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SUMMARY 

The suitability of using Conunon Principal Components (CPC) for 
investigating the crucial assumption of homogeneity of covariance matrices 
(which is not satisfied in general) is examined in the context of clustering 
under the multi-sample situation. The approach mitigates the crucial 
assumption by providing a "common" (pooled) estimate for the principal 
components of the objects instead of a pooled estimate for the covariance 
matrices of the objects. An illustration of the approach with regard to the 
rainfall based classification of the districts of Andhra Pradesh State is 
described. 
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Principal comp(lnents, Common principal components. 

J. Introduction 

Homogeneity of covariance matrices has been a cmcial assumption in 
several multivariate statistical analysis procedures. Attempts at providing a 
solution to the situation arising out of heterogeneity of covariance matrices are 
very few. 

The Common Principal Component (CPC) analysis (Krlanowski (3)) can 
be considered as a way to deal with the problem of hcterogencity of covariance 
matrices. The CPCs provide a pooled estimate for the principal components 
of the covariance matrices which are heterogeneous. An application of the 
procedure to the discriminant analysis (when the covariance matrices are 
heterogeneous) has been attempted by Darghai-Noubary {11 and Owen [41. 
TIlese researchers observed that for the large samples, the perfomunce of 
discrimination procedure based on the CPCs tends to be better than the 
conventional procedures such as the Quadratic or Linear discriminant functions. 

In the present study. the applicability of conmlon principal components 
in clustering is examined for the multi-sample case. 
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2. Malerial and Methods 

The Multi-Sample Case: Let there be m "objects" which are to be clustered 
into g « m) homogeneous groups. Suppose that the j-th object has Nj 
observations (j = 1, ... , m) which are recorded by drawing a random sample 
of size Nj from it. Let X be the random vector consisting of k variables, then 
x.. represents the i-th observation vector on the j-th object (i = 1, ... , N.,

IJ . J 

j = 1, ... , m). Thus on the basis of the observation vector Xjj the m objects 

are to be classified into g «m) distinct groups. The objects can be conveniently 
clustered by applying the canonical approach. 

The Canonical Approach: The approach involves extracting, first p «k) 

latent vectors a (j = 1, ...• p) of the matrix product (W-1B); where the matrices 
j 

Band W fonn the following identity as a result of a one-way MANDV A model 
asslIDlption 

T=B+W 

where 

T = Matrix of Total Sum of Squares and Products (S.S.P.) 

B ... Matrix of "Between Samples" S.S.P., and 

W = Matrix of "Within Samples" S.S.P. 

Note that W is the Pooled Matrix of 8.S.P. of the multi-samples. 

The latent vector (l. is also referred to as canonical variable,
J 

Yj = a/ X (j ::;; 1, ... , fJ). Each of the i-til object can be represented by the 

p-dimensional co-ordinates al'X • <:s/Xj .... (lp/Xi ; (i 1 ..... m). For the purpose i

of clustering, the canonical means (scores) of the objects are obtained on the 
basis of the means of the objects (Xj ). i.e., (ll 'Xi' <:S'Xj .•.• ap'xj; 

(i = 1, .... m ). The objects are then grouped into clusters on the basis of 
similarities in the co-ordinates of the objects in the p-dimension. For 
p ~ 3, it can be conveniently carried out by plotting. the co-ordinates. 

TIle canonical approach thus involves use of the common (pooled) 
covariance matrix (W/df) for dctcnnining the clusters. However, the use of 
pooled covariance matrix is reasonable only when tile covariance matrices 
(S.S.P.) of the samples satisfy the homogeneity condition. TIUls when the 
covariance matrices of the objects are heterogeneous. as an alternative, let liS 

consider the applicability of Common Principal Components approach for 
obtaining the clusters. 
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The Conunon Principal Components: This approach involves determining 
a vector subspace which represents the vector subspaces of all the objects as 
closely as possible. Several developments have taken place in this field 
(Flury [2]). The present study considers the procedure developed by 
Krzanowski [3]. Suppose that principal component analysis has been carried 
out for each of the m objects. Furthennore. the first p « k) principal components 
are adequate for slmunarising the total variance of each of the covariance 
matrices. Let L 

t 
(p x k) be the matrix of these vectors corresponding to the 

t-th object (t = 1 •...• 111) whose rows are the eigen vectors of the p-principal 
components. Let H ( k x k ) = ~ L/ Lt' Then the first q « k ) principal 

components of H represent the "conunon principal components". Following 
inferences were drawn about these CPCs (Krzanowski (3]): 

1. 	 Let b be an arbitrary vector in tbe original k-dimellsional data space 
and 0" the angle between b and the vector most nearly parallel to 
it in the space generated by the first p-components of the t-th object. 

2oThen the value of b that minimizes V = ~ cos t is given by the latent 
vector bi corresponding to the largest latent root (\ of H. 

2. 	 Obviously, corresponding to bl the value of V (= VI) is given by 111' 

which is the largest latent root of H. 

3. 	 V represents the measure of closeness of the components of H to all 
the p-dimellsional subspaces of the objects. The average component 
tilat agrees most closely with all the m subs paces (i.e .• the principal 
components) of the objects is given by bl. Thus the measure of 
discrepancy between b l and the subspace of the t-tll object is given 
by cos 0, = v'[b'l L't Lt bl] 

4. 	 Completing the latent rool and vector analysis of H leads to a subspace 
of dimension q « k) that represents all the m subspaces of the objects 
as closely as possible. 

The basis for CPCs is the closeness of the estimated plane of H with 
the subspaces of the objects. Since the covariance matrices of the objects are 
non-homogeneous, it is obviolls that their subspaces would not be comparable 
(sirnilar) with all the components of H, but with only the first few components. 
q « k). 

These components can be readily identified 011 the basis of the V I values 
and also the angular separation (Ot) between the latent vector bl and the 

subspace of the t-th object (j = 1, .... k. t = 1..... 111), These q identified 
components thus provide a conunon estimate for the principal components of 
the m objects. 

---------.. ~--.. ­ ..- ­
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TIle q CPCs, as identified above, can be used for obtaining the component 
scores for the objects (based on their mean values) in the q-dimensional plane 
of H. Clustering can then be carried out by grouping the objects with similar 
scores in the q-dimensional plane. 

The approach based 011 CPC thus duly considers the sampling variations 
within the objects by estimating the individual component subspaces and then 
a conmlOn subspace for clustering. 

Application 

The approach outlined above is applied for obtaining the clustering of 
the districts of Andhra Pradesh (A.P.) State on the basis of rainfall of South-West 
monsoon season. The observation vector is the monthly rainfall from June to 
September. Rainfall data of 30 years from 1961-62 to 1990-91 has been lIsed 
for the purpose of this clustering. TIle clustering is restricted to the 20 districts 
(instead of 23 districts) due to non-availability of the complete data on the 
3 newly fonned districts (Vizianagaram, Prakasam and Ranga Reddy). Thus 
there are 20 objects (i.e .• the districts) each having 30 sample observations 
corresponding to the 30 years. 

For comparison, clustering was also obtained by applying the canonical 
approach. as described earlier. 

TIle relevant rainfall data were collected from the Season and Crop Reports 
and Statistical Abstracts of A.P. State. 

J. Results Gnd Discussion 

Andhra Pradesh State is classified into 3 administrative regions, viz. 
Coastal Andhra (7 districts), Rayalseema (4 districts) and Telangana (9 districts). 
Soutll West monsoon is the main rainy season of the state. There is a 
considerable disparity in the average rainfall received in the districts as well 
as its consistency over time (Table 1). 

Clustering with Conunon Principal Components: It was found that the 
covariance matrices of all the 20 districts were significantly different. implying 
heterogeneity among them (Chi-square Statistic = 587.20, df = 190. significant 
at 0.01 level of probability). 

For obtaining the CPCs, each of the covariance matrices of tbe districts 
were subjected to principal component analysis. It was observed that the first 
3 PCs accounted for aUeast 86 percent of the sample variance and so adequately 
slUnmarized the total variance of the 4 rainfall variates in all the 20 districts. 
Hence the matrix L (I = I..... 20) was defined on the basis of the first 3 t 
components. 
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Table 1: Average monthly rainfall of Andhra Pradesh South-West monsoon 
(1961-62 to 1990-91) 

District 	 June July Au~ust September 

I Coastal Andhra Region 

1. 	 SrikakuJam (SRK) 

Mean (mm) 145.96 178.54 182.79 199.08 
C.V.(%) 45.55 33.34 34.44 44.84 

2. 	 Visakhapatnam (VZO) 

Mean (rum) 123.67 156.12 173.83 168.41 
C.V.(%) 43.60 32.58 41.12 36.48 

3. 	 East-Godavari (EGO) 

Mean (nun) 128.67 199.33 201.17 165.29 
C.V. (%) 	 50.44 48.08 47.70 39.82 

4. 	 West-Godavari (WGO) 

Mean (mm) 130.00 212.54 219.75 160.58 
C.V.(%) 65.71 49.99 51.95 38.25 

5. 	 Krishna (KRSN) 

Mean(mm) . 110.46 199.88 189.83 156.75 
C.V. (%) 	 42.01 49.72 49.32 48.18 

6. 	 Guntur(GNTR) 

Mean (nun) 84.12 151.54 142.83 141.79 
C.V. (%) 	 43.01 54.60 55.88 50.67 

7. 	 Nellore (NLR) 

Mean (mm) 39.08 92.63 88.21 109.54 
C.V.(%) 42.58 48.02 76.25 59.43 

II Rayalseem Region 

8. 	 Kumool (KRNL) 

Mean (mm) 72.29 111.58 122.83 142.38 
C.V. (%) 	 28.59 51.72 73.80 43.84 

9. 	 Anantapur (ATP) 

Mean (mm) 47.42 67.29 69.42 143.25 
C.V. (%) 	 45.32 89.73 78.50 49.83 

to. 	 CUddapah (COP) 

Mean (mm) 58.00 105.21 101.54 135.67 
C.V. (%) 	 38.80 67.07 74.84 53.21 

11. 	 Chiuoor (CIHR) 

Mean (nun) 54.13 106.04 95.83 141.42 
C.V. (%) 	 38.43 46.34 60.27 42.99 

---_._-._-------- ­
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Table 1 contd ...... 

District 

HI Telangana Region 

June July August September 

12. Hyderabad (HYD) 

Mean (mm) 
C.V. (%) 

121.58 
31.18 

181.00 
53.56 

175.17 
58.85 

159.21 
60.45 

13. Nizamabad (NZB) 

Mean (mm) 
C.V. (%) 

172.63 
56.44 

298.25 
49.89 

315.33 
59.50 

180.54 
76.86 

14. Medak (MDK) 

Mean (mm) 
C.V. (%) 

139.46 
38.38 

237.25 
60.47 

228.58 
51.57 

169.25 
59.24 

15. Mehaboobnagar(MBNR) 

Mean (mm) 
C.V.(%) 

84.00 
25.23 

144.17 
47.01 

151.21 
55.42 

147.46 
43.72 

16. Nalagonda (NLG) 

Mean (nun) 
C.V.(%) 

101.92 
41.67 

]52.00 
56.67 

141.21 
44.25 

140.12 
59.51 

17. Warangal (WGL) 

Mean (mm) 
C.V. (%) 

151.54 
48.51 

272.33 
53.13 

229.25 
44.46 

152.25 
59.83 

18. Khammam (KHM) 

Mean (mm) 
C.V.(%) 

149.54 
43.94 

291.75 
41.10 

253.50 
45.02 

170.63 
40.95 

19. Karimnagar (KRMN) 

Mean (nun) 
C.V. (%) 

]60.46 
40.36 

262.83 
49.84 

250.38 
52.05 

152.17 
50.11 

20. Adilaoad (ADB) 

Mean (mm) 
C.V. (%) 

180.04 
44.93 

306.13 
57.08 

306.92 
50.87 

154.75 
63.46 

The results of the principal component analysis of the matrix 
H ( I: L't L 

t 
) which gives the common principal components are presented 

ill Tables 2a and 2b. It can be observed that the latent roots of H, which represent 
the measure of similarity between the CPC and vector subspaces of all the 
20 districts, are almost similar corresponding of the first 3 components, 
(n1 = 19.58, r,:~ = 19.31 and n3 = 18.31. Table 2a) whereas it is considerably 

low in the fourth component «(14 =2.85). The results thus indicate that all 

-----..--...---~--...---­
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the districts are close together along the first 3 CPCs (i.e., the first three 
components of H). 

An inspection of the angular separation of the subspaces of the districts 
with the subspaces of CPCs reveal that these angles are considerably low 

Table 2 a: COIrunon Principal Componenls for A.P. districls 

Variable Common Principal Componenls 

(Vector Coefficients) 

June 0.1123 0.1832 0.0505 0.9753 

July -0.9380 0.2980 -0.1663 0.0606 

August 0.1444 0.8003 0.5483 -0.1953 

September -0.2944 -0.4870 0.8180 00830 

Latent Root 19.5840 19.3079 18.3091 2.8461 

Table 2 b : Angular separation of the districls with the CPCs 

(Angles in Degrees) 

l. Srikakulam 8.62 38.65 14.42 46.46 

2. Visakhapatanam 26.19 0.81 1.15 63.66 

3. East Godavari 13.44 7.43 0 74.57 

4. West Godavari 8.89 34.88 45.81 18.27 

5. Krishna 2.81 8.70 13.88 73.75 

6. Guntur 4.80 5.06 4.58 81.66 

7. Nellore 6.59 6.28 6.12 79.12 

8. Kumool 0.81 14.96 4.05 74.45 

9. Ananatapur 0.81 16.68 2.56 73.13 

10. Cuddapah 4.44 9.60 9.07 76.01 

11. Chiuoor 0 10.95 6.07 77.41 

12. Hyderabad 5.00 3.71 0 83.38 

13. Nizamabad • 10.26 16.68 19.37 61.74 

14. Medak 3.34 3.71 7.30 81.11 

15. Mehaboobnagar 10.20 10.70 3.34 74.78 

16. Nalagonda 3.97 6.97 13.90 73.89 

17. Warangal 0 0 55.54 65.84 

18. Khammam 1.98 2.56 20.90 68.85 

19. Karimnagar 7.95 11.62 0.81 75.85 

20. Adilabad 1.62 10.98 3.14 78.43 

--------..----..--­ .. ~----...--..--. 
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corresponding to the first three CPCs (Table 2b) with the exception of the only 
district of Visakhapatanam (26.19°)1 corresponding to the first CPC, the 2 
districts of Srikakulam (38.65°) and West Godavari (34.38°) corresponding to 
the second CPC and the three districts of West Godavari (45.81°), Waranga) 
(55.54°) and Khammam (20.90°) corresponding to the third cpc. These 
separations further increase corresponding to the fourth CPC (Table 2b). 

The vector subspaces of the CPCs (Table 2a) indicate that the vector 
subspace of the first CPC is heavily loaded on July rainfall 
(Vector Coeff. = 0.9380); while rainfall of August (Vector Coeff. = 0.8003) 
and September (Vector Coeff. = 0.8180) are dom.inant respectively in second 
and third CPCs. This behaviour has been suitably exhibited by all the districts 
in their three-dimensional subspaces (Le., the 3 principal components), as follow: 

July rainfall is dominant among the 8 districts ill their first component 
vector subspaces, the other·5 districts in their second components (vector 
subspaces) and the remaining 7 districts in tlleir t11ird component subspaces. 
Similar is the case with rainfall of August and September which were dominant 
in respectively the second and third CPCs. 

Contrary to the above behaviour, the rainfall of June which is dominant 
in the fourth CPC is represented by only 2 districts in tlleir individual component 
subs paces. 

These results indicate that only the flIst three CPCs can be considered 
common to all the vector subspaces of the districts. These three components 
also reveal the conmlon cause for variation in the rainfall of the districts viz. 
rainfall of July, August and September. 

The three CPCs identified above fonned the basis for clustering (being 
the common or pooled estimates of principal components of the 20 districts). 
The component scores corresponding to the districts were then obtained on the 
basis of the mean vectors of the districts (in the three dimensional plane of 
the CPCs). For the purpose of clustering, the district~ with similar scores in 
the three-dimensional plane of the CPCs were then grouped. This provided a 
classification of the districts into 11 clusters consisting oC 4 single district 
clusters (Table 3). The basis of classification (as identified in the CPCs) i.e., 
rainfall of July and August can be readily observed in the clusters. For instance, 
the cluster Conned with the districts of Mebaboobnagar, NaJagonda and Guntur 
can be seen to be almost closer to each other with regard to the rainfall of 

Angles as Iqw as ISO have heen considered to be within the 95 per cent Monte­
Carlo limits (Krzanowski 1979). 

-------- .......... - ........_---_._--­
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Table 3 : Clustering of A.P. districts 

Cluster Clustering with 

No. 


Common Principal Components Approach Canonical Appro_ac_h____ 

ATP 

CDP, CHTR, KRNL CDP, CHTR, KRNL 

MBNR, NLG, GNTR MBNR, NLG, GNTR 

SRK MDK 

NLR NLR,ATP 

VZG,HYD VZG,HYD 

EGD,KRSN EGD, KRSN, SRK 

WGD,MDK WGD 

KRMN, WGL KRMN, WGL, KHM 

NZB,ADB NZB,ADB 

KHM 

July and August (Table 1). Similar observations can be had from the other 
clusters. 

These clusters can be compared with the agro-climatic zones fonned by 
the National Agricultural Research Project (NARP), A.N.G.R. Agricultural 
University, Hyderabad. Andhra Pradesh State is classified into 7 agro-climatic 
zones based on the climate, soil types, irrigation and cropping pattem (NARP 
Status Report, [5]). 

Table 4 gives the agroclimatic zones and the districts covered under each 
zone as well as the clusters fonned with the CPC approach alongwith the 
districts covered under each cluster. 

It can be observed from Table 4 that there are only two deviations in 
classification under the CPC approach vis-a-vis the agro-climatic classification: 
Medak (MDK) has been classified along with West Godavari (WGO) in Cluster 
No.8; whereas, West Godavari is classified in the Krishna Godavari Zone and 
Medak in the Northern Telangana Zone. Also, Hyderabad (HYD) and 
Visakhapatnarn (VZG) are classified in Cluster No.6. However, these districts 
belong to respectively the Southern Telaugana and the North Coastal Zones 
under the agro-climatic classification. The agro-climatic zones are classified not 
only on the basis of the climate, soil types, irrigation and cropping pattern but 
also on thc basis of the geographical contiguity for administrative convenience. 
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Table 4 : Agro-climatic classification of Andhra Pradesh State vis-a-vis clusters with 

CPC approach 


S. 	 Classification with Agro-climatic base Classification with CPC Approach 
No. 

Agro-climatic 	 Districts Covered Cluster No·· Districts Covered 
Zones 

1. Krishna-	 WGD, KRSN, GNTR, Cluster No.7 EGD,KRSN 
Godav:u-i Zone 	 EGD, NLG, PRKM" Cluster No.3 NLP, GNTR, MBNR 

Cluster No.8 WGD,MDK 

2. North-Coastal 	 Most Parts of SRK, Cluster No.4 SRK 
Zone 	 VZNGM·. VZG, 


Uplands of EGO 


3. 	 Southern Zone NLR, CHTR, CDP, Cluster No.5 NLR 
Southern parts of Cluster No.2 CHTR, COP, KRNL 
PRKM·, Eastern parts 
of AlP 

4. 	 Northern ADB, KRMN, NZB, Cluster No.9 KRMN, WGL 
Telangana MDK, WGL.NLG, Cluster No. 10 NZB, ADB 
Zone KHM Cluster No. 11 KHM 

5. 	 Southern HYD, RR*, NBNR, Cluster No.6 IIYD, YZG 
TcIangana NLG 
Zone 

6. 	 Scarce KRNL, ATP Cluster No. I ATP 
Rainfall Zone 

7. 	 High Altitude High Altitudes of 
and Tribal SRK, VZNGM*, VZG, 
Zone EGD, KHM 

* The districts of Vizianagaram (VZNGM), Prakasan (PRKM) and RR (Ranga Reddy) are 
excluded in the analysis due to incomplete data. 

The clusters fonned with the CPC approach do not consider such contiguity. 
Barring these two deviations, most of the clusters are in agreement with the 
agro-climatic classification. 

Clustering with the Canonical Approach: The canonical analysis revealed 

that ahout 93 per cent of the variation in W -I B is accounted by the first 
canonical root (Table 5). Hence clustering was carried out on the basis of the 
canonical scores corresponding to only the first component. The vector 
coefficients of the first component indicate that July rainfall is the main cause 
of variability (Vector Coefr. = 0.71), followed by rainfall of June 

~~--~~~~~~~~~~~~~~~ 
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Table 5 : Canonical analysis 

Component Canonical Cum Vector Coefficients 

Root 	 June 

Component I 51.01 93.21 0.55 0.71 0.40 0.11 


Component II 2.89 98.49 0.45 -0.35 -0.22 0.79 


(Vector Coeff. 0.55). The c\usterings obtained with this approach were 
entirely differcnt from those based on the CPC approach. The deviation is 
obviously due to taking a pooled estimate W of the covariance matrices of 
the objects (assuming that these are "homogeneous"). However, there are 
instanccs of similarities with regard to the clusters of (Cuddapah, Chittoor, 
Kumool), (Mehaboobnagar, Nalagollda, GUlltur), (Niz3mabad, AdiJabad) and 
(Visakhapatallam, Hyderabad). It can be mentioned, however, that the clustering 
obtained with this approach are not meaningful as the covariance matrices of 
the districts are heterogeneous. 

III conclusion, it can be said that the common principal components provide 
a useful solution for dealing with the heterogeneous covariance matrices and 
in particular for obtaining the clustering under the multi-sample situation when 
the covariance matrices of the objects are heterogeneolls. 
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