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SUMMARY 

When outliers appear in survey data, the use of conventional estimators 
to estimate the population mean may not be appropriate. For instance, the 
simple mean as an estimator of the population mean may give a distorted 
picture of the finite population under consideration as equal weights will 
be given to all sampling units resulting in over-estimation or under­
estimation thus affecting the suhsequent inference. Moreover, when an 
underlying model is assumed the estimation procedure may further get 
affected hy possihle violations of the model assumptions. Some estimators 
have been proposed to take the twin problems of outliers and model 
violations. Also a comparative empirical study of the proposed estimators 
and some standard outlier-robust estimators was carried out through 
simulation. It was observed that the proposed estimators perfonn fairly well 
in a scenario where the underlying model assumptions are not satisfied and 
the finite population under consideration is outlier-prone. 
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1. Introduction 

Sample surveys are often conducted with aim of estimating the finite 
population total or mean. The very nature of the finite population mean to take 
any desired value by changing just a single observation makes it sensitive 
especially when outliers are present in the data. The usual estimation procedure 
in such situations may lead to a very distorted picture of the finite population 
under consideration. Although much has been written about outliers in the past 
years, some amount of subjectivity appears in tlle available definitions of outliers 
in the literature. Because of the emphasis 011 modelling in recent years, "outlier" 
now seems to indicate any observation t1lat docs not come from the target 
population, as is also viewed by many authors. Throughout this article "outliers" 
arc discussed ill accordance with this visualisation. 
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Chambers [2] classifies survey sample outliers as representative and 
nonrepresentative. The fonner type of outlier is a sample unit which is correctly 
measured and can not be assumed to be unique. The unsampled part of the 
population may contain similar units which are markedly different in value from 
other sampled units. The latter type of outlier is a sample unit which is either 
unique i.e. has a value characteristic to that particular unit or which is incorrectly 
recorded. In this article, only representative outliers are considered and some 
estimators of the population total have been proposed which prove to lower 
the impact of these outliers under a linear regression model. 

2. Outliers in Sample Survey Data and Their Treatment 

When the sample is from a population known to contain outliers, one 
or more large units may appear in it and when they are assigned small selection 
probabilities they receive large weights and have strong effects on the sample 
mean and its variance. This point is highlighted in the famous Basu's elephant 
example (Basu [1]) of circus elephants which constitutes a population of size 
50 with a single large unit. It emphasises the inappropriateness of the 
Horvitz-Thompson estimator when large units are present in the population. 

Outliers may crop up into the data at any time of tlle survey. The sources 
and detection coupled with the removal of the outliers can be explained 
algorithmically (see Fig. 1). Let the finite population, of which we wish to 
infer, contain N units ul' u2"" UN denoted by tlle vector Uo whose values are 

based on the characteristic of interest Y. This population, popularly known as 
the 'target population', may be notated as (Uo ' Yo)' 

The general scheme of sampling is to draw a sample from the target 
population and infer about the latter using the former, with the help of tools 
like sampling frame, statistical methods, etc. 

This paves way for multistage contamination. The sampling frame not 
based on the target population may include or exclude units, resulting in a 
new unit vector U l' The infonnation pertaining to the characteristic of interest 

may get distorted resulting in a new observation vector Yl' at the survey 

population level. 

In the next step, instead of the ideal sample, So c UI' a new sample 

SI may be got owing to non-response compulsions. While recording tlle actual 

data from the survey sample, aberrations such as coding errors may occur 
resulting in Y2 instead of Yl' These erroneous observations get detected while 

the processing of data is done, giving a clean data (S2 ,Y3) from which inference 
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(Uo ' yo) : Target population ( J 
Exclusion and doubling of units in Uo 
Inclusion of uuits ~ Uo 

( (U1 ' Yo) : Sampling frame J 

No or erroneous infonnation content 

(~___(U l_'_Y_l)_:~s_u~e_y_po_l_)U_b_ti_·o_n__~) 

Instead of the theoretical sample 
So c Uoa sample sl was actually 
su~eyed (NOll response) 

Jc 
Bad infonnation collection and 
recording 

Data processing, statistical methods 
and imputation 

[~___(_S~2'_Y~3~)_:Cle_al_l_da_ta__ __~J 

I Inference 

(U2 ' Y 3): Inference population 

Fig 1. Emergcnce of outliers in su~ey data (Source: Hulliger [7]) 
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bas to be made which gives the inference population, (Uz' Y3). A sound 

estimation procedure is one which will ensure that the inference population 
is closer to the target population. 

In survey sampling literature, the problem of outliers or aberrant 'values 
has often been treated under the heading "skewed populations". Judicious 
selection of the sampling scheme may give some sort of control over the 
skewedness of the population. If the prior information about large values is 
available to tile sampler, tllen an obvious strategy is to stratify the population, 
trying to put all the large values in the population in a separate stratum and 
enumerate it completely, thus effectively removing them from the population 
for the purpose of statistical inference (Glasser [4]). 

If the prior infomlatioll about tile outliers is not perfect, or is totally absent, 
tbe previous procedure will fail to take off. Kish (8) suggests the COllstmction 
of a stratum of surprises where all the suspected outliers are placed. The problem 
is then to estimate the size of the stratLuu. As a convention, over all these 
~ars the sample mean y is used as an estimator of the population mean 
Y unless precise foml of the distribution of the study variable Y is known. 
When outliers appear in the data, the experimenter is concerned over the fact 
that one or more observations are \~duly intluencing the estimate of tile mean. 
Insisting on a close estimate of Y, usually he suggests that tile offending 
observations be discarded. Thus the practice of "discarding" outliers from the 
sample and replacing the offending observations by more reasonable values 
took shape. Trimming, Winsorization IJrocedures, utilising censored samples are 
a few procedures to name, which follow this practice. Hidiroglou and Srinath [6] 
have developed estullators which use corrected weights to outlying units in 
order to deflate their values at the estimation stage once they have been sampled 
and identified as unusually large units. 

Smith [10) has given an estinlator of Ule population total using inclusion 
probabilities based on post-stratification. Chambers [2} developed an 
outlier-robustification of the prediction approach using M-estimation assuming 
a regression through the origin model with known variance OJ which is a 

function of tile auxiliary variable X. Let 

So: the random variables rj = (Yi - ~xi) Ojl are identically and 

independently distributed with mean 0 and variance 1 (2.1) 

where O~ = 02V(x j ) and B, 0 are generally unknown parameters. Under 

So, an outlier-robust estunator of the population total, using an outlier robust 

estinlator b n of ~ and 'If function which downweights outliers, is given by 
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Tn L Yi+bn L xi+ L uiVl(Yj-bn xYO'if (2.2) 

2 

where Land L denote the summations over the sampled and non-sampled 
1 2 

parts of the population respectively and 

:2 

tli = xi LX' (L .:L)-I
(1. J (1~ 

I 2 J 

He compares variolls finite population strategies using Tn and those using 
conventional estimators through simulation studies done on a real population. 
Four versions of the 'II-function lIsed in this study where 

(i) 'II (t) 0 (outlier rejection) 
2(ii) 	 'II (t) = t (So BLUE under V(x) = x ) 

, 
(iii) 	 '11(0 =: te- a1 (nl-b) with a = 0.5, b = 6 

and 
, 

(iv) 	 'II (t) te- a1 
(nl-b) where a, b are estimated from the sample data by 

minimising 

I
00 

V(t,a,b)e-l12dt 
o 

subject to a bound on the absolute value of an estimate of the asymptotic bias 
of Tn under the outlier-prone altemative SM' All strategies based on the estimator 

Tn' with bounded'll, perform extremely well with respect to root mean square 
error. 

3. Robust Estimation under a Linear Regression Model 

Often outliers can be thought of as having a bivariate (Gwet and Rivest [5]) 
or even a multivariate dimension, Le., a sampling llnit may be influential with 
respect to an auxiliary variable X or with respect to a set of auxiliary variables 
XI' x" ... X . Hence model-based approach to outlier robust finite population 

- p
estimation gains more weight at the outset. 

The issue of robustness also arises when model-dependent methods are 
used for both sample selection and estimation. Consider a simple situation when 
a design variable Z is known at the design stage for each member of the finite 
population of size N. The regression approach makes use of an auxiliary variable 
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X and observations are made upon this variable along with the study variable 
Y for the n units selected in the sample. While formulating a model one can 
either include or exclude the design variable Z in the regression model. In a 
large scale sUJVey, Z may be used for stratification but not for estimation purpose 
because the values of this variable may not be available at the unit level for 
its inclusion in the model. In such situations, the usual OLS estimator will 
underestimate the parameter ~YX due to the use of this model. This portrays 

a 'mis-specification' of the model under specific situations and it is essential 
that a robust estimation procedure be adopted for a reliable estimator. 

Considering the twin problems of outlier-robust finite population 
estimation and robust estimation under a classical linear regression model, it 
is worthwhile to think of an approach which will provide estimators that are 
robust against both outliers and model violations. In tllis article some estimators 
of the finite population have been proposed which are both outlier-robust and 
robust against model violations. They have been constructed on the basis of 
model-free estimators of the parameter ~ which are due to Nathan and Holt [9]. 

3.1 Weighted Estimators due to Nathan and Holt [9] 

Let there be a finite population of size N arisen from a super - population 
such that the obseJVed values of the design variable Z are identically and 

2independently distributed with mean 113 and variance 0 3, Let 
N 

2~ = -.L ~ z and 0 = _1_ ~ (za - ~3)2. And let X denote the auxiliary 
3 NL. It 3 N-IL. 


a = I 


variable and Y the study variable used in the sUJVey. The maximmll likelihood 
estimator under a trivariate nonnal distribution for (X, Y, Z) proposed by 
Demets and Halperin [3] which is a asymptotically unbiased estimator of 
~12' the regression coefficient of Y on X is given by 

(3.1.1) 

where 

S12 = N~l II (Xj-X)(Yj-Y) 
j j 
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813::: N~l LL (Zj-Z) (Yj-Y) 
j j 

S23 N ~ 1 L L (Zj - Z) (xr x) 
j j 

S2 _l_~ (z. _Z)2 
3 N-l"'" 1 

i 

- 1 ~ _
and lL - -1 Ly·,z::: z·x::: "- Xi' Y n I n I 

I i i
n . 

Under a weaker set of linear model assumptions given below, Nathan and 
Holt [9] have shown the above estimator ~lZ to be an asymptotically unbiased 

estimator (unconditionally). 

Xla. ::: III + PI3 (X3a. -1l3) + ela. } 


X2a. ::: 112 + ~23 (X3a. -1l3) + e2«. (3.1.2) 


ela. ::: ~12.3~+lha. 

where 

E(e2«.1 X3a.) E(rhu I X3u) ::: E(e2«.TJ 10. 1 X3«.) = 0 

E(ek I X3a.) ::: cr~.3; E(TJ1a l X3a ) = crL3 

They have developed estimators b;z and 
1\

P;z which are 1t- weighted versions 

s 1\ 

of estimators b12 ::: I; and the MLE P for the probability sampling designs 
Sz 

12 

i.e. for designs that, with probability one, having first order inclusion 
probabilities l1ta: p(aE S I Z) > 0, a ::: 1,2, ... , N f. Let the weighted sample 

means, variances and covariance be defined as 

1 ~ Xu -. 1 ~ Yu -.. 1 ~ Zu 
-;; "'" NIta.' Y ::: -;; "'" N1t ' Z = -;; "'" N1t

UES a.ES a UES « 

s;, = I~:" -Ir: )a.ES « -­
a E NIta. 

http:E(e2�.TJ
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-*-. .. 	 X Z= L Xu Zu
S23 	 ., ~y~ ~ Nrr 	 ',= N. - ~ [1ues u ues u - ­

N1tu 
ae 

-*2 2 --.:2 

u~ 
x:. 

S2 
a E s a aES a - ­

N1tu 

*2 L Nrr 

X ,;2=~:: _~ 
ue 

Nathan and Hot [9] gave the following 1t-weighted estimators of ~ 

a~ 
(3.1.3) 

(3.1.4) 

These estimators have been proved as asymptotically unbiased 
(unconditionally) to O(n-1

) and also the following relations hold good 
A A 

V(f3 12) ~ V(13;2) 

A 

As these estimators 13;2' b;2 have been established to perfonn very well 

even when the assumption of trivariate normality of X, Y, Z does not hold 
good and since they are essentially model-free, these estimators were considered 

1\ 

for outlier-robustification studies along with the MLE ~12' 

3.2 	 Prolx>sed Estimators 

The t1nitt; population total T can be expressed as 

N 


T = L Ya 

a= 1 aES ai!:$ 

where s is a sample of size n selected from a population of size N using a 
probability sampling design p{s). The first sum in this expression for T is known 
and the second must be estimated from the sample. Using the MLE ~12 due 

A 

to Demets and Halperin [3] and the weighted estimators b;2 and 13;2 due to 

Nathan and Holt (9), three estimators were constmcted for estimation of the 
population total as given below 
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TOH L Yj+ 
A 

~12L Xj (3.2.1) 
2 

TNHI = L Yi+ b~2L Xj (3.2.2) 
2 

TNH2 = L Yi+~i2L xi (3.2.3) 
I 2 

where L denotes the summation over sampled units and L the swnmation 
1 2 

over unsampled part of the population. With the intention of making these 
estimators further robust against outliers, outlier-robustificatioll was done using 
Chambers [2J approach. A real-valued function '1', was utilised for this purpose 
and the model given by (2.1) was used with V(x) = 1. The outlier-robustified 

versions of these estimators T DH' TNHI and T NH2 are given as under 
A A 

T'OH = L Yj + ~12 L Xi + L Pi'l'l(Yi - ~12xi)1 0if (3.2.4) 
2 

where 

(3.2.5) 

where 

T'NH2 = L Yi + ~~2 L Xi + L rj'!fj(Yi - ~i2Xi) I 0if (3.2.6) 
2 

Pi = 

1 (xi - x) 1 (Zj Z)
----+­
n OJ n 

*2
S2 

where r·I 
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4. Simulation Study 

With a view nf evaluating the perfonnance of the proposed robust 
estimators, a simulation study was done, comparing the proposed estimators 
with outlier-robust estimators Tn given by Chambers (21. For this a background 
was needed in the fonn of a finite population, such that 

(1) a small proportion p of the population is contaminated by the presence 
of outliers. 

(2) the trivariate nonnality assumption of (Y, X, Z) does not hold 
necessarily, but when this assumption does not hold atleast the variables Y, 
X, Z satisfy the relations given by (3.1.2). 

For the generation of data, following parameters were used 

(i) the population mean vector was 

)i' == [)i,l' Ily, Ilz} == [50, 60, 70] 

(ii) Variances (u;, u~ , u;J == (310.642 
, 763.992 

, l(Xi) 

and 

(iii) PYX == 0.76. Pya 0.61, P.. == 0.63, Pyz.J. = 0.27 and Pyx = 0.309 

The variance of Z was asslIDled as 1002 first and then the other variances 
were calculated according to parametric relationships. The population 
parameters were selected for the study because the real population considered 
by Nathan and Holt (9] satisfy these parameters and since the proposed 
estimators are based on Nathan and Holt estimators of p, it was thought that 
a simulated population with these parameters would be appropriate for a 
comparative simulation study. 

A finite population of 180 units was generated with observations on Y, 
X, Z using the above mentioned parametric specifications and satisfying the 
relationships given by the model set-up (2.1). The finite pOllulation thus obtained 
was further contaminated by deliberately replacing k = 4 units by previously 
generated outlier values. These outliers were generated in a similar fashion as 
that of the remaining units but with an inflated variance. With k = 4, it was 
observed tbat on an average, nearly 50% of total 1000 sanlples generated from 
the population for the purpose of simulation study gets contaminated with 
outliers. In an agricultural set-up, such a situation may correspond to a study 
from a large IllIDlber of farm holdings where data 011 each faml are available 
for crop yield (Y), total acreage (X) and the total value of products sold in 
the previous year (Z). 

In order to provide a basis for comparing the sanlpling distributions of 
a variety of finite population strategies under repeated sampling from the 
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above-simulated study population, the study was conducted in the following 
pattcm. 

Denoting a strategy as a pair (1t, E) where 1t is a method used to select 
a sample and E is an associated estimator of T, the comparisons made were 
in temlS of average of errors, E - T, denoted by BIAS and the square root 
of the average of squared errors (E - T)2 denoted by RMSE. In all cases these 
averages were over 1,000 independent samples selected from the population 
according to a sampling method 1t. When two strategies are based on the same 
sampling method, the errors associated with two different estimators defining 
these strategies were based on the same set of samples selected from the study 
population. The seven sampling methods considered for the study are given 
by Table 1. 

Table I. Sampling methods used in the study 

Code 	 Description 

1. 	 Simple random sampling without replacement 

2. 	 Systematic sampling, with sample 1tj 'S proportional to Z carried out on a 

population list ordered by increasing Z (random start) 

3. 	 Probability proportional to size sampling with replacement 

4. 	 Stratified random sampling with 3 strata 

5. 	 Stratified random sampling with 6 strata 

6. 	 Stratified sampling with pps (with 3 strata) 

7. 	 Stratified sampling with pps (with 6 strata) 

Table 2 gives the estimators used ill the study. From the finite population 
of 180 units, various sampling designs were used to select 1000 independent 
samples of size n = 20 units based 011 the Z variable. The BIAS and RMSE 
were calculated for all the sampling strategies based on these data sets. 

In general, the proposed estimators, particularly T'NHl and T'DH perfoml 

well in most to the cases since for equal probability selection methods (EPSEM) 
A 	 A 

designs, the 1t-wcightcd MLE B;2 of I~ reduces to MLE 1>12 ' it can be seen 

that in the case of srswor the estimators T'DH and T'NH2 register the same values, 

for BIAS and RMSE (sec Figures 2 and 3). For designs involving pps sampling 
the prollosed robust estimator T'NH2 perfonns extremely well which shows that 

the incorporation of design illfonnation (through 1t-weights) into Ule estimator 
robustifies it against model violations. Although for designs ppswr and 
systematic sampling with pps, the estimator T'NHl perfonns very well with 

respect to RMSE, it records the highest value for BIAS in comparison with 
other estimators. But this is not at all surprising given tlle well k.nown feature 
of bias/variance trade off in the presence of outliers. Also for ppswr sampling 
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Table 2. Estimators used in the study 

Code 

1. Tn with II' (t) = 0 

2. T~ i.e. Tn with II' (t) = t£&'2(ltI-b), a - 0.5 and b - 6 

" 3. TDH given by (3.2.1) based on MLE /312 

4. T'DH given hy (3.2.4) which is the robustified version of TDH 

5. T NHI given hy (3.2.2) based on 1t-weighted OLS estimator h;2 

6. T'Nt!! given by (3.2.5) which is the robustified version of TNt!! 

7. T!'.1l2 given by (3.2.3) based on 1t-weighted MLE /3~2 

8. T'NH2 given by (3.2.6) which is the robustified version of TNH2 

Tahle 3. Results of the proposed simulation study 

Total is 48044.09 


(1) Simple random sampling without replacement 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Tn 

T'n 

TDH 


T'DH 


TNHI 


T'NHI 


TNH2 


T'JI,,112 


-6974.04 

-6941.32 

-6812.12 

-6716.16 

-7135.03 

-7030.95 

-6812.11 

-6716.17 

12996.70 

12956.72 

12933.78 

12797.87 

13064.05 

12921.45 

12933.78 

12797.87 

(2) Systematic sampling with pps 

-4968.92 8384.401. Tn 

2. T' -4969.01 8364.47n 

3. -5209.15 8337.24TDIl 

4. -5199.04 8325.62T'Dll 

5. -5877.23 8353.73T 1'.'l1l 

6. -5827.12 8350.36T'!'.'ltl 

7. -6004.89 8264.73TNH2 

8. -5961.74 8222.86T'NH2 

http:12797.87
http:12933.78
http:12921.45
http:13064.05
http:12797.87
http:12933.78
http:12956.72
http:12996.70
http:48044.09
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(3) pps sampling with replacement 

I. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Tn 

T'n 

TDH 

1"DH 

Tl'.'Hl 

1"NHI 

TNH2 

1"NH2 

-6388.41 

-6338.44 

-6206.33 

-6048.08 

-6238.85 

-5838.30 

-8506.00 

-7934.20 

13044.84 

12969.30 

12809.57 

12589.68 

12977.89 

12727.04 

12901.04 

12558.12 

(4) Stratified random sampling with 3 strata 

1. Tn -6574.40 12321.65 

2. 1"n -6370.88 12035.07 

3. TDH -6747.46 12468.71 

4. T'DH -6528.23 12165.52 

5. TNHI -7095.63 12600.27 

6. T/NHI -6859.50 12268.00 

7. TNH2 -6960.50 12399.91 

8. 1"NH2 -6727.56 12148.40 

(5) Stratified random sampling with 6 strata 

1. Tn -6467.46 12313.05 

2. T'n -6299.23 12084.72 

3. TDH -6596.47 12397.75 

4. 1"DH -6409.88 12158.90 

5. TNHI -6632.71 12290.76 

6. T'NHI -6430.68 12035.82 

7. TNH2 -6592.00 12285.59 

8. T'NH2 -6393.55 12038.25 

(6) Stratified sampling with pps (with 3 strata) 

I. Tn -6822.91 12918.57 

2. T'n -6649.43 12691.09 

3. TDn -6829.80 12978.47 

4. 1"DH -6656.57 12747.29 

5. Tr-'Hl -7022.11 13243.24 

6. 1"r-.'Hl -6811.44 12945.25 

7. TNH2 604.78 12991.11 

8. 1"NH2 549.10 12816.51 
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(7) Stratified sam piing with pps (with 6 strata) 
1. Tn -7540.15 13415.28 

2. T' n -7368.98 13226.46 

3. TDH -7491.78 13395.81 

4. T'DH -7327.29 13223.07 

5. TNHI -7436.35 13878.24 

6. T'NHI -7226.66 13590.43 

7. Tr-.'H2 774.16 13761.16 

8. T'NH2 614.16 13339.75 

For further illustration, the results of strategy - simple random sampling with various 
estimators is presented graphically as follows. 

Simple random sampling without replacement 

-6700 

-6800 


II) -6900

< 
iii 	 -7000 


-7100 

-7200 


,.... ,....~ 	 ~~ ~ ...., ~ ~~ ~ ~ 

Strategy 

Fig. 2. BIAS perfonnance of the proposed estimators (srswor) 

Simple random sampling without replacement 

w 	 13000 
II) rCRMSEl 

L........___.••• _ 1 


~ 	12800 

----.- -_... -	 -----------...----...-~...• ­

~- N.: ~ ~ ~ "!: ~ ro: 

Strategy 

Fig. 3. RMSE perfonnance of the proposed estimators 
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design, among the proposed robust estimators T'DH' T'NH2 the estimator T~H is 

superior in perfomlallce with respect to RMSE as well as BIAS. This is again 
due to the theoretical result that the MLE Bl2 is better than the 1t-weighted 

A 

estimator ~~2 when ppswr sampling design is employed. 

5. Conclusions 

In this article some estimators have been proposed which are robust against 
violations in model assumptions and the outliers occuring in survey data. These 
estinlators are based 011 the model-free estimators of the regression coefficient 
~. A simulation study comparing the proposed estimators with the standard 
outlier-robust estimators due to Chambers [2] reveal the superiority of these 
estimators in tenns of root mean square error. Particularly, when probability 
proportional to size sampling design is employed the proposed estimators are 
robust against the anomalies to a great extent. 
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