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SUMMARY

Approximate expressions for moments and the probability of
misclassification (PMC) are derived for two sample linear discriminant function
(SLDF). The mean and variance of SLDF and PMC using both population linear
discriminant function (PLDF) and SLDF are also obtained through simulated
samples from two multivariate normal populations for examining the
performance of SLDF and the validity of approximate theoretical results for
practical applications. The numerical results reveal that PLDF under estimates
the mean, variance and PMC for SLDF. The approximate expressions for SLDF
provide good results for mean and PMC for all values of A? (Mahalanobis
distance) and for variance for low and moderate values of A2,
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1. Introduction

Fisher’s linear discriminant function is the popular technique in the field of
discriminant analysis. An excellent account of this procedure can be found, for
example, in Anderson {1] and McLachlan [6]. The linear discriminant function
yields optimal results in the sense of smallest probability of misclassification (PMC)
when parameters are known. The use of population linear discriminant function
(PLDF) may not be justified in the same way when parameters are not known.
Indeed except for asymptotic optimality and in special circumstances no finite
sample optimality property has yet been found (Das Gupta [3] and Friedman {4]).
To investigate the performance of two sample linear discriminant function (SLDF)
one needs the sampling distribution of Anderson’s classification statistic (W). The
exact distribution of W was derived by Sitgreaves [9] but the expression was too
complicated 1o be used, numerically. A method for computation of the cumulative



210 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

distribution function of W by simulation was discussed by Teichroew and
Sitgreaves [10] but actual simulation was not done due to the then low speed of
compuiers,

In this paper, we derive the approximate moments and whence the sampling
distribution of W and PMC for two group SLDF. We also obtain the numerical
values through simulated samples from two multivariate normal populations for
certain apriori values of parameters to study the performance of SLDF and the
validity of theoretical results for practical applications,

2. Population Linear Discriminant Function

Let X be a random observation from a multivariate normal population. If
population parameters are known the classification statistic is defined as

_ 1 ! e
U=X'E i(u,-uz)—(-z-](wuz) £ (1 —1y) @D

2
When X is distributed as N (i, Z), U is distributed normally with mean —éz—

and variance A% Similarly, when X is distributed as N({p,,Z), U is distributed

AZ
normally with mean [‘“ ‘5’} and variance A% The Mahalanobis distance (A?)

between two multivariate populations is defined as

A =y —py) 70y —Hy) 2.2)

The probability of misclassification for PLDF is defined as @ (-A/2) for
population 7t; and [1 — @ (A/2)] for population n,.

3. Sample Linear Discriminant Function

In most applications the parameters are not known but are estimated from
samples one from each population. Suppose that we have a sample

xP, (e =1,2,...,N,), from population 1, with distribution N{;,Z) and a sample

x@ (0=1,2,...,N,), from population 7, with distribution N(li,,Z). These are
2 2 2
taken as training samples to obtain estimates of pi;, L, and Z. The estimates are

N N

_ 1 1 _ 2

X = [N—J xgl) , Xy = (&LJZ x&z) for i, and p, respectively.
1 2/a=l

1 gm
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Nl ’ N2 ’
1 N = N = 2 2
6 PR CR I TR ]
o=1 =1
n=(N, +N,-2)
and classification statistic is defined as
B T
w=x57 (%) "XZ)"(EJ(xl +%;) 87 (% -%p) (3.1
3.1 Moments
We write Win (3.1) as
W=u'Sly (3.2)

- 1), .. .
where u = (X, -X,), v=X~ [E](xl +X,) and S is the pooled covariance matrix.

Suppose X € 1y, then

11~N[[.LI—!.12 (Nl +N2 andv N{ 1+ 4N1) (4N2)~1)E}

Letu = [ N N2 uand v, = J 4NN, }v

(N1+N2 N 1 +N, +4N|N,)
Then
N; N, N; N
~N| - — < ¥ ~N - » )
|:(|»11 Ma) {N1+N2} }\q {(Ml ”2)\/{(N1+N2+4N, N,)
W=k[(“1 +vy) ST ug+vy) = (ug-vy) S_l(ul“vl):] (3.3)
where k = 1 J[(N1+N2)(N1+N2+4N1 Nz)]
8N N,

Note that (u; +v,)and (u; —v,) are independently normally distributed
(Moran [7]) as (u; + v;)~N(8;,k; Z)and(u; —v,)~N(8,,k; ), where
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8 = [(M "“2)\/N1 N, {(Nl +N2)-1/2 + (Nl +N, +4N, Nz)*l/Z}}

(N;-Ny)
[Ny + N2 ) (N + N, +4N; N )} 2

% =[(M “H2)VNIN, {(Nl +Np) 2 - (N + Ny +4N, Nz)-m}]

(N;—N,)
[(Ny +No) (N, + N, +4N, N, )}

k1=2 1+

kp =2/ 1-

Lett) = (u, +v,)k;"? and t, = (u, ~v,)k;"?
Then one writes
W= k[k1 1187t ~ky ty 87! tz] (3.4)

where t; and t, are independently distributed as

t) ~Nj —==,Z |and t, ~N(———,Z
{\/kl ) vka
Now, by using the theorem (5.2.2) of Anderson [1], we write the classification

statistic W as

W = kk, TZ —kk, T (3.5

2 np 2 2 np 2
where Ti "[M]Fp,nwp+l (Ax)aﬂd T3 ’"{m}pp,n—p-ﬂ(AZ)wi[h

Fp (AQ,) as non central F variates and A? = L 8/ 27'8,,i=1,2, thatis,
i k 1 1

1
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2}[(N1+N2) Y2 LN +N, +4N; N,) ”2] A% and

_ . 2
A% =[N1 N2 ]{(N1+N2) Y2 _(N;+Np +4N| N,) “3] Al
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A similar representation of W as a function of the elements of two 2 x 2
independent Wishart matrices has been provided by Bowker [2]. The exact
distribution of W (3.5) is difficult to obtain since le and Tz2 are not independent
variates. Their denominators are interrelated with identical distribution except when
p = 1, in that case these Hotelling T? variates are independent with same
denominator.

Here, we assume the same denominator for all values of p and derive the first
two moments of W and whence its approximate sampling distribution to obtain
PMC for SLDF, We examine the validity of these approximate results by compar-
ing with corresponding results based on simulated samples from two multivariate
normal populations. Although this comparison may not give exact answer but it
frequently gives results that are sufficiently accurate for most practical purposes.

With the assumption of same denominator we write W as

W= (U—l;yﬁl (3.6)

where U;~g xf, (a%), Uy ~g, xf; (Azz) and v~x§_p+1 are independent chi-

square variates. The constants g, = nkk, i = 1, 2 are defined as

N 12
g =[-———)[N1-Nz +{(N1+N2)(N1+N2+4Nl NZ)} ] and
4N, N,

n 172
g2, =[4N1 NJ[Nz =N +{(N; + N }{(N; +N, +4N, Nz)} ]

By using the expression for r-th raw moment of a non-central chi-square
variate (Johnson and Kotz [5]) we obtain

E(U; -Uy) = nk{(k; ~k;)p+ k; A] —k; 43 | and
E(U, ~U,)? =n2k2[p(p+2)(k12+k%)+2(p+2)(k12 2+k3al)
+(kf A‘{+k%A‘§)—2k1kz(p+A21){p+A22)]

The r-th raw moment of W is expressed as

Ry (W) =p; (U =Ug)up (V)

o | H(@/2)-r .
where u,(\’)— {2rr(q/2) andgq=n-p+l1
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This gives F(%] =(n-p- 1)_1 and E(Vli'] = [(n ~p-1)(n- p—3):|_1

The expressions for X € T, can be obtained by interchanging & Zand 8,2
Finally we obtain

A2
l) |: 2N N [TJ} when X e,
E(W)_ (n p- 1N2

A2
— ||, when X emn,
(n p— 1) 2N1N2 2

E(W?)=E(U; -U2) E(V™?) and Var(W) = E(W)’ - [EW)? 3.7)

3.2 Probability of Misclassification

By assuming that U, and U, are approximately distributed as axg and cxﬁ

respectively, where the constants a,b,c and d are easily obtained by using the
Patnaik’s two moments approximation (Patnaik [8]). The moments of U, and U,
are given in section (3.1).

The region of classification for population %, is W 2 0. The probability of
misclassifying X to 7, when it actually belongs to 7, is given by
p(2[) = P(W < 0|m;)
=P(U; S Uy |m)
=1y, (b72,d/2)

3.8

where I (a, b) is the value of incomplete beta and Wo =

_°
(a+c)’

Similarly, the region of classification for 7, is W < 0 and the probability of
misclassifying X to &, when it actually belongs to &, given by

d" b
P([2)=1, [~ 2] 39)

a
* .
(a +cC )

»* * L L .
where w = anda ,b ,c ,d are the corresponding constants when

xenz.
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4. Simulation

Here, we generate N, + N, + 2 observations from two p-variate normal
populations, N, + 1 from 7, and N, + 1 from =,, with certain apriori values of
parameters. The first N, + N, p-variate observations are used to obtain SLDF. The
PLDF is obtained by using the population mean vectors and the dispersion matrix.
The remaining two observations, one from each population were used to get
numerical value for PLDF and SLDF for each group, separately. This process was
repeated 1000 times to get one value for each of PMC for PLDF, PMC for SLDF,
mean for SLDF and variance for SLDF for each group, separately, for one fixed
set of parameters p, N, and N, . The corresponding theoretical values are also
computed from the formulae given in previous sections for comparison with
simulated results. The numerical results presented in Tables 1-4 are for the following
apriori values :

21 =(cij)’ Cii =]and cij =p,i¢jand 22 =(cij)’ cij =p|1_J|,V1andJ
p=3,5()N, =N, =20,(2)N, =25,N, =15,p =03,0.5,0.7

“—1 =(m1, mz, m3,0,...,0) a.ﬂd IJ,2 =(0,0, O,...,O), ml = 1, m2 =O, 2, m3 =O,3

5. Numerical Results

The numerical results in Table 1 reveal that the simulated (S) values of PMC
for PLDF agree with the corresponding theoretical (T) values for all values of
Mahalanobis Distance (A?) between the two multivariate normal populations. This
agreement supports the simulated results for the study. The results in Tables 2-4
indicate that the values for mean, variance and PMC are more for SLDF than
PLDF. The mean and PMC of SLDF obtained from the approximate expressions
in section 3 are close to simulated values presented in Tables 2 & 3 for all values of
A? and overestimate the variance of SLDF in comparison to the simulated values
in Table-4 particularly for the highly distant populations. This implies that the
theoretical expressions give good approximation for mean and PMC of SLDF for
all values of A? and the variance of SLDF for low and moderate values of AZ .
Thus, the sampling distribution of W considered here is good approximation for
all practical purposes for low and moderate values of A2,
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