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SUMMARY

The technique of regression analysis may give misleading inferences
when applied to complex survey data and sample size is small. In recent
past, number of attempts have been made to find out suitable statistical
procedure for regression analysis of survey data under different inferential
frame-work. In this article, an attempt has been made to study the
performance of different regression estimators of survey data for small
sample sizes. The performance of p-weighted estimators were found to be
satisfactory for small sample sizes as they are robust against the failure
of model assumptions.
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1. Introduction

Regression analysis is frequently applied to the data from comlex surveys.
It is well known that survey data collected by imposing complex survey design
does not satisfy the implicit, identically and independently distributed
assumptions of error in regression model. As a consequence of this such results
may be misleading.

There are basically two inferential framework to get an estimator of
regression coefficient for survey data. First is based on the assumptions of the
linear regression model which is optimum if these assumptions are satisfied
(Royall [14], Royall and Herson ([15], 16]), Nathan and Holt [10],
Nordberg [11], Dumochel and Duncan [4], Demits and Halprin [3]). Second
is based on randomisation by which data is collected. The later approach
provides p-weighted consistent estimator of regression coefficient by giving
suitable weights to the terms of estimator obtained with the help of models
(Nathan and Holt [10], Fuller [8], Holt et al. [9], Scott and Holt [19]).
Christensen ([1], [2]) attempted to obtain the estimator of regression coefficient
by incorporating the population structure in the error of the regression model
itself.
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The use of jackknifing technique in the complex surveys has been found
to be widespread. In the complex surveys, it becomes difficult to estimate the
variance especially when the parameter under consideration is non-linear like
correlation coefficient, regression coefficient etc. Therefore, in such situations
jackknifing technique has been considered for estimation of variance
(Quenouille ([12], [13]), Tuckey [20], Durbin [5], Efron ([6], [7]), and Wu [21]).

In this article, an attempt has been made to compare the properties of
ordinary least square (OLS) estimator, maximum likelihood estimator (MLE),
p-weighted OLS, p-weighted MLE and their corresponding jackknifed
estimators under different sampling designs for estimating regression coefficient
and its variance for small sample sizes in case of complex survey designs.

2. Estimators

Suppose a finite population U consists of N identifiable units and a sample
of n units is drawn with probabilities p(s). For a sampling design p, let
7, (>0) denote the inclusion probability of the i-th unit (i = 1, .., N). Let

Y, X, Z denote dependent, independent and design variables respectively. Let
our parameter of interest be finite population regression coefficient B.
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where %, denotes the summation over all the units of population U.

The OLS estimator of B and its variance is

_ DX X; ¥ — X% & ¥

M= s ey @b
o

VM) = ——— 22

M) = e e @2

where, X denotes the summation over all the units of the sample s and

o® is model error variance.

The design consistent estimator of B is
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The p-weighted variance of M, can be obtained by using Taylor series
linearization technique as
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‘where, X is the mean of all units belonging to population U and

Aij = ’nij—ﬁiﬂj and Ei = YinXi
Demits and Halprin [3] derived MLE estimator of B under multivariate
normality assumption of the target population as
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The sample statistics
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are defined in the usual way analogous to the corresponding distribution
parameters
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The variance of M; is given by
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where, U, (z) is the fourth moment of z variable.
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The corresponding p-weighted estimator of B as given in Nathan and
Holt [10] is

M, = Nore 2.7
s LJ
S+ g {0*2 - IJ
SZ sZ
where
. Zaeski
Xii = iy N
. Zouzs xla Xj ;r ;j*
%ij Nty 5 1
N,
s?=s Gj=yv.xz;a=1..,N)
T, = prob (€s|z) > 0
Variance of M, is given by
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The variance of M, and M, are obtained by Demits and Halprin [3] under
trivariate normality assumption of target population, whereas, it is derived by
Nathan and Holts [10] under less stringent conditions.

The technique of jackknifing is one of the most important variance
estimation method for non-linear statistics in complex surveys. It is easy to
obtain corresponding jackknifed estimator of regression coefficient and its
estimate of variance for M, M, , M, and M,. Let the estimator of regression

coefficient corresponding to the estimators M;, M, , M, and M, respectively
based on sample of size n be given by

A
0 =M (=12349 2.9)
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Let 6 be the estimate of regression coefficient obtained from recomputing

9 with i® pau' (y, x;) deleted from the sample. Therefore, the pseudo-values

are
A

A A
ei = nG—(n—l)G(i}
The ordinary jackknife point estimator of @ is then given by
A 1 wa ?
g = mk(J) = ;1‘ ):i ei (k = 1, 2, 3, 4) (210)

A
and jackknife variance estimate of 8 is
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3. Simulation

A multivariate normal population of size 5000 is simulated with the help
of a data obtained from Fisheries survey of West Bengal using the algorithm
given by Schewer and Stoller [18]. The total catch from a pond (y) is a
dependent variable, total quantity of seed used in a pond (x) is an independent
variable and area of the pond (z) is design variable. The various sampling design
considered in this study on the basis of z are (i) simple random sampling with
replacement (srswr) (ii) simple random sampling without replacement (srswor)
(iii) probability proportional to size with replacement (ppswr) (iv) probability
proportional to size without replacement (ppswor). For each sampling design
eight different estimators are given by (2.1), (2.3), (2.5), (2.7) and (2.10) are
considered for this emperical study. The bias, mean square error (m.s.e) and
bias ratio (B.R) for each of the eight estimators under four sampling designs
were obtained based on 1000 samples of equal sizes and properties of the above
statistics were studied. The samples are selected by the algorithm given by
Sampford [17].

The results of bias, m.s.e., and B.R, for various estimators under different
sampling designs are presented in Table 1 and Table 2. The following
conclusions may be drawn regarding the bias of the estimators. (1) In case
of small sample sizes, the bias of the estimators under all the sampling design
is negative (i.e.,, underestimate) and with the increase in sample size bias
decreases and becomes almost zero, which implies that all the estimators are
consistent. (2) In case of srswr and srswor designs, the estimators M, and M,

are identical and are less biased than other estimators. (3) In case of ppswr
and ppswor, M, and M, are less biased and M, compares favourably with M,



JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

120

‘onel se1q Iy Juesa1dal () ysueise i Lwend)
“o'sur wesaxdal () siexoriq o ut Ainueny) ‘seiq sjuosaadar Anuo )sIyy ojge s uf

o718 adweg = v

*86°C65 *LT0T +£ST A +066 +06O¢ +00°6 +608
(s’ 97) 09°2) 097 (50°0) 00 ©o'm €00

9L~ 910 00~ 610~ 700 LO0 700 100 Jom 05
69079 *7'8 *26 0 *£60 +60°€ P *19°¢ *SLT
(19D (z97) (Ls'v) (L$'7) (so'0) Com {500 €00

9L'L- £ro- 000 000 000 LO0 000 000 in 0s
*«0F LPE *80°¢ *19°C +09°T +99°'¢ +5v0C *1E€ #1E€
(6s°'1) 98°7) oL L) (60°0) 60'0) 600) (60'0)

9. v 920'0— $0°0 00 100 90°1 100 100 om 0g
#61TLE #8001 *0S Y *65 ¥ *L¥9 *697TC S «H0°C
(S }] 8L'T 99°7) 99°7) oro 1o o1ro 1o

9 LI L0°0 L00~ 200 L0 100 100 Im 0
*8V 0T 167 +2S 0 +£10 +06°1 +11L6 +£0°C +£072
(68°2) 967 6L°7) 6L €1ro (80°1) (€10 €1ro

08¢~ 800~ 000 000~ 000 101 000~ 00'0— Jom 0T
O8I «IL6 +68 % +06F *€10 *CL 56 *5C0 *520
{€o'1) (61°¢) ©0e) 00°¢) 1o {60'11) F1o #10)

Lse- Lo 80°0— 80°0— 000 00'1 000~ 000~ Im 0z
*01°SE1 «10°€ +69°0 *69°0 *1C € +£098 *L9°C *99°E
(83°'1) o9 $2% %) ey (8¢°0) e (s€°0) (S1))

S8 1- LO°0~ 100 100~ 1000~ 660 700~ 00 Iom 01
+00°ZE +89°7 +LS¢ ¥LSE #0562 +0¢ 68 *9€ ¢ +9C7T
(z6'81) az9) €Ly (€Ly) Feo Ze'n (tco) €50

191 900~ LOO- LO'0- 100~ 701 100~ 100~ In 01
c?—z A_umg chE ::2 g mz NE _S :mmwoa u

wuou_wﬁzmm

soz1s opdwns WA IP 10§ SUBISIP JOMSIS PUB IMSIS J0J SIOFEUINSS STIOLIBA JO ONRL SBIQ puw JOLIS axenbs ueawt ‘seig ¢ | S[qBL



121

‘onel seiq oY) juasardar () Ysuoise ym Aiuend)
“arstur juasaxdar () siooriq 2y ur Aynueny) ‘serq jussardax Anus sy 9jqe) oy uy
ozis ojdureg = u

REGRESSION ESTIMATORS FROM SURVEY DATA FOR SMALL SAMPLE

+0€96L +6T #0601 *£0 PP #0071 +05 €2 «LLTT T

ov1) (1s'¢) (6v'g) (6v'¢) (900 ©1'0) o' (80°0)

$6'8~ 110 61°0 180~ £0'0 LO0 £0°0 100 om oS
+0LT89 +5C¢ MUY +06°5C +¥0°ST +80° 3¢ *6L ST +01°01

0£'1) (zv'e) (6£c) (6£°¢) (Lo {60'0) (Lo (60°0)
0L6'L~ $0°0— 60°0 Lo 00 110 $0'0 £0°0 m 08
«0C9Ly +09°0 *PES +ECLE *£9°¢1 +8€°61 *15¢1 +VTS

9c'1) (£5°¢) (Sv'e) (829 aro) (AN1)) ar1o) (£1'0)

95°¢—~ 10°0 60°0 690 $0°0 90°0 $0°0 00 iom o€
+067S¥ +616 +06 C1 +L6°C +£0°L +99°0¢C +26°L +3LS

(3349 (95°'¢) 94'¢) (9v'¢) 2ro) €10 @ro #1°0)

606 Lo 20 L0 200 LOO 7o 200 im ot
+ELTLE LTo *10°1 *86 91 +£C°C +66 S6 *L0°S +95°1

(cg'D o'y 08'¢) {08'¢) (61°0) (AN )) (61°0) Tz o)

weE 000 100 £E0- 700 201 700 000 oM o
*660CE *E0P +E0G *9F9 *260 5P *61°0 *€CC

e Loy (i8¢) (is'©) ‘10 ©rn 81°0 tad )]

£LE- 1870 010 ro- 000 00’1 000 100~ I 0T
+65 ECT +001 «LST1 OEY +60 L +09°88 V8L AR

g1 zry) (89°6) (89'¢) o {(vn (i41)] v'0)

SLI- 970 LZ0 10 o0 SO'T 050 €00 Iom 01
+06€LT +510 +080 N A *C098 +£C1 +£ET

9z 0e's) (95°9) (95°9) {Lro) or'n Oy (6¥°0)

$6'1- 000~ w0o- 610~ 000 01 000 000~ in 01
GVE Emz aNE AC-E W W TN -S udisogy u

SIojRUmsSy

saz1s oydures Jusiayyip 103 suSisop Jomsdd pue 1msdd Joj sI01RUINSS SHOLIBA JO ONIEI SBIG PUE JOLI2 2renbs uwous ‘seig : 7 d[qeL




122 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

and M,. (4) M, is better than M, in case of all the sampling designs as it

takes care of the probability structure of the design. (5) Jackknifed estimators
do not lead to reduction in the bias as compared to non-jackknifed estimators,
as these estimators are independent of the sampling structure of the design and
some form of weighting is required.

An examination of the Tables 1-2 leads to following conclusions with
regards to m.s.e. (1) In case of equal probability sampling design, the estimators
M, and M, have m.s.e of same order and are better than other estimators except

M, which compares favourably with M, and M, as it is n-weighted maximum
likelihood estimator. (2) In case of ppswr and ppswor, the estimator M, is

superior than other estimators because it takes into account the sample selection
in some way. (3) For small samples M, has slightly higher m.s.e as compared

" to M, and M,. (4) For large samples, M, compares favourably with other

estimators. {5) The performance of jackknife estimators is not satisfactory as
compared to other estimators as they are not weighted according to sampling
design used.

The B.R. is obtained to see the relation between bias and m.s.e. This
relationship is important for confidence interval to be valid. The conclusions
which follow from Tables 1-2 are : (1} The B.R. of the estimators
M, M, M, M2(i) and M%.) are in general better than other estimators for ail

the designs considered in this study. For particular design some conclusions
are (i) for srswr M|, M,, Mzﬁ) and MSG) are similar. (ii) for srswor M,
M,, Mlﬁ) and Mzo) appear superior compared to others. (iii) for ppswr M, and
M3(j} have comparatively less B.R. (iv) for ppswor M|, M, and MS(j) are better
than rest of the estimators, However, from the results based on B.R,, it is
observed that no particular estimator is found to be better.

Combining the results obtained above, we conclude that for self weighting
designs (srswr and srswor) estimators M, and M, are almost same in terms

of both bias m.s.e and B.R. In case of unequal probability sampling design
(ppswr and ppswor), the estimator M, is superior to other estimators in respect
of its bias and m.s.e as target population is multivariate normal satisfying the

assumptions required for this estimator. Also, it takes into account the inclusion
probabilities of the units.

In terms of B.R, M, compares favourably with other estimators
particularly jackknifed estimators My, and M3®,
jackknife estimators are less efficient than other estimators. However, jackknife

but in terms of m.s.e., these
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variance estimators have the advantage that they are simple, noninvasive and
computationally attractive and can be improved further by suitable adjustments
for given situations.
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