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SUMMARY 

A methodology for estimation of two types of parameters, one of 
superpopulation and the other of survey population is discussed with some 
historical context. 
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1. Introduction 

As is 'commonly understood' today, unlike in other areas of statistics in 
survey sampling we consider two types of parameters: enumerative and 
analyticaL Today's understanding is but a gradual bistorical process. 

Around what time did statisticians start thinking of two types of parameters, 
enumerative/survey population parameters on one band and analyticaJI 
superp6pulation parameters on the other? The importance of the question just 
raised can be seen in the context of the concept of 'parameter' itself. This 
concept as distinct from the earlier 'frequency constants' is the basis of the 
modem theory of estimation and the consequent notions of likelihood, 
sufficiency, etc. (Stigler [29]). 

It is illuminating to see bistorically, bow the distinction between two types 
of parameters one of superpopulation (analytical) and the other of survey 
populations (enumerative) got establisbed in statistics. That this distinction in 
the past was not often at all understood can be easily seen from the discussion 
that followed in The Royal Statistical Society after Neyman [27] read his 
important paper and also from some of the subsequent literature on this topic. 

We initially note that by the third decade of this century the statisticians 
had developed a fruitful hypothetical population model: Here the population 
is supposed to be generated by outcomes (x) of hypothetical indefinite, 
independent repetitions of some chance experiment. In this population the 
frequency distribution of the variate x is completely specified up to an unknown 
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constant called a parameter 9 (Fisher (6), [8]). This unknown parameter could 
be estimated by drawing a random sample from the hypothetical population. 

Now a 'random sample' simply means observations obtained by a number 
of independent repetitions of the chance experiment, which defined the 
hypothetical population. Note here randomization is axiomatic. For instance let 
the variate x in the hypothetical population be so distributed that the unknown 
parameter 9 is the mean value, e(x) = 9. Further let the sample consists of 
n independent observations Xl' •••, X ' Then the Gauss-Markoff theorem implies n 

that the sample mean xis the linear unbiased minimwn variance estimate of e. 
Now consider a survey population P on N individuals i, 

P = {i: i = 1, ..., N}. A variate x takes some specified values Xi for different 

individuals i = 1, ..., N. Further let a hypothelical population of x values be 
generated by indefmitely repeated, independent random draws, of individuals 
from P, with replacement In this hypothetical population the mean value of 
x i.e. £(x) =9, equals the mean value of x for the survey population P namely 
_ N 

X = 2:. Xi I N. In retrospect, it appears that Neyman's [27J optimal estimation 
I 

based on the (Gauss-) Markoff theoreml was primarily for e, the parameter 
of the hypothetical population just mentioned; it is ~Iated to the survey 
population only through the numerical equality. e = X, for simple random 
sampling design, (Godambe [13]). 

Such relationships as discussed above between the hypothetical population 
(later called super population) parameter 9 and the survey population mean 
X, would play a central role subsequently in this article. 

Neyman's implicitly 'identifying' the· hypothetical population parameter 
e(x) = 9 with the survey population mean X proved to be a step in the right 
~tion, for bringing survey sampling into the main stream of statistics. Now 
X obtained the theoretical status of a parameter! 

Yet all was not quite well. Inadequacies, even contradictions, in Neyman's 
approach started becoming apparent as survey samplers began to use sampling 
designs more complex than stratified simple random sampling. The new designs 
depended more essentially than the earlier designs on the individual labels, a 
distinguishing feature of the survey populations. The hypothetical populations 
do not have these 'individuals' or their 'labels'. 

Neyman [27] refers to the theorem as Markoff's theorem. In the discussion following 
Neyman's paper Fisher (7) pointed out that the theorem was originally due to Gauss. 

...... ~--
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For these complex designs, the (Gauss-) Markoff methodology of 
estimation looked very artificial and ,!!!intuitive. The 'individual labels' provided 
a far wider class of estimates for X than the class underlying the (Gauss-) 
Markoff methodology, (Horvitz and Thompson [25]). This methodology actually 
appeared to be of doubtful~Ievance for survey sampling for. in the class of 
all unbiased estimates for X, none bas nnifonnly minimum variance; a new 
criterion of optimal estimation provides a solution (Godambe [9]). This result 
essentially impUed that no satisfactory solution of the problem of optimal 
estimation in survey sampling can be given without a reference to some 
underlying hypothetical population. 

The confusion caused by Neyman's introduction of (Gauss-) Markoff 
methodology is vivid in the researcb works publisbed during a couple of decades 
or so following bis 1934 paper. However this confusion apparently does not 
seen to have affected the practice of some survey statisticians. They were guided 
by pragmatic considerations. For instance Duncan and Shelton [4] in relation 
to the works of Hansen and Hurwitz say, "Tbey make great use of ratio estimates 
instead of best linear unbiased estimates." 

Thus, thougb Neyman's invoking the (Gauss-) Markoff theorem in the 
context of survey sampling proved to be misleading for the immediate pwpose 
of estimation, as said before, it was a conceptual advance to parameterize the 
survey population characteristics Uke mean, variance etc. Parametric inference 
bad already been initiated by Fisher [6] and Neyman [27]. With its appropriate 
extensions, now we could investigate for the just mentioned 'survey population 
parameters', confidence intervals (Woodruff [30]), sufficiency (Basu (1]), 
likelihood function (Godambe (11]), fiducial distribution (Godambe [12], 
Godambe and Thompson [22]). Though mucb less direct than for the just 
referred to results, the above mentioned 'parameterization' had a deeper 
relevance for the 'optimal estimations' established by Godambe [9] and 
Godambe and Joshi [21]. 

Now all these developments subsequent to Neyman's paper clearly 
established the distinction between two types of parameters; one of survey 
populations and the other of hypothetical populations. Also, these developments, 
in retrospect seem to have provided the necessary apparatus for the much needed 
later extension of the theory of estimating functions (Godambe and 
Thompson [24]). This extension could deal with estimation problem of both 
types of parameters, jOintly and separately. 

A further clarification of the distinction between the two types of 
parameters came from survey samplers who were investigating, rather than mean 
values, the relationships such as causal or sociological between different 
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variates, (cf. Deming [3). Kendall and Lazarsfeld [26]). Here underlying the 
survey population being sampled, was a weU dermed 'hypothetical population 
model'. The parameters of this model were to be estimated from the survey 
data. The present day concept of a superpopulalion is a clearer formulation 
of this 'hypothetical population'. 

A large area of applications is covered by the generalization given below. 

The survey population is supposed to have been drawn as a random sample 
from a superpopulation. The problem is to estimate both or either of the 
parameters of the superpopuJation and survey popUlation, on the basis of the 
survey data and the deSign. In analytical surveys the emphasis is on estimating 
the superpopulation parameters while in enumerative surveys it is on estimating 
survey population parameters, (Godambe and Thompson [24], Godambe [9]). 

In the foUowing I shall briefly indicate how estimating functions provide 
a methodology to deal with both the above problems. 

2. Superpopulation Parameters 

FoUowing commonly used notation let P denote the survey population. 
of N labeUed individuals i, P = {i: i = 1, •.., N}, IP I = N. With each 
individual i in P is associated a survey variate Yj and an auxiliary variate Zj; 

let y = (Yp "" Yj"" YN) and z = (Zl" .•, zi'" ,ZN)' Both Yj and 

Zj (i = 1, .. , N) can themselves be vectors. As is usually the case, we assume 

the auxiliary variate z to be completely known. 

A useful generalization of a common superpopulation model is as follows. 
The jOint (superpopulation) distribution f of (y, z) is assumed to be such that 
(Yj' Zj)' i = 1, ..., N are independent with density 

(1) 

i = 1, ..., N. Here e is the parameter of interest and 1] = (TIp"" 1]N) is 

a nuisance parameter, a can be a scaler or a vector. Note here the density 
f and the parameters a, TI derme the superpopulation model. 

With the above model, where the function f is specified, up to the unknown 
parameters e, TI one can study the relationships between the variates y and z 
in the superpopulation's distribution. For instance a could be a regression 
parameter. 

To estimate aa sample s, i.e. a subset of P, s C P is drawn with a sampling 
design p: p is a specified probability distribution on S = {s: s cP}. The 
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sampling design p generally depends on the known auxiliary vector z i.e. 
p iii p(. Iz). Further the values Yi are observed for all individuals i e s. Thus 

we are supposed to estimate. 9 given the model f, the sampling design p, the 
auxiliary vector z and the survey data 

d {(i, Yj): ie s} 

The probability of the data d is given by 

Prob (d; 9,11) = {. ~ f2j (Zj: 9, 11j)} P (s Iz) {. n fli (Yi Izi; 9)} (2) 
1= 1 Ie s 

Now any function g (d, 9), with the indicated arguments is said to be an 
estimating funclion for 8. The dimensionality of g is the same as that of 
9; for simplicity of presentation here we assume e to be one-dimensional. 
Further the estimating function g is said to be unbiqsed if the expectation of 
g with respect to the distribution (2) is zero; £ E (g) = 0, for alJ 9,11. Here 
'£' stands for the expectation with respect to the model (1) and 'E' for the 
expectation with respect to the sampling design 'p' given above. The unbiased 

estimating functions g are standardized as {g / fOE (~)} for comparisons of 

variances. In the class of all unbiased estimating functions g, g" is said to be 
optimal if the variance of any standardized g is minimized for g" 

£E{g·/tE(~r < tE{g/£E~r (3) 

for all g, 9, 11, (Godambe [10), Godambe and Thompson (23)). Ifg" is an optimal 
estimating function, the 'solution' of the equation gO< - 0 is 'conventiooally' 
called the optimal estimale. This convention is justified in tenus of the shortest 
confidence intervals around the 'solution'. provided by the distribution of g". 
(Godambe and Heyde (20)). 

Under very general conditions, in Prob (d; 9,11) in (2) above, z is a 
complete sufficient statistic for the nuisance parameter 11; (9 fixed). It then 
follows (Godambe [14]) that for estimating 9, in the class of aU unbiased 
estimating functions g (d, 9), the optimal is given be the conditional score 

.. ~ alogfIj (Yi IZj; 9) 
g (d; 9) =: £... de (4) 

i ES 

Thus the estimate of 9 obtained by solving the equation g" (d, 9) = 0, 
for the given data d, does not depend on the sampling design p. This conclusion 
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is in line witb tbe model-based tbeory of survey sampling, (Royall [28]). 
However in the model theory tbe conclusion is drawn by conditioning 
Prob (d; 9, 11) on tbe 'sample s' in addition to z. We condition only on z; 
it being tbe complete sufficient statistic for 11 and the ancillary for 9, 
(Godambe [14], [16]). 

The difference between tbe two conditiooings, the one on (s, z) and the 
otber on z sbows up in tbe confidence intervals: These, as indicated before, 
are obtained by inverting tbe distribution of the estimating function g.. Now 
tbe var. (g* Is, z) '¢ var. (g.' z). The var. (g* I z) depends on tbe sampling 

design while var. (g Is, z) does not. Our confidence intervals based on 
var. (g*/z) tbougb in conflict with tbe model-based tbeory, are in line witb 
tbe general statistical practice of using the ancillary statistics to assess the 
accuracy of the estimation. In the present context var. (g"/z) can be called the 
design-effect, though not altogetber in the conventio'nai sense. 

In (4), if 9 is tbe regression parameter then asswning nonnality we have, 

ologfli (Yj I Zj; 9) (Yj - 9zi) Zj 
= (5)

09 o~
I 

Now tbe 'efficiency' of an estimating function g is defined as tbe inverse 
of the variance of its standardized version, that is, tbe inverse of the right-hand 
side of the inequality (3). Hence tbe 

N 
efficiency (g" Iz) = L (zr I Of) fti 

I 

~ being the design inclusion probabilities, 111 = L .p (8), 
all 

i = 1, .•., N. For the sampling designs p baYing the expected sample size 
N 

namely L ft. fIXed, it is easy to see tbat tbe efficiency (g "'z) is maximum 
1 1 

for a purposive design p which selects a sample s for which L. z.~ , Of is 
lliiS 

maximum with p (s Iz) = 1. 

If Zi' i = 1, .. , N are all equal tben tbe purposive sample should consist 

of smallest Of. This is quite intuitive for an analytical survey, where the 

parameter to be estimated 9, is tbe parameter of superpopulation; we select 
tbe most accurate y's. The situation is quite ditTerent if we were to estimate 
a parameter of survey population (cf Godambe [15]). Some further conunents 
in this respect are given in the next section . 

.-.. - ..- .. ~.-.- ...-.-~..------------------­
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In the literature a sampling design p is called noninj'ormative, wben it 
is fully specified by the auxiliary vector z and wben z is completely known. 
With the additional condition that the distributions of z fonn a complete class, 
for each 8, the optimal estimating function i in (3) is independent of the 
sampling design p. Yet we hesitate to call the design 'p noninfonnative', for 
as stated above our confidence intervals essentially depend on p. 

Now in (4) the optimal estimating function g. depended on the entire fonn 
fl of the conditional distribution of y given z. Suppose one wants to avoid 

this dependence of g. on fl and concentrate only on the relationship between 

y and z, implied by the distribution f1; for instance e {(y - 8z) Iz} = 0 or more 

generally e {(y - J1 (8» Iz} = 0, J1 being a specified function of 8. In sucb a 
case one can replace the 'conditional score function' given by (4) and (5) by 
the quasi*score function (Godambe [17]) and proceed as before. 

The quasi*score function just mentioned above would still in general 
depend on the variance function of y which may not be known accurately 
enough. In the following Sections 3 and 4, we develop procedures of the 
estimations which do not much depend on the variance function of y : Here 
the strategy is no/ to estimate the 'superpopulation parameter' 8 directly. Instead 
we concentrate on estimation of a survey population parameter 8N which 

generally is not only numerically close to 8 (a == 8N) but is a Datural survey 

populatioD version of it. We will call aN the parameter induced by 8. If the 

survey population size (N) is SUfficiently large the induced parameter 8N admits 

of very convenient approximations. 

3. Survey Population Porameters 

To illustrate the concept of an induced parameter let the individual score 
function in the superpopulation be given by (5). Further we define a function 
Ho with arguments y, z and a as 

N 
I-L ( • il) _ ~ (yj - 8 Zj) zi
."{} y, z, U - L or 


j =1 I 


That is Ho is the survey population based, or, the census score function. 

If the survey population parameter a~ solves the equation 

Ho(y,z:~) = 0 

~------------- ...... ----. ­
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then by definition (Godambe and Thompson [24], Godambe [19]) 9~ is the 

parameter motivated or induced by the superpopulation parameter 9. It is easy 

to see that 9~ ~ 9 in probability, as N ~ 00. 

Now consider a survey population parameter 9N obtained as the solution 

of the equation 

H(y,z;~) = 0 

where 

N 

H (y, z; 9) = L (yj - 9z j)zi (7) 
i= 1 

Clearly for a sufficiently large survey population, i.e. N large, for large 
variations of the vector 0 = (01"", ON) the survey population parameter 

9N=e~=e 

with practical certainty. Further since 'e~' is the induced parameter, the survey 

population parameter eN could be called a parameter 'nearly' or 'approximately' 

induced by the superpopulation parameter 9. 

Here we make three points: (i) In (7), the function H and the survey 

population parameter eN unlike Ho and e~, are independent of the variances 

o~, i = 1 ..., N; (ii) Given the parameter e and the auxiliary vector z, H is 

a linear function of eN; (iii) For every fixed e, Hand bence eN can be estimated 

optimally 011 the basis of the data d and the sampling design p. 

Let as before the data d == {O, Yi): i E s} and h (d, e) be a 'design 

unbiased' estimating function for H in (7) i.e. E(h - H) - 0, where 'E' as 
before stands for the expectations with respect to the sampling design p. Now 
in the class of estimating functions {h: E (b - H) = O}, the estimating function 

h* satisfies the optimality criterion (3), if in the class, € E (b - Hi is minimized 
for h -b*, £ as before denoting the expectation with respect to the 
superpopulation model. In the present contest the optimal estimating function 
is given by b * wbere 

h* = :E (Yj - 9 Zj) Zj l1tj (8) 
ie s 
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~ as before being the design inclusion probabilities, i = 1, ..., N. This is a 

special case of a more general result given in (12) of Section 4, due to Godambe 
and Thompson [24]. 

Note that for every design unbiased estimating function h, 

E h (d, ON) = 0 and for sufficiently large N, £ E b2 (d, ON) is minimized for 

h = h" in (8), Thus for the given data d, the estimating equation b" - 0, provides 
initially an estimate for the survey population parameter ON' Further since for 

large N, ON is a survey population parameter (approximately) induced by 

°(ON == 9~ == e), the equation b" - 0 also provides a near optimal estimation 

for the superpopulation parameter 9; 'near' for eN == e. This estimation is robust 

iil the sense of being independent of the variance function of y, in the 
superpopulation model. 

Now the 'effiCiency' of the estimating function h" in (8) given by 

)
-1

N --.2 2 
.. OJ Zj

efficiency (h ) = L n. (9) 
=1 I1 

where ~,i = 1, ..., N as before are the design inclusion probabilities. It is 

interesting to compare the efficiencies of g" and h4' given by (6) and (9) 
N 

respectively, For 'fixed expected sample size designs', (i.e. L ft. fixed), as 
1 I 

noted earlier the efficiency of g" is maximized for a 'purposive' sampling design 

which selects sample s for which L. ~ I Of is maximum, with probability 
IE .. 

1. On the other hand the efficiency of h" in (9) is maximized for a sampling 
design for Whicb ftj oc: Oj~' i = 1, ..., N. A speci~ case when 

Zj = constant, i = 1, ..., N is illuminating. Tbe efficiency of g" is maximized 

by selecting a sample having individuals with smallest variances OJ and hence 

providing most accurate observations Yj' This, as said before, is quite intuitive 
for an analytical survey, In contrast the effICiency of h" is maximized for a 
sampling design providing a sample with most variable y-values. This again 
is intuitive for an enumerative survey, (Godambe and Thompson [24]). 

As a variation of the problem, assuming in the supeIpopulation model 
(1) the variates yp i = 1, ...,N, are tid, we might try to estimate the mean 

value parameter £ (y) = fl. Since Ii = fl (e, 11), its maximum likelihood estimate 
~ = fl (~, ~), where ~ and ~ are the maximum likelihood estimates of e and 

--------------_ ............_­ -
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11 obtained from (2). Obviously this estimate ~ would be very much model 
dependent. Alternatively we may try to estimate the 'survey population 
parameter' ~ induced by J.l. This is given as the solution of the equation 

N 

L (yj - J.lN) = 0 
i= 1 

To estimate ~, we use the regression relationship 

I:: {(yj - 9 z) I Zj} = 0 implying another (approximately) induced parameter 

eN; L\N 

(Yi - 9N z) = O. Further as before 9N is optimollyestimated by ~N where 

{L. (Yj - 6N Zj) l1t j } = O. Thus we have ~ = 6 LN Zj I N. Here theN
Ie 8 1 

optimality of estimation is both 'conditional' on holding z fixed as well as 
'unconditionaJ' (Godambe [19]). This is important, for in the unconditional 
prnbability sense, ~~ J.l, as N ~ 00. 

4. A General Method 

In the following we explain the theoretical generaJity and practical 
versatility of the 'optimal estimation' illustrated so far. Let Yj' 

i = 1, ..., N be independent random variates drawn from a superpopulation 
model with a parameter 9. Note both 9 and Yj (i = 1, ••., N) can be vectors. 

Further for some specified real functions ~j (Yj • 9) of the indicated variables 

(10) 

i ::::: 1, ..., N; 'E' denoting the expectation with respect to the superpopulation 
model. 

For any fIXed value of the parameter 9, consider the problem of estimating 
the function 

N 

H = L ~i (Yi' 9) (11) 

i I 

Denoting as before the data <0, Yj) : i E s} by d and the design expectation 

by E let B be the class of all design ullbiased estimates bed, 9), of H. That 
is 

B = {h: E(h-H) = O,"V-9} 
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Now the estimating function b* e B satisfies the optimality criterion (3) 
if 

£ E (h" - Hr :$; E E(b - Hr,-¥- b e B,-¥- e 
A very general theorem (Godambe and Thompson (24), Godambe [19]) 

asserts that for any sampling design with inclusion probabilities 11:;­

i = 1, ..., N all positive (> 0), the optimal estimating function is given by 

b* 	 L cj)i (Yi' e)/1I:j (12) 

i e s 

The practical flexibility of the optimality of b· in (12) is made clear in 
the next paragraph. 

For the semi parametric superpopulation model defined by (10) the survey 

population parameter e~ induced by 'e' is given by the equation 

(13) 

9~ -+ 9 in probability granting some regUlarity conditions. Now suppose the 

parameter e is a Ie-vector, e :: (91'" ., 91t). Here an 'approximately induced' 

parameter eN is given replacing the equations (13) by the equations 

(14) 

Note generally, 9N :: 9~ :: 9 for large N. Unlike the induced parameter 

e~, eN is independent of the variance functions E(cj)~), which as said before, 

often are not known precisely enough. In (12) h" denotes the optimal estimating 
function for H in (11). Now H in (11) is a real function. However in the general 
theorem (Godambe and Thompson [24]) H, can be a vector with real 
components. Suppose now h" denotes the set of jointly optimum estimating 
functions for aU the Ie functions 
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underlying the equations (14). If the estimates 3 of 6N and bence of 6 are N 

obtained by solving the equations b· - 0 then generally, ~N are 'independent' 

of the variance functions e (cj).~), i = 1, ... , k. 

The above theory provides optimal or approximately optimal estimation, 
of the survey population totals (parameters) 

for some arbitrary function of Yj namely fj (Yj)' i = 1, ..., N. The only 

requirement is that the superpopulation expectation e fj (Yj) be a known function 

of 9, say ~ (9), i = 1, ..•, N. 

Let in (10) 

+i (Yi' 6) = fi (yj) - <Xj (6) (15) 

i-I, ..., N. Then it fonows from (14) that 

N N 

L fi (Yj) = L (Ii (~) 
i= 1 i= 1 

Further both sides of the equation are (nearly) optimally estimated by 

L
N 

~(~N)'
I 

To elaborate on some aspects of (near) optimal estimation just mentioned, 
let in (15), 

(16) 

wbere as before z is the auxiliary variate assumed known. Now the optimality 
of the estimation obtains both conilitio1l(llly on bolding tbe auxiliary variate 
z fixed and unconditionally. In the unconditional case, the sampling design. 
particularly the inclusion probabilities 't.. i = 1•...• N. in (12) can be random 

variates as they generally are functions of z. 

Now since the (near) optimality of estimation bolds, also conditionally. 
the estimation itself bas some kind of in-built conditioning. For instance it 
includes estimation based on wbat is generally known as postsampling 
stratification (Godambe [191. p. 237). 
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Altematively, wben the conditional model does Dot bold, we can work 
with an unconditional model where the auxiliary vector z is not beld ftxed. 
This can be best illustrated when the survey population P is stratified in strata 
Pj , j = 1, ..., k. Suppose the parameter 9 = (91' .•., 9k). Now we replace the 

model (10), using (15) and (16) by 

E {fj (Yj) - (l (Zj' 9j )} = 0, i e Pj' j = 1, .... k (17) 

where E denotes the superpopulation expectation unconditional on z; that is, 
z along with y is allowed to vary. 

In the superpopulation model we assume (Yp Zj) are lid for 

i e Pj' j = 1•.•., k. In this case the induced parameters e~ given by (13) and 

the approximately induced parameter eN given by (14) are identical. They solve 

the equations 

L {fj (Yj) - (l (zi' 9jN)} = 0, j = 1, ...,k (18) 
j e Pj 

wbere 9N = (9IN••• '. ekN). 

Let b· denote the set of jointly optimum estimating function for the k 
functions 

L {fj (Yi) - (l (zi' 9jl}. j = 1, ••.• k 
j e Pj 

underlying the equations (18). Then the solution ~ = (~1"'" ~k) of the 

equations b· - 0 provide jointly optimal estimation for 9N and consequently 
N 

for 9. Hence Ll ~ (Yj) is estimated by 

k 

L L (l (zi' ~j) (19) 
j=l iePj 

It is easy to see that as a special case when fi (Yi)' (l (zi' 9j ) = Zj 9j • the 

estimate (19) reduces to the usual ratio estimate, 

Finally we briefly mention some common problems of estimation that can 
be treated within the framework of optimal estimating function~: 
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(i) 	 Domain estimation. Here we put in (15) fl (YI) = YI' for individuals 
i in the domain otherwise f, (y,) = O. 

(il) 	 Estimation of the change of total on two successive occasions. Now 
we let YI be a vector YI = (y~, Y{). y~ and Y/ denoting values of y 
on two different occasions. The estimation to the 'change' is achieved 
by putting in (15), f; (y) = y~ - YI'. 

(iii) 	 Estimation under within cluster correlations. As is (ii) we asswne 
Yi to be the vector of all y's in a cluster and Jet fj (Yi) to be the cluster 
total. 

(iv) 	 In some practical situations the sampling design though fully specified 
(known) must be considered to bave come from a distribution 
depending on the superpopulation parameter of interest This situation 
is covered by the unconditional optimal estimation discussed in the 
foregoing. For more details see Godambe (18). 
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