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SUMMARY

The suitability of using Comunon Principal Components (CPC) for
investigating the crucial assumption of homogeneity of covariance matrices
(which is not satisfied in general) is examined in the context of clustering
under the multi-sample situation. The approach mitigates the crucial
assumption by providing a “common” (pooled) estimate for the principal
components of the objects instead of a pooled estimate for the covariance
matrices of the objects. An illustration of the approach with regard to the
rainfall based classification of the districts of Andhra Pradesh State is
described.
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1. Introduction

Homogeneity of covariance matrices has been a crucial assumption in
several multivariate statistical analysis procedures. Attempts af providing a
solution to the situation arising out of heterogeneity of covariance matrices are
very few.

The Comumon Principal Compouent (CPC) analysis (Krzanowski [3]) can
be considered as a way to deal with the problem of heterogencity of covariance
matrices. The CPCs provide a pooled cstimate for the principal components
of the covariance matrices which are heterogeneous. An application of the
procedure fo the discriminant analysis (when the covariance matrices are
heterogeneous) has been attempted by Darghai-Noubary [1] and Owen [4].
These researchers observed that for the large samples, the performance of
discrimination procedure based on the CPCs tends to be better than the
conventional procedures such as the Quadratic or Linear discriminant functions.

In the present study, the applicability of common principal components
in clustering is examined for the multi-sample case,



2 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

2. Material and Methods

The Multi-Sample Case: Let there be m “objects” which are to be clustered
into g (< m) homogeneous groups. Suppose that the j-th object has N,
observations (j = 1, ..., m) which are recorded by drawing a random sample
of size N. from it. Let X be the random vector consisting of k variables, then
xij represents the i-th observation vector on the j-th object (i = 1, ..., N,

j =1, .., m). Thus on the basis of the obscrvation vector Xij the m objéctjs
are {o be classified into g (<m) distinct groups. The objects can be conveniently
clustered by applying the canonical approach.

The Canonical Approach: The approach involves extracting first p (<k)
latent vectors a (j =1, ..., p) of the matrix product (W"B); where the matrices
B and W fonn the following identity as a result of a one-way MANOVA model
assumption

T=B+ W
where
T = Matrix of Total Sum of Squares and Products (S.S.P.)
B = Matrix of “Between Samples” S.S.P., and
W = Matrix of “Within Samples” S.S.P.
Note that W is the Pooled Matrix of S.5.P. of the multi-samples.

The latent vector uj is also referred to as canonical variable,

Yj = aj’X (j = 1,...,p). Each of the i-th object can be represcnted by the

p-dimensional co-ordinates a,'X;, ,X; ..., ap‘Xi; {i = 1,..., m). For the purpose
of clustering, the canonical means (scores) of the objects are obtained on the
basis of the means of the objects (Xi »hie, o)X, (xz")?i (xp'S("i;
(i =1, .,m ). The objects are then grouped into clusters on the basis of
similarities in the co-ordinates of the objects in the p-dimension. For
p < 3, it can be convenienily carried out by plotting the co-ordinates.

The caunoanical approach thus involves use of the common (pooled)
covariance matrix (W/df) for determining the clusters. However, the use of
pooled covariance matrix is reasonable only when the covariance matrices
(§.5.P) of the samples satisfy the homogeneity coudition. Thus when the
covariance matrices of the objects are heterogeneous, as an alternative, let us
consider the applicability of Common Principal Components approach for
obtaining the clusters,
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The Comynon Principal Components: This approach involves determining
a vector subspace which represents the vector subspaces of all the objects as
closely as possible. Several developments have taken place in this field
(Flury [2]). The present study congiders the procedure developed by
Krzanowski [3]. Suppose that principal component analysis has been carried
out for cach of the m objects. Furthermore, the first p (< k) principal components
are adequate for summarising the total variance of each of the covariance
matrices. Let L (p X k) be the matrix of these vectors comresponding to the
t-th object (t = 1, ..., m) whose rows are the eigen vectors of the p-principal
components. Let H(kxk) =X L’L. Then the first q (< k ) principal

components of H represent the “common principal components”. Following
inferences were drawn about these CPCs (Krzanowski [3])

1. Let b be an arbitrary vector in the original k-dimensional data space
and 8, the angle between b and the vector most nearly parallel to
it in the space generated by the first p-components of the t-th object.
Then the value of b that minimizes V = X coszs‘ is given by the latent
vector b, corresponding to the largest latent root M, of H.

2. Obviously, correspouding to b, the value of V (= V,) is given by M,
which is the largest latent root of H.

3. V represents the measure of closeness of the components of H to all
the p-dimensional subspaces of the objects. The average component
that agrees most closely with all the m subspaces (i.e., the principal
components) of the objects is given by b,. Thus the measure of
discrepancy between b, and the subspace of the t-th object is given
by cos § = V[b', L’ L b|]

4. Completing the latent root and vector analysis of H leads to a subspace
of dimension q (< k) that represents all the m subspaces of the objects
as closcly as possible.

The basis for CPCs is the closeness of the estimated plane of H with
the subspaces of the objects. Since the covariance matrices of the objects are
non-homogeneous, it is obvious that their subspaces would not be comparable
(similar) with all the components of H, but with only the first few components,
q (< k).

These components can be readily identificd on the basis of the V, values
and also the angular separation (3,) between the latent vector b, and the
subspace of the t-th object (i = 1, ..., k, t = 1, .., m). These q identified
components thus provide a common estimate for the principal components of
the m objects.
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The q CPCs, as identified above, can be used for obtaining the component
scores for the objects (based on their mean values) in the g-dimensional plane
of H. Clustering can then be carried out by grouping the objects with similar
scores in the q-dimensional plane.

The approach based on CPC thus duly considers the sampling variations
within the objects by estimating the individual component subspaces and then
a common subspace for clustering.

Application

The approach outlined above is applied for obtaining the clustering of
the districts of Andhra Pradesh (A.P.) State on the basis of rainfall of South-West
monsoon season. The observation vector is the monthly rainfall from June to
September, Rainfall data of 30 years from 1961-62 to 1990-91 has been used
for the purpose of this clustering. The clustering is restricted to the 20 districts
(instead of 23 districts) due to non-availability of the complete data on the
3 newly formed districts (Vizianagaram, Prakasam and Ranga Reddy). Thus
there are 20 objects (i.e., the districts) each having 30 sample observations
corresponding to the 30 years,

For comparison, clustering was also obtained by applying the canonical
approach, as described earlier.

The relevant rainfall data were collected from the Season and Crop Reports
and Statistical Abstracts of A.P. State,

3. Results and Discussion

Andhra Pradesh State is classified into 3 administrative regions, viz.
Coastal Andhra (7 districts), Rayalseema (4 districts) and Telangana (9 districts).
South West monsoon is the main rainy season of the state. There is a
considerable disparity in the average rainfall received in the districts as well
as its consistency over time (Table 1).

Clustering with Common Principal Components: It was found that the
covariance matrices of all the 20 districts were significantly different, implying
heterogeneity among them (Chi-square Statistic = 587.20, df = 190, significant
at 0.01 level of probability).

For obtaining the CPCs, each of the covariance matrices of the districts
were subjected to principal component analysis. It was observed that the first
3 PCs accounted for atleast 86 percent of the sample variance and so adequately
summarized the total variance of the 4 rainfall variates in all the 20 districts.
Hence the matrix L (t = 1, ..., 20) was defined on the basis of the first 3
COmponenis.
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Table 1 : Average monthly rainfall of Andhra Pradesh South-West monsoon
(196162 to 1990-91)

District June July August  September

I Coastal Andhra Region
1. Srikakulam (SRK)

Mean (mm) 145.96 178.54 182.79 199.08

C.V. (%) 45.55 33.34 344 44 .84
2. Visakhapamamv(VZG)

Mean (mm) 123.67 156.12 173.83 168.41

CV. (%) 43.60 32.58 41.12 36.48
3. East-Godavani (EGD)

Mean (inm) 128.67 199.33 201.17 165.29

CV. (%) 50.44 48.08 47.70 390.82
4. West-Godavari (WGD)

Mean (inm) 130.00 212.54 219.75 160.58

CV. (%) 65.71 49.99 51.95 38.25
5. Krishna (KRSN)

Mean (mm) ~ 110.4¢6 199.88 189.83 156.75

CV. (%) 42.01 49.72 49.32 48.18
6. Guntur (GNTR)

Mean (mm) 84.12 151.54 142.83 141.79

CV. (%) 43.01 54.60 55.88 50.67
7. Nellore (NLR)

Mean (inm) 39.08 92.63 88.21 109.54

CV.(%) 42.58 43.02 76.25 59.43

II Rayalseem Region
8.  Kumool (KRNL)

Mean (mm} 72.29 111.58 122.83 142.38

CV.(%) 28.59 51.72 73.80 43.84
9. Anantapur (ATP)

Mean (mm) 47.42 67.29 69.42 143.25

CV. (%) 4532 89.73 78.50 49.83
10. Cuddapah (CDP)

Mean (mun) 58.00 105.21 101.54 135.67

CV. (%) 38.80 67.07 74.84 53.21
11. Chittoor (CHIR)

Mean (mm) 54.13 106.04 95.83 141.42

C.V. (%) 38.43 46.34 60.27 42.99
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Table 1 contd......
District June July August  September

TIT Telangana Region
12. Hyderabad (HYD)

Mean (mm) 121.58 181.00 175.17 159.21

CV. (%) 31.18 53.56 58.85 60.45
13. Nizamabad (NZB )

Mean (mm) 172.63 298.25 315.33 180.54

CV. (%) . 56.44 49.89 59.50 76.86
14. Medak (MDK)

Mean (mm) 139.46 237.25 228.58 169.25

C.V. (%) 38.38 60.47 51.57 59.24
15. Mehaboobnagar (MBNR)

Mean (mm) 84.00 144.17 151.21 147.46

CV. (%) 25.23 47.01 5542 4372
16. Nalagonda (NLG)

Mean (inm) 101.92 152.00 141.21 140.12

CV.(%) 41.67 56.67 44.25 59.51
17. Warangal (WGL)

Mean (mmm) 151.54 272.33 229.25 152.25

C.V. (%) 48.51 53.13 44.46 59.83
18. Khammam (KHM)

Mean (mm) 149.54 291.75 253.50 170.63

C.V. (%) 43.94 41.10 45.02 40.95
19. Karimnagar (KRMN)

Mean (mm) 160.46 262.83 250.38 152.17

C.V. (%) 40.36 49.84 52.05 50.11
20. Adilabad (ADB)

Mean (un) 180.04 306.13 306.92 154.75

C.V. (%) 44.93 57.08 50.87 63.46

The results of the principal component analysis of the matrix
H (= XL/, L ) which gives the common principal components are presented

in Tables 2a and 2b. It can be observed that the latent roots of H, which represent
the measure of similarity between the CPC and vector subspaces of all the
20 districts, are almost similar corresponding of the first 3 components,
(", = 1958, n, = 1931 and ~, = 18.31, Table 2a) whereas it is considerably

tow in the fourth component (m, = 2.85). The results thus indicate that all
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the districts are close together along the first 3 CPCs (ie., the first three
components of H).

An inspection of the angular separation of the subspaces of the districts
with the subspaces of CPCs reveal that these angles are considerably low

Table2a: Common Principal Components for A.P. districts

Variable Common Principal Components
1 2 3 4
(Vector Coefficients)
June ' 0.1123 0.1832 0.0505 0.9753
July -0.9380 0.2980 ~0.1663 0.0606
August 0.1444 0.8003 0.5483 -0.1953
September ~-0.2944 -0.4870 0.8180 0.0830
Latent Root 19.5840 19.3079 18.3091 2.8461

Table 2 b : Angular separation of the districts with the CPCs

Common Principal Components

District 1 2 3 4
(Angles in Degrees)
1. Srikakulam 8.62 38.65 14.42 46.46
2. Visakhapatanam 26.19 0.81 1.15 63.66
3.  EastGodavari 13.44 7.43 0 74.57
4. West Godavari 8.89 3488 45.81 18.27
5. Krishna 2.81 8.70 13.88 73.75
6. Guntur 4.80 5.06 4.58 81.66
7. Nellore 6.59 6.28 6.12 79.12
8. Kurnool 0.81 14.96 4.05 74.45
9. Ananatapur 0.31 16.68 2.56 7313
10.  Cuddapah 444 9.60 9.07 76.01
11.  Chittoor 0 1095 6.07 77.41
12. Hyderabad 5.00 37 0 83.38
13.  Nizamabad ~ 10.26 16.68 19.37 61.74
14,  Medak 334 3.71 730 81.11
15. Mchaboobnagar 10.20 10.70 334 74.78
16.  Nalagonda 397 6.97 13.90 73.89
17. Warangal 0 0 55.54 65.84
18.  Khammam 198 2.56 20.90 68.85
19.  Karimnagar 7.95 11.62 0.81 75.85

20, Adilabad 1.62 10.98 3.14 78.43
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corresponding to the first three CPCs (Table 2b) with the exception of the only
district of Visakhapatanam (26.19%! corresponding to the first CPC, the 2
districts of Srikakulam (38.65%) and West Godavari (34.38°) corresponding to
the second CPC and the three districts of West Godavari (45.81%), Warangal
(55.54°) and Khammam (20.90°) corresponding to the third CPC. These
separations further increase corresponding to the fourth CPC (Table 2b).

The vector subspaces of the CPCs (Table 2a) indicate that the vector
subspace of the first CPC is heavily loaded on July raiofall
(Vector Coeff. = — (.9380); while rainfall of August (Vector Coeff. = 0.8003)
and September (Vector Coeff. = 0.8180) are dominant respectively in second
and third CPCs. This behaviour has been suitably exhibited by all the districts
in their three-dimensional subspaces (i.e., the 3 principal components), as follow:

July rainfall is dominant among the 8 districts in their first component
vector subspaces, the other -5 districts in their second components (vector
subspaces) and the remaining 7 districts in their third component subspaces.
Similar is the case with rainfall of August and September which were dominant
in respectively the second and third CPCs.

Contrary to the above bebaviour, the rainfall of June which is dominant
in the fourth CPC is represented by only 2 districts in their individual component
subspaces.

These results indicate that only the first three CPCs can be considered
common to all the vector subspaces of the districts. These three components
also reveal the common cause for variation in the rainfall of the districts viz.
rainfall of July, August and September.

The three CPCs identified above formied the basis for clustering (being
the common or pooled estimates of principal components of the 20 districts).
The component scores corresponding to the districts were then obtained on the
basis of the mean vectors of the districts (in the three dimensional plane of
the CPCs). For the purpose of clustering, the districts with similar scores in
the three-dimensional plane of the CPCs were then grouped. This provided a
classification of the districts into 11 clusters consisting of 4 single district
clusters (Table 3). The basis of classification (as identified in the CPCs) i.e.,
rainfall of July and August can be readily observed in the clusters. For instance,
the cluster formed with the districts of Mehaboobnagar, Nalagonda and Guntur
can be seen to be almost closer to each other with regard to the rainfall of

1 Angles as low as 18 have been considered to be within the 95 per cent Monte-
Carlo limits (Krzanowski 1979).
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Table 3 : Clustering of A.P. districts

Cluster Clustering with

No. Common Principal Components Approach  Canonical Approach
1. ATP -
2. CDP, CHTR, KRNL CDP, CHTR, KRNL
3. MBNR, NLG, GNTR MBNR, NLG, GNTR
4. SRK MDK
5. NLR NLR, ATP
6. VZG, HYD VZG, HYD
7. EGD, KRSN EGD, KRSN, SRK
8. WGD, MDK WGD
9. KRMN, WGL KRMN, WGL, KHM

10. NZB, ADB NZB, ADB

11. KHM -

July and August (Table 1). Similar observations can be had from the other
clusters.

These clusters can be compared with the agro-climatic zones formed by
the National Agricultural Research Project (NARP), AN.G.R. Agricultural
University, Hyderabad. Andhra Pradesh State is classified into 7 agro-climatic
zones based on the climate, soil types, irrigation and cropping pattern (NARP
Status Report, [5]).

Table 4 gives the agroclimatic zones and the districts covered under each
zone as well as the clusters formed with the CPC approach alongwith the
districts covered under each cluster.

It can be observed from Table 4 that there are only two deviations in
classification under the CPC approach vis-a-vis the agro-climatic classification:
Medak (MDK) has been classified along with West Godavari (WGQ) in Cluster
No. §; whereas, West Godavari is classified in the Krishoa Godavari Zone and
Medak in the Northern Telangana Zone. Also, Hyderabad (HYD) and
Visakhapatnam (VZG) are classified in Cluster No. 6. However, these districts
belong to respectively the Southern Telangana and the North Coastal Zones
under the agro-climatic classification. The agro-climatic zones are classified not
only on the basis of the climate, soil types, irrigation and cropping pattern but
also on the basis of the gcographical contiguity for administrative convenience.
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Table 4 : Agro-climatic classification of Andhra Pradesh State vis-a-vis clusters with
CPC approach

S.  Classification with Agro-climatic base Classification with CPC Approach
No.

Agro-climatic  Districts Covered Cluster No™  Districts Covered
Zones

1. Krishna- WGD, KRSN, GNTR,  Cluster No. 7 EGD, KRSN
Godavari Zone EGD, NLG, PRKM Cluster No.3  NLP, GNTR, MBNR
Cluster No. 8 WGD, MDK

2. North-Coastal Most Pan*s of SRK, Cluster No. 4 SRK
Zone VZNGM , VZG,
Uplands of EGO

3.  Southem Zone NLR, CHTR, CDP, Cluster No.5 NLR

Souther;n parts of Cluster No.2 CHTR, COP, KRNL
PRKM , Eastern parts
of ATP
4.  Northern ADB, KRMN,NZB, ClusterNo.9 KRMN, WGL
Telangana MDK, WGL, NLG, Cluster No. 10 NZB, ADB
Zone KHM Cluster No. 11 KHM
5. Southemn HYD, RR*, NBNR, ClusterNo. 6 HYD,YZG
Telangana NLG
Zone
6. Scarce KRNL, ATP ClusterNo. 1 ATP
Rainfall Zone

7. High Altitude  High Altitudes of - -
and Tribal SRK, VZNGM', VZG,
Zone EGD, KHM
** Table 3
* The districts of Vizianagaram (VZNGM), Prakasan (PRKM) and RR (Ranga Reddy) are
excluded in the analysis due to incomplete data.

The clusters formed with the CPC approach do not consider such contiguity.
Barring these two deviations, most of the clusters are in agreement with the
agro-climatic classification.

Clustering with the Canonical Approach: The canonical analysis revealed
that about 93 per cent of the variation in W 'B is accounted by the first
canonical root (Table 5). Hence clustering was carried out on the basis of the
canonical scores comesponding to only the first component. The vector
coefficients of the first component indicate that July rainfall is the main cause
of variability (Vector Coeff. = (.71), followed by rainfall of June
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Table 5 : Canonical analysis

Component Canonical Cum Vector Coefficients
Root (%) June July August Sept.
Component I 51.01 93.21 0.55 0.71 040 0.11
Component I 2.89 98.49 045 -0.35 ~0.22 0.79

(Vector Coeff. = 0.55). The clusterings obtained with this approach were
entirely differcnt from those based on the CPC approach. The deviation is
obviously due to taking a pooled estimate W of the covariance matrices of
the objects (assuming that these are “homogencous™). However, there are
instances of similarities with regard to the clusters of (Cuddapah, Chittoor,
Kurnool), (Mchaboobnagar, Nalagonda, Guntur), (Nizamabad, Adilabad) and
(Visakhapatanam, Hyderabad). It can be mentioned, however, that the clustering
obtained with this approach arc not meaningful as the covariance matrices of
the districts are heterogeneous.

In conclusion, it can be said that the common principal components provide
a useful solution for dealing with the heterogeneous covariance matrices and
in particular for obtaining the ciustering under the multi-sample situation when
the covariance matrices of the objects are heterogencous,
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