w_{i j}}\right) s_{i j}^{2} \\
& R_{2}=\left\{\frac{(N-n)}{(N-1) n}\right\}\left[\sum_{i=1}^{3} W_{i .}\left(1-W_{i .}\right) M_{i}^{2}-\sum_{i=1}^{3} \sum_{i^{\prime}=1}^{3} M_{i} M_{i^{\prime}} W_{i} . W_{i^{\prime}}\right] \\
& S_{1}=\sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left(\frac{1}{n}\right) B_{i j\left(j^{\prime}\right)} S_{i j}^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} w_{j, ~}^{2} D_{i j} S_{i j}^{2}+\sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left(\frac{2}{n}\right) C_{i j\left(i^{\prime}, j^{\prime}\right)} S_{i j}^{2} \\
& +\left(\frac{2}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} W_{j} A_{i j\left(j^{\prime}\right)} S_{i j}^{2}-\sum_{i=1}^{3} \sum_{j=1}^{3} F_{j j} S_{i j}^{2}-\left(\frac{3}{N}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left\{\frac{\left(w_{i j^{2}}^{2} S_{i j}^{2}\right)}{W_{i j}}\right\} \\
& -\left(\frac{6}{N}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left(\frac{W_{i j} W_{i j^{\prime}}}{W_{i j}}\right) s_{i \mathrm{ij}}^{2} \\
& S_{2}=\left\{\frac{(N-n)}{(N-1) n}\right\}\left[\sum_{j=1}^{3} W_{\cdot j}\left(1-W_{j}\right) M_{j}^{2}-\sum_{j=1}^{3} \sum_{j^{\prime}=1}^{3} M_{j} M_{j^{\prime}} W_{j} W_{\cdot j^{\prime}}\right]
\end{aligned}
$$

 $+\left(\frac{1}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left(w_{i \mathrm{i}}+W_{i j}\right) A_{i j\left(j^{\prime}\right)^{\prime}} S_{i j}^{2}-\left(\frac{3}{N}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left(\frac{w_{i j} w_{i j}}{W_{i j}}\right) S_{i j}^{2}$
$T_{2}=-\left\{\frac{(N-n)}{(N-1) n}\right\} \sum_{i=1}^{3} \sum_{j=1}^{3} w_{i .} . W_{. j} M_{i} M_{j}$
Proof: $\mathrm{M}\left(\bar{y}_{\mathrm{dps}}\right)=\mathrm{E}\left[\frac{\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)}{\mathrm{n}_{\mathrm{ij}}}\right]+\mathrm{V}\left[\frac{\mathrm{E}\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)}{\mathrm{n}_{\mathrm{ij}}}\right]+\left[\operatorname{Bias}\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)\right]^{2}$
$E\left[\frac{v\left(\bar{y}_{\mathrm{dps}}\right)}{n_{\mathrm{ij}}}\right]=E\left[\sum_{i=1}^{3} \sum_{\mathrm{j}=1}^{3}\left(\frac{1}{n_{\mathrm{ij}}}\right) \mathrm{w}_{\alpha \mathrm{ij}}^{2} \mathrm{~s}_{\mathrm{ij}}^{2}\right]-\mathrm{E}\left[\sum_{i=1}^{3} \sum_{\mathrm{j}=1}^{3}\left(\frac{1}{N_{\mathrm{ij}}}\right) \mathrm{w}_{\mathrm{ajj}}^{2} \mathrm{~s}_{\mathrm{ij}}^{2}\right]$
For further derivation of (3.3) following are used

$$
\begin{aligned}
a_{1}: & {\left[\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\frac{1}{n_{i j}}\right)\left\{\left(\frac{n_{i j}}{n}\right)+\left(\frac{N_{i}}{N}\right)\right\}^{2} S_{i j}^{2}\right]=\left(\frac{11}{n}\right) \sum_{i=1}^{3} \sum_{j=1}^{3} W_{i j} S_{i j}^{2} } \\
& +\left(\frac{1}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} B_{i j\left(j^{\prime}\right)} S_{i j}^{2}+\left(\frac{2}{n}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} C_{i j\left(i^{\prime}, j^{\prime}\right)} S_{i j}^{2} \\
& +\sum_{i=1}^{3} \sum_{j=1}^{3} W_{i,}^{2} D_{i j} S_{i j}^{2}+\left(\frac{2}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} W_{i .} A_{i j\left(j^{\prime}\right)} S_{i j}^{2}
\end{aligned}
$$

$$
a_{2}: E\left[\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\frac{1}{n_{i j}}\right)\left\{\left(\frac{n_{\cdot j}}{n}\right)+\left(\frac{N_{j j}}{N}\right)\right\}^{2} S_{i j}^{2}\right]=\left(\frac{11}{n}\right) \sum_{i=1}^{3} \sum_{j=1}^{3} W_{i j} S_{i j}^{2}
$$

$$
+\left(\frac{1}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} B_{i j\left(j^{\prime}\right)^{\prime}} s_{i j}^{2}+\left(\frac{2}{n}\right) \sum_{i \neq i^{\prime}=1 j \neq j^{\prime}=1}^{3} \sum_{i j\left(i^{\prime}, j^{\prime}\right)} s_{i j}^{2}
$$

$$
+\sum_{i=1}^{3} \sum_{j=1}^{3} w_{j}^{2} D_{i j} S_{i j}^{2}+\left(\frac{2}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} w_{j} A_{i j\left(j^{\prime}\right)} S_{i j}^{2}
$$

$$
\begin{aligned}
a_{3}: & {\left[\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\frac{1}{n_{i j}}\right)\left\{\left(\frac{n_{i .}}{n}+\frac{N_{i .}}{N}\right)+\left(\frac{n_{. j}}{n}+\frac{N_{. j}}{N}\right)\right\} S_{i j}^{2}\right]=\left(\frac{11}{n}\right) \sum_{i=1}^{3} \sum_{j=1}^{3} W_{i j} S_{i j}^{2} } \\
& +\sum_{i=1}^{3} \sum_{j=1}^{3} W_{i .} W_{. j} D_{i j} S_{i j}^{2}+\left(\frac{1}{n}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{1 \neq j^{\prime}=1}^{3} C_{i j\left(i^{\prime}, j^{\prime}\right)} s_{i j}^{2} \\
& +\left(\frac{1}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left(W_{i .}+W_{. j}\right) A_{i j\left(j^{\prime}\right)} S_{i j}^{2}
\end{aligned}
$$

To obtain results in a_{1}, a_{2}, a_{3} theorems $2.1,2.2$ and 2.3 are used wherever required. With $a_{1}, a_{2}, a_{3}, \alpha$ and other terms the resultant expression is

$$
\begin{align*}
& E\left[\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\frac{1}{n_{i j}}\right) w_{\alpha i j}^{2} S_{i j}^{2}\right] \\
& =\left(\frac{11}{4}\right) \sum_{i=1}^{3} \sum_{j=1}^{3} W_{i j} S_{i j}^{2}+\left(\frac{\alpha^{2}}{4}\right)\left[\left(\frac{1}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} B_{i j\left(j^{\prime}\right)} S_{i j}^{2}\right. \\
& +\left(\frac{2}{n}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} C_{i j\left(i^{\prime}, j^{\prime}\right)} S_{i j}^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} w_{i,}^{2} D_{i j} S_{i j}^{2} \\
& \left.+\left(\frac{2}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} w_{i .} A_{i j\left(j^{\prime}\right)} S_{i j}^{2}\right]+\left(\frac{(1-\alpha)^{2}}{4}\right)\left[\left(\frac{1}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} B_{i j\left(j^{\prime}\right)} S_{i j}^{2}\right. \\
& +\left(\frac{2}{n}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} C_{i j\left(i^{\prime}, j^{\prime}\right)} S_{i j}^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} W_{j}^{2} D_{i j} S_{i j}^{2} \\
& \left.+\left(\frac{2}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} W_{. j} A_{i j\left(j^{\prime}\right)} S_{i j}^{2}\right]+\left(\frac{\alpha(1-\alpha)}{2}\right)\left[\left(\frac{1}{n}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} C_{i j\left(i^{\prime}, j^{\prime}\right)} S_{i j}^{2}\right. \\
& \left.+\sum_{i=1}^{3} \sum_{j=1}^{3} W_{i .} W_{. j} D_{i j} S_{i j}^{2}+\left(\frac{1}{n}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3}\left(W_{i .}+w_{. j}\right) A_{i j\left(j^{\prime}\right)} S_{i j}^{2}\right] \tag{3.3.1}
\end{align*}
$$

We also have,

$$
\begin{aligned}
& a_{4}: E\left[\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\frac{1}{N_{i j}}\right)\left\{\left(\frac{n_{i .}}{n}\right)+\left(\frac{N_{i .}}{N}\right)\right\}^{2} S_{i j}^{2}\right]=\left(\frac{15}{N}\right) \sum_{i=1}^{3} \sum_{j=1}^{3} W_{i j} S_{i j}^{2} \\
& +\sum_{i=1}^{3} \sum_{j=1}^{3} F_{i} S_{i j}^{2}+\left(\frac{3}{N}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} \frac{W_{i j^{\prime}}^{2}}{W_{i j}} S_{i j}^{2}+\left(\frac{6}{N}\right) \sum_{i \neq i^{\prime}=1 j \neq j^{\prime}=1}^{3} \sum_{i}^{3} \frac{W_{i^{\prime} j} W_{i j^{\prime}}}{W_{i j}} S_{i j}^{2} \\
& a_{5}: E\left[\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\frac{1}{N_{i j}}\right)\left\{\left(\frac{n_{. j}}{n}\right)+\left(\frac{N_{. j}}{N}\right)\right\}^{2} S_{i j}^{2}\right]=\left(\frac{15}{N}\right) \sum_{i=1}^{3} \sum_{j=1}^{3} W_{i j} S_{i j}^{2} \\
& +\sum_{i=1}^{3} \sum_{j=1}^{3} F_{j j} S_{i j}^{2}+\left(\frac{3}{N}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} \frac{W_{i j^{\prime}}^{2}}{W_{i j}} S_{i j}^{2}+\left(\frac{6}{N}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} \frac{W_{i^{\prime} j} W_{i j}}{W_{i j}} S_{i j}^{2} \\
& a_{6}: E\left[\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\frac{1}{N_{i j}}\right)\left\{\left(\frac{n_{i .}}{n}+\frac{N_{i .}}{N}\right)+\left(\frac{n_{j}}{n}+\frac{N_{. j}}{N}\right)\right\} S_{i j}^{2}\right]=\left(\frac{15}{N}\right) \sum_{i=1}^{3} \sum_{j=1}^{3} W_{i j} S_{i j}^{2} \\
& +\sum_{i=1}^{3} \sum_{j=1}^{3} F_{i j} S_{i j}^{2}+\left(\frac{3}{N}\right) \sum_{i \neq i^{\prime}=1 j}^{3} \sum_{j \neq j^{\prime}=1}^{3} \frac{W_{i^{\prime} j} W_{i j^{\prime}}}{W_{i j}} S_{i j}^{2}
\end{aligned}
$$

Theorem 2.1, 2.2 and 2.3 are also used to derive $\mathrm{a}_{4}, \mathrm{a}_{5}$, and a_{6} and, we get

$$
\begin{align*}
& E\left[\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\frac{1}{N_{i j}}\right) W_{\alpha i j}^{2} S_{i j}^{2}\right]= \\
& \left(\frac{15}{4 N}\right) \sum_{i=1}^{3} \sum_{j=1}^{3} W_{i j} S_{i j}^{2}+\left(\frac{\alpha^{2}}{4}\right)\left[\sum_{i=1}^{3} \sum_{j=1}^{3} F_{i .} S_{i j}^{2}+\left(\frac{3}{N}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} \frac{W_{i j}^{2}}{W_{i j}} S_{i j}^{2}\right. \\
& \left.+\left(\frac{6}{N}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} \frac{W_{i i^{\prime} j} W_{i i^{\prime}}}{W_{i j}} S_{i j}^{2}\right]+\left(\frac{(1-\alpha)^{2}}{4}\right)\left[\sum_{i=1}^{3} \sum_{j=1}^{3} F_{j} S_{i j}^{2}\right. \\
& \left.+\left(\frac{3}{N}\right) \sum_{i=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} \frac{W_{i j^{\prime}}^{2}}{W_{i j}} S_{i j}^{2}+\left(\frac{6}{N}\right) \sum_{i \neq i^{\prime}=1}^{3} \sum_{j \neq j^{\prime}=1}^{3} \frac{W_{i^{\prime} j} W_{i j^{\prime}}}{W_{i j}} S_{i j}^{2}\right] \\
& +\left(\frac{\alpha(1-\alpha)}{2}\right)\left[\sum_{i=1}^{3} \sum_{j=1}^{3} F_{i j} S_{i j}^{2}+\left(\frac{3}{N}\right) \sum_{i \neq i^{\prime}=1 \mathrm{j} \neq j^{\prime}=1}^{3} \sum_{\mathrm{W}_{\mathrm{ij}}}^{3} \frac{W_{i^{\prime} j} W_{i i^{\prime}}}{W_{i j}^{2}}\right] \tag{3.3.2}
\end{align*}
$$

$$
\begin{align*}
& V\left[\frac{E\left(\bar{y}_{d p s}\right)}{n_{i j}}\right]= \\
& V\left[\sum_{i=1}^{3} \sum_{j=1}^{3} w_{\alpha i j} \bar{Y}_{i j}\right] \\
&=\left(\frac{\alpha^{2}}{4}\right) \sum_{i=1}^{3} V\left(p_{i .}\right) \bar{Y}_{i .}^{2}+\left(\frac{(1-\alpha)^{2}}{4}\right) \sum_{j=1}^{3} v\left(p_{. j}\right) \bar{Y}_{. j}^{2} \\
&+\left(\frac{\alpha(1-\alpha)}{2}\right) \sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{Cov}\left(p_{i,}, p_{. j}\right) \bar{Y}_{i .} \bar{Y}_{. j} \tag{3.4}\\
&=\left(\frac{\alpha^{2}}{4}\right) R_{2}+\left\{\frac{(1-\alpha)^{2}}{4}\right\} S_{2}+\left\{\frac{\alpha(1-\alpha)}{2}\right\} T_{2} \tag{3.5}\\
& {\left[\operatorname{Bias}\left(\bar{y}_{d p s}\right)\right]^{2}=}
\end{align*}
$$

Use of (3.3.1), (3.3..2), (3.4) and (3.5) provides the proof of theorem.

4. Optimum Choice

$$
\alpha_{\mathrm{opt}}=\left[\frac{\left(S_{1}+S_{2}+4 V_{2}^{2}\right)-\left(T_{1}+T_{2}+4 V_{1} V_{2}\right)}{\left(R_{1}+R_{2}+4 V_{2}^{2}\right)+\left(S_{1}+S_{2}+4 V_{2}^{2}\right)-2\left(T_{1}+T_{2}+4 V_{1} V_{2}\right)}\right]
$$

$$
\mathrm{M}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{\mathrm{opt}}\right]=\left(\frac{1}{4}\right)\left[\left(\mathrm{U}_{1}+\mathrm{U}_{2}\right)\right.
$$

$$
\left.+\left\{\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}+4 \mathrm{~V}_{1}^{2}\right)\left(\mathrm{S}_{1}+\mathrm{S}_{2}+4 \mathrm{~V}_{2}^{2}\right)-\left(\mathrm{T}_{1}+\mathrm{T}_{2}+4 \mathrm{~V}_{1} \mathrm{~V}_{2}\right)^{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}+4 \mathrm{~V}_{1}^{2}\right)+\left(\mathrm{S}_{1}+\mathrm{S}_{2}+4 \mathrm{~V}_{2}^{2}\right)-2\left(\mathrm{~T}_{1}+\mathrm{T}_{2}+4 \mathrm{~V}_{1} \mathrm{~V}_{2}\right)}\right\}\right]
$$

5. Efficiency Comparison

I. $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1}$ is efficient over $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{0}$ if $\left(\mathrm{R}_{1}+\mathrm{R}_{2}+4 \mathrm{~V}_{1}^{2}\right) \leq\left(\mathrm{S}_{1}+\mathrm{S}_{2}+4 \mathrm{~V}_{2}^{2}\right)$
II. $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1}$ is efficient over $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1 / 2}$ if

$$
\left(\mathrm{R}_{1}+\mathrm{R}_{2}+4 \mathrm{~V}_{1}^{2}\right) \leq \frac{1}{3}\left[\left(\mathrm{~S}_{1}+\mathrm{S}_{2}+4 \mathrm{~V}_{2}^{2}\right)+2\left(\mathrm{~T}_{1}+\mathrm{T}_{2}+4 \mathrm{~V}_{1} \mathrm{~V}_{2}\right)\right]
$$

III. $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{0}$ is efficient over $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1 / 2}$ if

$$
\left(\mathrm{S}_{1}+\mathrm{S}_{2}+4 \mathrm{~V}_{2}^{2}\right) \leq \frac{1}{3}\left[\left(\mathrm{R}_{1}+\mathrm{R}_{2}+4 \mathrm{~V}_{1}^{2}\right)+2\left(\mathrm{~T}_{1}+\mathrm{T}_{2}+4 \mathrm{~V}_{1} \mathrm{~V}_{2}\right)\right]
$$

6. Numerical Illustrations

Consider two populations of size $\mathrm{N}=650$ and $\mathrm{N}=490$ and samples of size 260 and 196 by SRSWOR respectively and post-stratified according to 3×3 classification.

Parameters of population are given in Table 6.1 and Table 6.2.
(a) For data set -I

$$
\begin{array}{llll}
\mathrm{M}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1}\right] & =132.5416 & \mathrm{~B}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1}\right]=9.0127 \\
\mathrm{M}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{0}\right] & =118.6221 & \mathrm{~B}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{0}\right]=8.8626 \\
\mathrm{M}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1 / 2}\right] & =14.8312 & \mathrm{~B}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1 / 2}\right]=8.6274 \\
\mathrm{M}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{\mathrm{opt}}\right] & =7.0314 & \mathrm{~B}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{\mathrm{opt}}\right]=8.1721
\end{array}
$$

$$
\text { with } \alpha_{\text {opt }} \quad=0.4613
$$

For data set -II

$$
\begin{array}{lll}
\mathrm{M}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1}\right] & =98.1312 & \mathrm{~B}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1}\right]=6.7285 \\
\mathrm{M}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{0}\right] & =87.6234 & \mathrm{~B}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{0}\right]=6.5578 \\
\mathrm{M}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1 / 2}\right] & =13.1394 & \mathrm{~B}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{1 / 2}\right]=6.4432 \\
\mathrm{M}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{\mathrm{opt}}\right] & =4.3122 & \mathrm{~B}\left[\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)_{\mathrm{opt}}\right]=5.7055 \\
\text { with } \alpha_{\mathrm{opt}} & =0.4913 &
\end{array}
$$

(b) This is to recall that it is not possible to get estimate of $\overline{\mathrm{Y}}$ from usual sample mean estimator since N_{ij} 's are assumed unknown.
(c) It seems that estimator $\left(\overline{\mathrm{Y}}_{\mathrm{dps}}\right)_{1 / 2}$ is more efficient than $\left(\overline{\mathrm{Y}}_{\mathrm{dps}}\right)_{0}$ and $\left(\overline{\mathrm{Y}}_{\mathrm{dps}}\right)_{1}$
Table 6.1 (for data set 1)

B	A	Attribute A			Total
		Low	Medium	High	
	Low	$\begin{aligned} & \mathrm{N}_{11}=71, \mathrm{n}_{11}=28 \\ & \overline{\mathrm{Y}}_{11}=48.7464 \\ & \mathrm{~W}_{11}=0.10923 \\ & \mathrm{~S}_{11}^{2}=857.187 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{12}=65, \mathrm{n}_{12}=26 \\ & \overline{\mathrm{Y}}_{12}=147.6923 \\ & \mathrm{~W}_{12}=0.1 \\ & \mathrm{~S}_{12}^{2}=791.2476 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{13}=68, \mathrm{n}_{13}=27 \\ & \overline{\mathrm{Y}}_{13}=247.4264 \\ & \mathrm{~W}_{13}=0.10461 \\ & \mathrm{~S}_{13}^{2}=876.9092 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{1 .}=205 \\ & \mathrm{n}_{1 .}=81 \\ & \overline{\mathrm{Y}}_{1 .}=146.49 \\ & \mathrm{~W}_{1 .}=0.3138 \end{aligned}$
	Medium	$\begin{aligned} & \mathrm{N}_{21}=77, \mathrm{n}_{21}=31 \\ & \overline{\mathrm{Y}}_{21}=346.8831 \\ & \mathrm{~W}_{21}=0.11846 \\ & \mathrm{~S}_{21}^{2}=866.6208 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{22}=74, \mathrm{n}_{22}=30 \\ & \overline{\mathrm{Y}}_{22}=431.9054 \\ & \mathrm{~W}_{22}=0.11384 \\ & \mathrm{~S}_{22}^{2}=964.5512 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{23}=80, \mathrm{n}_{23}=32 \\ & \overline{\mathrm{Y}}_{23}=549.525 \\ & \mathrm{~W}_{23}=0.12307 \\ & \mathrm{~S}_{23}^{2}=829.1359 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{2 .}=231 \\ & \mathrm{n}_{2 .}=93 \\ & \overline{\mathrm{Y}}_{2 .}=444.29 \\ & \mathrm{~W}_{2 .}=0.355 \end{aligned}$
	High	$\begin{aligned} & \mathrm{N}_{31}=73, \mathrm{n}_{31}=29 \\ & \overline{\mathrm{Y}}_{31}=654.315 \\ & \mathrm{~W}_{31}=0.1123 \\ & \mathrm{~S}_{31}^{2}=787.885 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{32}=70, \mathrm{n}_{32}=28 \\ & \overline{\mathrm{Y}}_{32}=737.957 \\ & \mathrm{~W}_{32}=0.10769 \\ & \mathrm{~S}_{32}^{2}=1044.759 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{33}=72, \mathrm{n}_{33}=29 \\ & \overline{\mathrm{Y}}_{33}=846.597 \\ & \mathrm{~W}_{33}=0.11076 \\ & \mathrm{~S}_{33}^{2}=780.469 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{3 .}=215 \\ & \mathrm{n}_{3 .}=86 \\ & \overline{\mathrm{Y}}_{3 .}=745.93 \\ & \mathrm{~W}_{3 .}=0.3307 \end{aligned}$
	Total	$\begin{aligned} & \mathrm{N}_{.1}=221, \mathrm{n}_{.1}=88 \\ & \overline{\mathrm{Y}}_{.1}=352.6515 \\ & \mathrm{~W}_{.1}=0.3399 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{.2}=209, \mathrm{n}_{.2}=84 \\ & \overline{\mathrm{Y}}_{.2}=446.01912 \\ & \mathrm{~W}_{.2}=0.32153 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{3}=220, \mathrm{n}_{3}=88 \\ & \overline{\mathrm{Y}}_{3}=553.3727 \\ & \mathrm{~W}_{.3}=0.3384 \end{aligned}$	$\begin{aligned} & \mathrm{N}=650 \\ & \mathrm{n}=260 \\ & \overline{\mathrm{Y}}=450.82 \end{aligned}$

Table 6.2 (for data set 2)

	B A	Attribute A			Total
		Low	Medium	High	
	Low	$\begin{aligned} & \mathrm{N}_{11}=56, \mathrm{n}_{11}=22 \\ & \overline{\mathrm{Y}}_{11}=37.232 \\ & \mathrm{~W}_{11}=0.1143 \\ & \mathrm{~S}_{11}^{2}=504.1068 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{12}=50, \mathrm{n}_{12}=20 \\ & \overline{\mathrm{Y}}_{12}=113.02 \\ & \mathrm{~W}_{12}=0.102 \\ & \mathrm{~S}_{12}^{2}=434.947 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{13}=52, \mathrm{n}_{13}=21 \\ & \overline{\mathrm{Y}}_{13}=188.8846 \\ & \mathrm{~W}_{13}=0.1061 \\ & \mathrm{~S}_{13}^{2}=505.163 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{1 .}=185 \\ & \mathrm{n}_{1 .}=63 \\ & \overline{\mathrm{Y}}_{1 .}=111.1265 \\ & \mathrm{~W}_{1 .}=0.3224 \end{aligned}$
	Medium	$\begin{aligned} & \mathrm{N}_{21}=48, \mathrm{n}_{21}=19 \\ & \overline{\mathrm{Y}}_{21}=267.3333 \\ & \mathrm{~W}_{21}=0.09796 \\ & \mathrm{~S}_{2!}^{2}=500.926 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{22}=62, \mathrm{n}_{22}=25 \\ & \overline{\mathrm{Y}}_{22}=321.258 \\ & \mathrm{~W}_{22}=0.1265 \\ & \mathrm{~S}_{22}^{2}=768.06 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{23}=58, \mathrm{n}_{23}=23 \\ & \overline{\mathrm{Y}}_{23}=413.776 \\ & \mathrm{~W}_{23}=0.11836 \\ & \mathrm{~S}_{23}^{2}=466.716 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{2 .}=168 \\ & \mathrm{n}_{2 .}=67 \\ & \bar{Y}_{2 .}=337.792 \\ & \mathrm{~W}_{2 .}=0.34282 \end{aligned}$
	High	$\begin{aligned} & \mathrm{N}_{31}=54, \mathrm{n}_{31}=22 \\ & \overline{\mathrm{Y}}_{31}=483.037 \\ & \mathrm{~W}_{31}=0.1102 \\ & \mathrm{~S}_{31}^{2}=564.56 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{32}=60, \mathrm{n}_{32}=24 \\ & \mathrm{Y}_{32}=553.666 \\ & \mathrm{~W}_{32}=0.12245 \\ & \mathrm{~S}_{32}^{2}=529.17 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{33}=50, \mathrm{n}_{33}=20 \\ & \overline{\mathrm{Y}}_{33}=625.000 \\ & \mathrm{~W}_{33}=0.102 \\ & \mathrm{~S}_{33}^{2}=562.53 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{3 .}=164 \\ & \mathrm{n}_{3 .}=66 \\ & \overline{\mathrm{Y}}_{3 .}=552.1583 \\ & \mathrm{~W}_{3 .}=0.33465 \end{aligned}$
	Total	$\begin{aligned} & \mathrm{N}_{.1}=158, \mathrm{n}_{.1}=63 \\ & \overline{\mathrm{Y}}_{.1}=259.4999 \\ & \mathrm{~W}_{.1}=0.32246 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{.2}=172, \mathrm{n}_{.2}=69 \\ & \overline{\mathrm{Y}}_{.2}=341.796 \\ & \mathrm{~W}_{.2}=0.35095 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{.3}=160, \mathrm{n}_{33}=64 \\ & \overline{\mathrm{Y}}_{3}=406.694 \\ & \mathrm{~W}_{.3}=0.32646 \end{aligned}$	$\begin{aligned} & \mathrm{N}=490 \\ & \mathrm{n}=196 \\ & \overline{\mathrm{Y}}=336.451 \end{aligned}$

(d) The estimator $\left(\overline{\mathrm{y}}_{\mathrm{dps}}\right)$ has made possible to estimate $\overline{\mathrm{Y}}$ in a 3×3 set-up even without the prior knowledge of N_{ij} and frames. It has an effective utilization of row and column totals N_{i} and N_{j},
(e) The estimator is found most efficient at optimal selection of $\alpha=0.4613$ for set-I and $\alpha=0.4913$ for set -II.
(f) On the basis of data considered herein, one can think of choosing α to a value near to 0.5 which reveals that almost a fifty percent fraction of row sum of size-proportions $\left[\left(\frac{n_{i .}}{n}\right)+\left(\frac{N_{i}}{N}\right)\right]$ and rest fifty percent same from column generates an ideal, quick and easy choice of α. Thus, the proposed estimator provides an easy optimum choice $\alpha=\frac{1}{2}$ or very close to it.

REFERENCES

[1] Agarwal, M.C. and Panda, K.B. (1993). An efficient estimator in post-stratification. Metron, 5, 3.4, 179-187.
[2] Sukhatme, P.V., Sukhatme, B.V., Sukhatme, S. and Asok, C. (1984). Sampling Theory of Surveys with Applications. Iowa State University Press, Indian Society of Agricultural Statistics Publication, New Delhi.

