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SUMMARY 

The technique of regression analysis may give misleading inferences 
when applied to complex survey data and sample size is small. In recent 
past, number of attempts have been made to find out suitable statistical 
procedure for regression analysis of survey data under different inferential 
frame-work. In this article, an attempt has been made to study the 
performance of different regression estimators of survey data for small 
sample sizes. The performance of p-weighted estimators were found to be 
satisfactory for small sample sizes as they are robust against the failure 
of model assumptions. 
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I. Introduction 

Regression analysis is frequently applied to the data from comlex surveys. 
It is well known that survey data collected by imposing complex survey design 
does not satisfy the implicit, identitally and independently distributed 
assumptions of error in regression model. As a consequence of this such results 
may be misleading. 

There are basically two inferential framework to get an estimator of 
regression coefficient for survey data. First is based on the assumptions of the 
linear regression model which is optimum if these assumptions are satisfied 
(Royall [14], Royall and Herson ([15], 16]), Nathan and Holt [10], 
Nordberg [11], Dumochel and Duncan [4], Demits and Halprin [3]). Second 
is based on randomisation by which data is collected. The later approach 
provides p-weighted consistent estimator of regression coefficient by giving 
suitable weights to the terms of estimator obtained with the help of models 
(Nathan and Holt [10], Fuller [8], Holt et al. [9], Scott and Holt [19]). 
Christensen ([1], [2]) attempted to obtain the estimator of regression coefficient 
by incorporating the population structure in the error of the regression model 
itself. 
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The use of jackknifing technique in the complex surveys has been found 
to be widespread. In the complex surveys, it becomes difficult to estimate the 
variance especially when the parameter under consideration is non-linear like 
correlation coefficient, regression coefficient etc. Therefore, in such situations 
jackknifing technique has been considered for estimation of variance 
(Quenouille ([12], [13]), Tuckey [20], Durbin [5], Efron ([6], [7]), and Wu [21]). 

In this article, an attempt has been made to compare the properties of 
ordinary least square (OLS) estimator, maximum likelihood estimator (MLE) , 
p-weighted OLS, p-weighted MLE and their corresponding jackknifed 
estimators under different sampling designs for estimating regression coefficient 
and its variance for small sample sizes in case of complex survey designs. 

2. Estimators 

Suppose a finite population U consists of N identifiable units and a sample 
of n units is drawn with probabilities pes). For a sampling design p, let 
1t; (> 0) denote the inclusion probability of the i-th unit (i = 1, ... , N). Let 

Y, X, Z denote dependent, independent and design variables respectively. Let 
our parameter of interest be finite population regression coefficient B. 

_ NLu Xi Yi - Lu Xi Lv YiB - 2 2
NLu Xi - (Lv Xi) 

where Lu denotes the summation over all the units of population U. 

The OLS estimator of B and its variance is 

(2.1) 

(2.2) 


where, Ls denotes the summation over all the units of the sample s and 

C'i is model error variance. 

The design consistent estimator of B is 

(2.3) 

----.....----.... .... - ­~----
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The p-weighted variance of M2 can be obtained by using Taylor series 

linearization technique as 

2

[Lv (" ~~u>'J 
\where, Xu is the mean of all units belonging to population U and 

Llij '1tij -1tj '1tj and Ej = Yj - BXj 

Demits and Halprin [3] derived MLE estimator of B under multivariate 
normality assumption of the target population as 

v (M ) = ~----'-----"--- (2.4) 

"2 
Oz
--1 
S2 
z 

(2.5) 

The sample statistics 

-
Xj , Sj 

2 
,Sij , Pij , Pjj.k (i,j, k = y, x, z) 

are defined in the usual way analogous to the corresponding distribution 
parameters 

The variance of M3 is given by 


V (M3) =(1 Pyx) n ~ - j Pxy [1 2pxz) +
2 ~[(1 Pyz2 . x) 1 - 2 Q - 1]1 + Q1Pyz2 . x (1 - 2 2 

(1- 2) 2 2 j~4(XIZ)_1 !!.(~4(Z) 1]1] (2.6)Pxz Pxz Pyz . x 4 + n 4 
Ox. z Oz 

where, ~4 (z) is the fourth moment of z variable. 
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The corresponding p-weighted estimator of B as given in Nathan and 
Holt [10] is 

(2.7) 


where 

-.-. 

~ 
L_l_ 

N1ta 

S 
*2 = Sjj 

* 	 (i, j = y, x, z ; a = 1, ... , N) 

1ta = prob (a E s Iz) > 0 

Variance 	of M4 is given by 

V (M4) = ~ (1 - P~x) [ (1 - p~z) (1 - P~z . x) + 
Ox 

[Pi, (1- Pi,. ,) +Pi,. P ~2~J1En (: IN[::::I Z)l] 
(2.8)Pxz Pyz . x (1 - Pxz) ~ . z 

The variance of M3 and M4 are obtained by Demits and Halprin [3] under 

trivariate normality assumption of target population, whereas, it is derived by 
Nathan and Holts [10] under less stringent conditions. 

The technique of jackknifing is one of the most important variance 
estimation method for non-linear statistics in complex surveys. It is easy to 
obtain corresponding jackknifed estimator of regression coefficient and its 
estimate of variance for Ml' M2 ,M3 and M4. Let the estimator of regression 

coefficient corresponding to the estimators Ml' M2 ,M3 and M4 respectively 

based on sample of size n be given by 
1\ 

8 = MjG) (i = 1,2,3,4) 	 (2.9) 
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A 

Let Sri) be the estimate of regression coefficient obtained from recomputing 
A°with ilh pair (Yi' x) deleted from the sample. Therefore, the pseudo-values 

are 
A A A 

OJ = n e - (n - 1) O(i) 

The ordinary jackknife point estimator of °is then given by 

A 1 A e = mk(J) = ; £i 0i (k = 1,2,3,4) (2.10) 

A 

and jackknife variance estimate of a is 

(2.11 ) 


3. Simulation 

A multivariate normal population of size 5000 is simulated with the help 
of a data obtained from Fisheries survey of West Bengal using the algorithm 
given by Schewer and Stoller [18]. The total catch from a pond (y) is a 
dependent variable, total quantity of seed used in a pond (x) is an independent 
variable and area of the pond (z) is design variable. The various sampling design 
considered in this study on the basis of z are (i) simple random sampling with 
replacement (srswr) (ii) simple random sampling without replacement (srswor) 
(iii) probability proportional to size with replacement (ppswr) (iv) probability 
proportional to size without replacement (ppswor). For each sampling design 
eight different estimators are given by (2.1), (2.3), (2.5), (2.7) and (2.10) are 
considered for this emperical study. The bias, mean square error (m.s.e) and 
bias ratio (B.R) for each of the eight estimators under four sampling designs 
were obtained based on 1000 samples of equal sizes and properties of the above 
statistics were studied. The samples are selected by the algorithm given by 
Sampford [17]. 

The results of bias, m.s.e., and B.R. for various estimators under different 
sampling designs are presented in Table 1 and Table 2. The following 
conclusions may be drawn regarding the bias of the estimators. (1) In case 
of small sample sizes, the bias of the estimators under all the sampling design 
is negative (i.e., underestimate) and with the increase in sample size bias 
decreases and becomes almost zero, which implies that all the estimators are 
consistent. (2) In case of srswr and srswor designs, the estimators MJ and M2 

are identical and are less biased than other estimators. (3) In case of ppswr 
and ppswor, MJ and M2 are less biased and M4 compares favourably with M, 
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and M2• (4) M4 is better than M3 in case of all the sampling designs as it 

takes care of the probability structure of the design. (5) Jackknifed estimators 
do not lead to reduction in the bias as compared to non-jackknifed estimators, 
as these estimators are independent of the sampling structure of the design and 
some form of weighting is required. 

An examination of the Tables 1-2 leads to following conclusions with 
regards to m.s.e. (1) In case of equal probability sampling design, the estimators 
MI and M2 have m.s.e of same order and are better than other estimators except 

M4 which compares favourably with MI and M2 as it is 1t-weighted maximum 

likelihood estimator. (2) In case of ppswr and ppswor, the estimator M4 is 

superior than other estimators because it takes into account the sample selection 
in some way. (3) For small samples M4 has slightly higher m.s.e as compared 

to MI and M2• (4) For large samples, M3 compares favourably with other 

estimators. (5) The performance of jackknife estimators is not satisfactory as 
compared to other estimators as they are not weighted according to sampling 
design used. 

The B.R. is obtained to see the relation between bias and m.s.e. This 
relationship is important for confidence interval to be valid. The conclusions 
which follow from Tables 1-2 are : (1) The B.R. of the estimators 
M1, M2, M 4• M2(j) and M3(j) are in general better than other estimators for all 

the designs considered in this study. For particular design some conclusions 
are (i) for srswr Ml' M2, M2(j) and M3Gl are similar. (ii) for srswor Ml' 

M2, MIG) and M2G) appear superior compared to others. (iii) for ppswr Ml and 

M3(j) have comparatively less B.R. (iv) for ppswor Ml' M4 and M3(j) are better 

than rest of the estimators. However, from the results based on B.R., it is 
observed that no particular estimator is found to be better. 

Combining the results obtained above, we conclude that for self weighting 
designs (srswr and srswor) estimators Ml and M2 are almost same in terms 

of both bias m.s.e and B.R. In case of unequal probability sampling design 
(ppswr and ppswor), the estimator M4 is superior to other estimators in respect 

of its bias and m.s.e as target population is multivariate normal satisfying the 
assumptions required for this estimator. Also, it takes into account the inclusion 
probabilities of the units. 

In terms of B.R., M4 compares favourably with other estimators 

particularly jackknifed estimators M2(j) and M3(i)' but in terms of m.s.e., these 

jackknife estimators are less efficient than other estimators. However, jackknife 

--- ..-----._....._--------------­
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variance estimators have the advantage that they are simple, noninvasive and 
computationally attractive and can be improved further by suitable adjustments 
for given situations. 
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