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SUMMARY

A methodology for estimation of two types of parameters, one of
superpopulation and the other of survey population is discussed with some
historical context.
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1. Introduction

As is ‘commonly understood’ today, unlike in other areas of statistics in
survey sampling we consider two types of parameters: enumerative and
analytical. Today’s understanding is but a gradual historical process.

Around what time did statisticians start thinking of iwe types of parameters,
enumerative/survey population parameters on one hand and analytical/
superpopulation parameters on the other? The importance of the question just
raised can be scen in the context of the concept of ‘parameter’ itself. This
concept as distinct from the earlier ‘frequency constants® is the basis of the
modern theory of estimation and the consequent notions of likelihood,
sufficiency, etc. (Stigler [29]).

It is illuminating to see historically, how the distinction between two types
of parameters one of superpopulation (analytical) and the other of survey
populations {enumerative) got established in statistics. That this distinction in
the past was not often at all understood can be easily seen from the discussion
that followed in The Royal Statistical Society after Neyman [27] read his
important paper and also from some of the subsequent literature on this topic.

We initially note that by the third decade of this century the statisticians
had developed a fruitful hypothetical population model: Here the population
is supposed to be generated by outcomes (x) of hypothetical indefinite,
independent repetitions of some chance experiment. In this population the
frequency distribution of the variate x is completely specified up to an unknown
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constant called a parameter 9 (Fisher {6}, [8]). This unknown parameter could
be estimated by drawing a random sample from the hypothetical population.

Now a ‘random sample’ simply means observations obtained by a number
of independent repetitions of the chance experiment, which defined the
hypothetical population. Note here randomization is axiomatic. For instance let
the variate x in the hypothetical population be so distributed that the unknown
parameter 6 is the mean value, £(x) = 8. Further let the sample consists of
n independent observations x,, . . ., x . Then the Gauss-Markoff theorem implies

that the sample mean X is the lincar unbiased minimum variance estimate of 0,

Now -consider a survey population P on N individuals i,
P = {i:i = 1,..,,N}. A variate x takes some specified values x; for different

individuals i = 1,...,N. Further let a hyporhetical population of x values be
generated by indefinitely repeated, independent random draws, of individuals
from P, with replacement. In this hypothetical population the mean value of
x ie, &(x) = 0, equals the mean value of x for the survey population P namely

— N
X = Ei x;/ N. In retrospect, it appears that Neyman’s [27] optimal estimation

based on the (Gauss-) Markoff theorem' was primarily for 8, the parameter
of the hypothetical population just mentioned; it is related to the survey
population only through the numerical equality, 8 = X, for simple random
sampling design, (Godambe {13]).

Such relationships as discussed above between the hypothetical population
(later called super population) parameter 6 and the survey population mean
X, would play a central role subsequently in this article.

Neyman’s implicitly ‘identifying’ the hypothetical population parameter
&(x) = 6 with the survey population mean X proved to be a step in the right
direction, for bringing survey sampling into the main stream of statistics. Now
X obtained the theoretical status of a parameter!

Yet all was not quite well. Inadequacies, even contradictions, in Neyman'’s
approach started becoming apparent as survey samplers began to use sampling
designs more complex than stratified simple random sampling. The new designs
depended more essentially than the earlier designs on the individual labels, a
distinguishing feature of the survey populations. The hypothetical populations
do not have these ‘individuals’ or their ‘labels’.

1 Neyman [27] refers to the theorem as Markoff’s theorem. In the discussion following
Neyman’s paper Fisher [7] pointed out that the theorem was originally due to Gauss.
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For these complex designs, the (Gauss-) Markoff methodology of
estimation looked very artificial and unintuitive. The ‘individual labels’ provided
a far wider class of estimates for X than the class underlying the (Gauss-)
Markoff methodology, (Horvitz and Thompson {25]). This methodology actually
appeared to be of doubtful relevance for survey sampling for, in the class of
all unbiased estimates for X, none has upiformly minimum variance; a new
criterion of optimal estimation provides a solution (Godambe [9]). This result
essentially implied that no satisfactory solution of the problem of optimal
estimation in survey sampling can be given without a reference 1o some
underlying hypothetical population.

The confusion caused by Neyman’s introduction of (Gauss-) Markoff
methodology is vivid in the research works publisbed during a couple of decades
or so following his 1934 paper. However this confusion apparently does not
seen to have affected the practice of some survey statisticians. They were guided
by pragmatic considerations. For instance Duncan and Shelton [4] in relation
to the works of Hansen and Hurwitz say, “They make great use of ratio estimates
instead of best linear unbiased estimates.” '

Thus, though Neyman’s invoking the (Gauss-) Markoff theorem in the
context of survey sampling proved to be misleading for the immediate purpose
of estimation, as said before, it was a conceptual advance to paramelerize the
survey population characteristics like mean, variance etc. Parametric inference
had already been initiated by Fisher [6] and Neyman [27]. With its appropriate
extensions, now we could investigate for the just mentioned ‘survey population
parameters’, confidence intervals (Woodruff [30]), sufficiency (Basu [1]),
likelihood function (Godambe [11]), fiducial distribution (Godambe [12],
Godambe and Thompson [22]). Though much less direct than for the just
referred to results, the above mentioned ‘parameterization’ had a deeper
relevance for the ‘optimal estimations’ established by Godambe [9] and
Godambe and Joshi [21].

Now all these developmenis subsequent to Neyman’s paper clearly
established the distinction between mwo types of parameters; one of survey
populations and the other of hypothetical populations. Also, these developments,
in retrospect seem to have provided the necessary apparatus for the much needed
later extension of the theory of estimating functions (Godambe and
Thompson [24]). This extension could deal with estimation problem of both
rypes of parameters, jointly and separately.

A further clarification of the distinction between the two types of
parameters came from survey samplers who were investigating, rather than mean
values, the relationships such as causal or sociological between different
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variates, (cf. Deming {3], Kendall and Lazarsfeld [26]). Here underlying the
survey population being sampled, was a well defined ‘hypothetical population
model’. The parameters of this model were to be estimated from the survey
data. The present day concept of a superpopulation is a clearer formulation
of this ‘hypothetical population’.

A large area of applications is covered by the generalization given below.

The survey population is supposed to have been drawn as a random sample
from a superpopulation. The problem is to estimate both or either of the
parameters of the superpopulation and survey population, on the basis of the
survey data and the design. In gnalytical surveys the emphasis is on estimating
the superpopulation parameters while in enumerative surveys it is on estimating
survey population parameters, (Godambe and Thompson [24], Godambe [9]).

In the following I shall briefly indicate how estimating functions provide
a methodology to deal with both the above problems.

2. Superpopulation Parameters

Following commonly used notation let P denote the survey population.
of N labelled individuals i, P= {i:i = 1,,..,NLIP| = N. With each
individual i in P is associated a survey variate y, and an auxiliary variate z;

let y=G@p0Yp.syy ad z=(z,..,%,..,z). Both y and
z, (i = 1,..,N) can themselves be vectors. As is usually the case, we assume
the auxiliary variate z to be completely known.

A useful generalization of a common superpopulation model is as follows.

The joint (superpopulation) distribution f of (y, z) is assumed to be such that
(ypz) i =1,..,N are independent with density

f; (v 2 8,My) = £ (z; .M £1; (y; 1 2;; 8) @

i=1,... N. Here 0 is the parameter of interest and n = (n,,..., M) is

a nuisance parameler, 8 can be a scaler or a vector. Note here the density
f and the parameters 8,1} define the superpopulation model.

With the above model, where the function f is specified, up to the unknown
parameters 8,1 one can study the relationships between the variates y and z
in the superpopulation’s distribution. For instance 6 could be a regression
parameter.

To estimate © a sample s, i.c. a subset of P, s < P is drawn with a sampling
design p: p is a specified probability distribution on S = {s;scP}. The
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sampling design p generally depends on the known auxiliary vector z i.e.
p = p(.!2). Further the values y, are observed for all individuals i  s. Thus
we are supposed to estimate 0 given the model f, the sampling design p, the
auxiliary vector z and the survey data

d = {(,y):ie s}
The probability of the data d is given by

1= 1€ S

N
Prob (d; 6,1) = {n f; (z;; 0, m)} pGs m{n f; ;12 e)} )
o .

Now any function g (d, 8), with the indicated arguments is said to be an
estimating function for 6. The dimensionality of g is the same as that of
8; for simplicity of presentation here we assume 6 to be one-dimensional.
Further the estimating function g is said to be unbiased if the expectation of
g with respect to the distribution (2) is zero; e E(g) = 0, for all 8, 7. Here
‘e’ stands for the expectation with respect to the model (1) and ‘E’ for the
expectation with respect 1o the sampling design ‘p’ given above. The unbiased

estimating functions g are standardized as Jg/€E %g} for comparisons of

variances. In the class of all unbiased estimating functions g, g is said to be
optimal if the variance of any standardized g is minimized for g’

. 2 1
* ag’ og
eE{g /t»:}z[E J} < sE{g/sE[aeJ} 3)

for all g, 8, 7, (Godambe [10}, Godambe and Thompson [23]). If g” is an optimal
estimating function, the ‘solution’ of the equation g' = () is ‘conventionally’
called the optimal estimate. This convention is justified in terms of the shortest
confidence intervals around the ‘solution’, provided by the distribution of g'.
(Godambe and Heyde [20]).

Under very general conditions, in Prob (d; 8,%) in (2) above, z is a
complete sufficient statistic for the nuisance parameter n; (0 fixed). It then
follows (Godambe [14]) that for estimating 6, in the class of all unbiased
estimating functions g (d, 6), the optimal is given be the conditional score

. dlogf; (y; 1z 0)
O =X —— @
i€s
Thus the estimate of © obtained by solving the equation g" (d, 8) = 0,
for the given data d, does not depend on the sampling design p. This conclusion
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is in line with the model-based theory of survey sampling, (Royall [28]).
However in the model theory the conclusion is drawn by conditioning
Prob (d; ©, ) on the ‘sample s’ in addition to z. We condition only on z;
it being the complete sufficient statistic for 11 and the ancillary for 0,
(Godambe [14], [16]).

The difference between the two conditionings, the one on (s, z) and the
other on z shows up in the confidence intervals: These, as indicated before,
are obtained by inverting the distribution of the estimating function ‘g'. Now
the var.(g"ls,z) # var.(g"lz). The var. (g"/z) depends on the sampling
design while var. (g"/s,z) does not. Our confidence intervals based on
var, (g'!z) though in conflict with the model-based theory, are in line with
the general statistical practice of using the ancillary statistics to assess the
accuracy of the estimation. In the present context var. (g'/z) can be called the
design-effect, though not altogether in the conventional sense.

In (4), if 8 is the regression parameter then assuming normality we have,
dlogf}; (y;12;; ) _ -8z

ae - O? (5)

Now the ‘efficiency’ of an estimating function g is defined as the inverse
of the variance of its standardized version, that is, the inverse of the right-hand
side of the inequality (3). Hence the

N
efficiency (g°1z) = El @/o)m

m, being the design inclusion probabilities, ® =Y p(s)
531
i = 1,...,N. For the sampling designs p having the expected sample size

N
namely 21 n, fixed, it is easy to see that the efficiency (g*lz) is maximum

for a purposive design p which selects a sample s for which . '/’ is
1€s
maximum with p(slz)= 1.
Ifz,i = 1,..,N are all equal then the purposive sample should counsist

of smallest 0‘2 This is quite intuitive for an analytical survey, where the

parameter to be estimated 6, is the parameter of superpopulation; we select
the most accurate y’s. The situation is quite different if we were to estimate
a parameter of survey population (cf Godambe [15]). Some further comments
in this respect are given in the next section.
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In the literature a sampling design p is called noninformative, when it
is fully specified by the auxiliary vector z and when z is completely known.
With the additional condition that the distributions of z form a complete class,
for each @, the optimal estimating function g in (3) is independent of the
sampling design p. Yet we hesitate to call the design ‘p noninformative’, for
as stated above our confidence intervals essentially depend on p.

Now in (4) the optimal estimating function g' depended on the entire form
f, of the conditional distribution of y given z. Suppose one wants to avoid
this dependence of g' on f, and concentrate only on the relationship between
y and z, implied by the distribution f,; for instance € {(y - 6z) 1z} = 0 or more

generally € {(y —pn (@) 1z} = 0, 1 being a specified function of 0. In such a
case one can replace the ‘conditional score function’ given by (4) and (5) by
the quasi-score function (Godambe [17]) and proceed as before.

The quasi-score function just mentioned above would still in general
depend on the variance function of y which may not be known accurately
enough. In the following Sections 3 and 4, we develop procedures of the
estimations which do not much depend on the variance function of y : Here
the strategy is not to estimate the ‘superpopulation parameter’ 8 directly. Instead
we concentrate on estimation of a survey population parameter 8, which

generally is not only pumerically close to 6 (8 = 6,)) but is a natral survey
population version of it. We will call 6, the parameter induced by 6. If the
survey population size (N) is sufficiently large the induced parameter 6, admits
of very convenient approximations.

3. Survey Population Parameters

To illustrate the concept of an induced parameter let the individual score
function in the superpopulation be given by (5). Further we define a fuaction
H, with arguments y, z and 6 as

N

Hy(y,z:;0) = Y,

i=1

(y;—Bzi) Z;

o}

That is H is the survey population based, or, the census score function.
If the survey population parameter e‘;, solves the equation

Hy(y,z:6%) = 0
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then by definition (Godambe and Thompson [24], Godambe [19]) eg is the
parameter motivated or induced by the superpopulation parameter 8. It is easy
to see that eﬁ, ~> @ in probability, as N — «,

Now consider a survey population parameter 8, obtained as the solution
of the equation

H@y,z6y) =0

where

N
H(y.z;0) = ) (y;-02)z M

i=1

Clearly for a sufficiently large survey population, i.e. N large, for large
variations of the vector o = (0,,...,0y) the survey population parameter

Oy= 6} = 0

n

with practical certainty. Further since ‘05 is the induced parameter, the survey
population parameter 6, could be called a parameter ‘nearly’ or ‘approximately’
induced by the superpopulation parameter 6.

Here we make three points: (i) In (7), the function H and the survey

population parameter 8, unlike H, and 6%, are independent of the variances

oiz,i = 1...,N; (ii) Given the parameter 0 and the auxiliary vector z, H is

a linear function of 8y; (iii) For every fixed 8, H and hence 8y, can be estimated
oplimally on the basis of the data d and the sampling design p.

Let as before the data d = {(i,y):ies} and h(d,8) be a ‘design

unbiased” estimating function for H in (7) ie. E(h - H) = 0, where ‘E’ as
before stands for the expectations with respect to the sampling design p. Now
in the class of estimating functions ¢h: E (h — H) = 0}, the estimating function
h" satisfies the optimality criterion (3), if in the class, € E (h — H)? is minimized
for h =h", £ as before denoting the expectation with respect to the
superpopulation model. In the present contest the optimal estimating function
is given by h™ where

h' =Y (y,-0z)z/m, 8)

i€s
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=, as before being the design inclusion probabilities, i = 1,...,N. This is a
special case of a more general result given in (12) of Section 4, due to Godambe
and Thompson [24].

Note that for every design unbiased estimating function h,
Eh{d,6,) = 0 and for sufficiently large N, eEh’(d, 6,) is minimized for
h = h" in (8). Thus for the given data d, the estimating equation h” = 0, provides
initially an estimate for the survey population parameter 8. Further since for
large N, 8, is a survey population parameter (approximately) induced by
0 (8, = Oy = 8), the equation h* = 0 also provides a near optimal estimation
for the superpopulation parameter 6; ‘near’ for 6 = 6. This estimation is robust
in the sense of being independent of the variance function of y, in the
superpopulation model.

Now the ‘efficiency’ of the estimating function h™ in (8) given by
-1
N oot
efficiency (b)) = {2 —;:—'- }

=] 1

&)

where ®,i = 1,...,N as before are the design inclusion probabilities. It is
interesting to compare the efficiencies of g' and h" given by (6) and (9)

N
respectively. For ‘fixed expected sample size designs’, (i.e. Zn x, fixed), as

noted earlier the efficiency of g' is maximized for a *purposive’ sampling design

which selects sample s for which Y . Z}/ 67 is maximum, with probability
1ES

1. On the other hand the efficiency of h” in (9) is maximized for a sampling

design for which =, = 0,2z, i=1,...,N. A special case when

z, = coostant, i = 1,..., N is illuminating. The efficiency of g‘ is maximized

by selecting a sample having individuals with smallest variances o, and hence

providing most accurate observations y,. This, as said before is quite intuitive
for an analytical survey. In contrast the efficiency of h” is maximized for a
sampling design providing a sample with most variable y-values. This again
is intuitive for an enumerative survey, (Godambe and Thompson [24]).

As a variation of the problem, assuming in the superpopulation model
(1) the variates y,, i = 1,...,N, are iid, we might try to estimate the mean

value parameter € (y) = |1, Smce i = u(6,n), its maximum likelihood estimate
u u(e 'q) where 8 and n are the maximum likelihood estimates of 6 and
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7 obtained from (2). Obviously this estimate ﬁ would be very much model
dependeni. Alternatively we may try to estimate the ‘survey population
parameter’ w induced by p. This is given as the solution of the equation

N
2 Gi-m) =0
i=1
To  estimate u,, we use the regression relationship
e{(y,~6z)lz) = 0 implying another (approximately) induced parameter

N
0. 21 (y; — 6y z) = 0. Further as before 6, is optimally estimated by ﬁw where

N
A A A
Ziss (yi—ONzi)lni} = 0. Thus we have u = QNZI z,/N. Here the

optimality of estimation is both ‘conditional’ on holding z fixed as well as
‘unconditional’ (Godambe [19]). This is important, for in the unconditional
probability sense, pg— 1, as N — o,

4. A General Method
In the following we explain the theoretical generality and practical
versatility of the ‘optimal estimation’ illustrated so far. Let vy,

i=1,...,N be independent random variates drawn from a superpopulation
model with a parameter 6. Note both 6 and y, (i = 1,...,N) can be vectors,

Further for some specified real functions ¢, (y,, 8) of the indicated variables
ed;(y;,8) =0 (10)

i=1,.,.,N; ‘€ denoting the expectation with respect to the superpopulation
model.

For any fixed value of the parameter 8, consider the problem of estimating
the function

N
H =Y 66 an
i=1
Denoting as before the data {(i, y,): i € s} by d and the design expectation
by E let B be the class of all design unbiased estimates h(d, 6), of H. That
is

B = (h:E(h-H) = 0,¥0)
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Now the estimating function h" € B satisfies the optimality criterion (3)
if
eE(h"-HY < eEb-H: V¥ heB¥0
A very general theorem (Godambe and Thompson {24], Godambe [19])
asserts that for any sampling design with inclusion probabilities =,
i =1,..,N all positive (> 0), the optimal estimating function is given by
h" = ¢;(y,0)/m 12
i€s
The practical flexibility of the optimality of h" in (12) is made clear in
the next paragraph.

For the semiparametric superpopulation model defined by (10) the survey
population parameter 91?J induced by ‘0’ is given by the equation

20
d6
8¢i2 0

N

N
Y o (v;. 8% =0 (13)

i=l

9°N - © in probability granting some regularity conditions. Now suppose the
parameter 6 is a k-vector, 8 = (8,,...,6,). Here an ‘approximately induced’
parameter 8y is given replacing the equations (13) by the equations

N N aQ)
2¢i(y;,6N)=Oand2¢i(yi,0N){s§af =0, j=2...k (14
1 1 1

Note generally, 6, = efq = 6 for large N. Unlike the induced parameter

8y, Oy is independent of the variance functions e(¢?), which as said before,
often are not known precisely enough. In (12) h” denotes the optimal estimating
function for H in (11). Now H in (11} is a real function. However in the general
theorem (Godambe and Thompson [24]) H, can be a vector with real
components. Suppose now h° denotes the set of jointly optimum estimating
functions for all the k functions

N N a¢
2 o; (¥;- 8), E‘Pi(yi,ﬂ)&‘(ﬁ} i=2...,k
1 1 J
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underlying the equations (14). If the estimates 61»: of 6, and hence of 6 are
obtained by solving the equations h* = 0 then generally, 8, are ‘independent’
of the variance functions €(¢), i = 1,...,k.

The above theory provides optimal or approximately optimal estimation,
of the survey population totals (parameters)

N
PR A
i=1
for some arbitrary function of y, namely f(y),i=1,..,,N. The only
requirement is that the superpopulation expectation € f, (y,) be a known function
of 8, say . (8),i=1,...,N.

Let in _(10)
¢; (v, 0) = £, (y) - ;(8) 15
i=1,... N, Then it follows from (14) that

N N
PR AAEDNACY!

i=1 i=1

Further both sides of the equation are (nearly) optimally estimated by
N
21 & (6N)‘

To elaborate on some aspects of (near) optimal estimation just mentioned,
let in (15),

o; (6) = a(z;,0) (16)

where as before z is the auxiliary variate assumed known. Now the optimality
of the estimation obtains both conditionally on holding the auxiliary variate
z fixed and unconditionally. In the unconditional case, the sampling design,
particularly the inclusion probabilities n, i = 1,...,N, in (12) can be random

variates as they generally are functions of z.

Now since the (near) optimality of estimation holds, also conditionally,
the estimation itself has some kind of in-built conditioning. For instance it
includes estimation based on what is generally known as postsampling
stratification (Godambe {19}, p. 237).
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Alternatively, when the conditional model does not hold, we can work
with an unconditional model where the auxiliary vector z is nof held fixed.
This can be best illustrated when the survey population P is stratified in strata
Pj,j = 1,..., k. Suppose the parameter © = (8,,...,8,). Now we replace the

model (10), using (15) and (16) by
e{f,(y)-a(z;, Gj)} =0 ie Pj, j=1,...k an

where £ denotes the superpopulation expectation unconditional on z; that is,
z along with y is allowed to vary.

In the superpopulation model we assume (y,z) are iid for
ie Pj, j = 1,... k. In this case the induced parameters 9:, given by (13) and
the approximately induced parameter 8 given by (14) are identical. They solve
the equations

Y (G () -alz, 80)) = 0, i=1...k (18)
ieP,
1
where 8 = (8, ... 6,

Let h™ denote the set of jointly optimum estimating function for the k
functions

YD) -0@8)) j=1,...k
ieP,
]
underlying the equations (18). Then the solution 6 = (61,..., ﬁk) of the
cquations h* =0 provide jointly optimal estimation for 6, and consequently

N
for 6. Hence 21 f. (y) is estimated by

k
Z Z o (Zi, 6_’) (19)

i=1 i€ Pj
It is easy to see that as a special case when f, (y), a.(z, Oj) =z ej, the
estimate (19) reduces to the usual ratio estimate,

Finally we briefly mention some common problems of estimation that can
be treated within the framework of optimal estimating functions:
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(i)

(iii)

(iv)
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Domain estimation. Here we put in (15) f, (y) = y, for individuals
i in the domain otherwise f, (y,) = 0.

Estimation of the change of total on two successive occasions. Now
we let y, be a vector y, = (3, y;), y; and y, denoting values of y
on two different occasions. The estimation to the ‘change’ is achieved
by putting in (15), f(y) = ¥; -¥/.

Estimation under within cluster comrelations. As is (ii) we assume
y; to be the vector of all y’s in a cluster and let f; (y,) to be the cluster
total.

In some practical situations the sampling design though fully specified
(known) must be considered to have come from a distribution
depending on the superpopulation parameter of interest. This situation

is covered by the unconditional optimal estimation discussed in the
foregoing. For more details see Godambe [18].
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