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SUMMARY 
The method of enumerating the different probabilities of sampling 

attached to the different unit-squares (Cells) of the field in crop-cutting 
surveys for estimation of average yield of crops and eliminating bias 
introduced by assuming that they all had the same probability is discussed 
in the paper. 

Keywords: Probability sampling, Bias, Correction factor, Sampling units, 
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1. Introduction 

In crop-cutting surveys for estimation of the average yield of crops, 
initiated by the Indian Council of Agricultural Resean:b in 1944 under direction 
of Sulffiatme, the procedure given for selecting a plot for crop-cutting within 
a field growing the crop under survey can be briefly outlined as follows: 

Suppose that the field is a rectangle with dimensions L x B, and that 
dimension L lies along the east-west line. Suppose a rectangular plot of 
dimension a (5 L) and b (5 B) units is to be located at random within the field. 
Select a pair of random numbers, say (r, s), with the help of random number 
tables. Stich that 0 5 r 5 L -- a and 0 5 s 5 B -- b. Without loss of generality. 
and for the sake of simplicity. we sball call the dimension L as length, and 
B as breadth. Now locate a plot in the fi~ld in such a way that its length 
a and breadtll b are along tile lengtII and breadtll of tile field. and its soutll-west 
comer is at a distance of r units along tile length, and s units along the breadth 
from the south-west comer of the field [4J. 

The above method of selection of a plot implies a division of tile field 
into (L -- a + 1) x (B -- b + 1) plots of size (a x b) and tIlen selecting one 
of these plots giving equal probability of selection, namely l/[(L -- a + 1) 
(B -- b + 1)), to each of these plots. However, since the plots are not distinct, 
but overlapping, the method does not provide equal probability of selection 
to each of the unit squares of the field. It will be shown in the next section 
that the unit squares in the central portion of the field would have a relatively 
higher probability of selection as compared with the unit-squares near the border, 
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because a unit-square around the central portion of the field is included in more 
plots than a unit square around the border. The method of enumerating the 
different probabilities of sampling attached to the different unit-squares of the 
field, hereafter caIled "cells", and "eliminating the bias" introduced by assuming 
that they all bad the same probability is the purpose of this note. 

2. Determination of the Number of Plots in which a 
Given Cell is Included 

Let the field, assumed to be rectangular of dimensions L x B units, be 
divided into L x B cells by drawing parallel lines along the length and breadth 
of the field shown in the following diagram: 

Dia ram 1 
B I B 2,B 3,B L,B 

2 
2,2 3,2 

2,1 


1 2 
3,1 Lo 

2 3 

Let us number the colwnns 0, I, 2, ... , L to the right and the rows 0, 
1, 2, ... , B upward in the above diagram We shall call a cell (i, j) when it 
lies between the (i-l)1II and the illl column; i '" 1, 2, ..., L and between the 
(i_1)111 and the trows; j '" 1, 2•... , B. 

By following the procedure of selecting a plot outlined in the previous 
paragraph, the sample plot located in the field by the pair (r, s) of random 
numbers consists of a rectangular block of (a x b) cells lying between the rill 
and the (r + a)1II column. (r - 0, 1, 2.... L-a) and between the Sill and the 
(s + b)1II row, (s - 0, 1, 2, ... B-b). We shall say that this plot is determined 
by the pair (r, s). 

It will be noted that if a > I, the cell (1, 1) is includable in only one 
plot, namely the one determined by the pair (0, 0), while the cell (2, 1) is 
includable in 2 plots, namely those determined by the pairs (0, 0) and (1, 0). 
Similarly, if a> I, b >1, the cell (2, 2) is includable in exactly 4 plots, namely 
those determined by the pairs (0, 0); (1, 0); (0,1) and (1, 1). In general, the 
number of plots in which a particular cell occurs is given by the following 
theorem in which m - min (a, L - a + 1) and n .. min (b, L - b + 1). Obviously 
m~ l,n~ 1. 
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Theorem 1. The cell (i, J) is includable in fjj plots where 

fjj - gjhj , for all i andj (1) 

with gi and hj assuming the following values: 


gi = 1 for all i, if m - 1; and if m:2: 2 


Ii forl~i~m-l 
gj = m for m ~ i ~ L - m + 1 (2) 

L-i+l forL-m+2Si~L 

and where hj is obtained by replacing in (2) above m, gi' i, a, and L by n, 
h., j, b and B respectively. For brevity, the term ~j will be called the frequency 
o} he cell (i. j). 

Proof. For the sake of simplicity, at fmt consider only the first row of 
the L cells of the type (i, 1) given in Diagram 1. These cells can be renumbered 
as indicated in the following diagram by dropping the number 1. 

Diagram 2 

L2 3 I I 

023 

The problem is to determine the number of plots of size a x b in which a 
given cell can be included by following the selection procedure given in the 
paragraph 1. At fmt we assume, for simplicity, that b - 1. 

We state here 2 lemmas that will be useful in the proof of Theorem L 
Their proof is straightforward and is not given here. 

Let m .. min (a, L - a + 1) where a and L are positive integers and 
a~L. Then: 

Lemmo 1. m-l ifandonlyifa-l ora-L (3) 
Lemmo 2. m> 1 if and only if 1 < a < L (4) 

It is easily seen that in the two extreme cases where a -= 1 (the smallest 
possible value), or a - L (the largest possible value), the number of plots in 
which each cell of the diagram 2 can be included is only 1. Since Lemma 1 
states that these cases are equivalent to m - I, it proves that when 
m = 1. the frequency of each cell of the diagram 2 is 1. Furthermore, if the 
frequency of each cell of the diagram 2 is I, it can only happen when 
a=lora=L. 

Let us now consider the frequency of the cells in the case where 1 < a < L. 
As Lemma 2 states, this case is equivalent to the case m > 1. 

----~. -.--....-----------------~----
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We note that the cell 1 can be included in only one plot since it can 
be selected only when the selected random number, r, is equal to O. The same 
is true of the last cell, L, since it can be selected only when r - L - a (the 
largest possible value). However the cell 2 is includable in 2 plots, namely 
when r = 0 or r - 1. The same is true of the last but one cell, L - 1, since 
that cell is also includable in only two plots, namely when r - L - a-I 
orr-L-a. 

Continuing with the same argument, it will be noted that: 

(i) 	The frequency of the cells, starting with cell 1, and going from 1 to 
2, 2 to 3, and so on, as well as starting with the Jast cell and counting 
back from L to L-l to L-2 as so on, continues to increase by one 
(but see below): 

(ti) 	If a::; L a + 1, the highest possible frequency of any cell is a. This 
frequency is reached by the alit cell from the beginning and from the 
end, and it remains the same for all the cells in between. 

(iii) 	 However, if a > L - a + I, the maximum frequency (L - a + 1) 
is reached by the (L - a + 1)1It cell from the beginning and from the 
end, and then it remains the same (L - a + 1) for all the cells in 
between. 

By consideration of (ii) and (iii) above, we note that the maximum 
frequency reacbed by the middle cell or cells is m - min (a, L - a + 1) and 
the frequency pattero of all the cells is seen to be: 

I, 2, 	3, ... , (m - 1), m. m, m, ... , m, (m - 1). (m - 2), ...• 3, 2, 1 

The gj is obviously the illt tenn of this series, and is given by (2) ofTheorem 
1. 

Obviously a similar sequence of the cell frequencies is obtained by 
considering the first COlUUUl of the B cells of diagram 1. The l' tenn of the 
sequence, say hj' is obtained by replacing in (2) above the m, gp i, a, and 
L by n, hj' j, band B respectively. 

Now if we consider the frequencies of the different cells of the diagram 1 
when plots of size a x b are to be located, it will be seen at once, by following 
the same procedure as in the begimling of this proof, that the frequency for 
the cell (i, j) is given by: 

f··-g· h·IJ I J 

where gi is the frequency of the cell (i. 1), and hj is the frequency of the 
cell (1. j). This completes the proof of Theorem 1. 
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J. Sum of the Frequencies of All the Cells Comprising a Plot Located 
by a Particular Pair of Random Numbers 

If the pair of random numbers selected for locating the plot in the field 
is (r. s), 0 S r S L - a, 0 S; s S; B - b, the plot located will comprise of the 
a x b ceUs in the rectangle starting from the cell (r + 1, s + 1) through the 
cell number (r + a, s + 1) along the length. and from the ceD (r + I, s + 1) 
through the ceD number (r + 1, s + b) along the breadth. In an attempt to 
obtain a correction factor to be used as a weight to compensate for the unequal 
probabilities with which the different portions of the field were sampled by 
this method of locating the plot, expressions were obtained for the sum of the 
frequencies of the different cells comprising a plot located by a given pair 
of random numbers (r. s). It was argued that since the probabilities of the 
individual cells being sampled were not equal, the plot yield from a plot 
consisting of cells having relatively smaller probability (border plots) should 
be given an appropriately higher weight by multiplying its yield with a factor 
greater than one. and the yield from a plot consisting of cens having relatively 
larger probability (central plots) should be given a lower weight by multiplying 
its yield with a factor less than one. We shall flfSt obtain expressions for the 
StUll of the frequencies of the different cells comprising the plot (r, s) - meaning 
the plot located by the pair of random numbers (r. s) - in this section. 

Let fer,s) denote the sum of the frequencies of all the cells in the plot 
located with the random number pair (r. s). Then: 

fer, s) = L fij (5) 
i,j 

where the summation extends over aU values of the pair (i. j) with 
(r + 1) S; i S; (r + a) and (s + 1) S; j S; (s + b). 

Since from (1). fij - gi hj • it is seen that 

f (r, s) =S (L, a, r). S (B, b, s) (6) 
r+a 

where S(L,a,r) = L8i: r = O,I, .... L-a (7) 
i = r+ I 

s+b 

and S (B, b, s) = L hj ; s 0,1 ...., B - b (8) 
j = 8+ I 

We proceed fIrst to obtain the summation in (7). 

We note that: (9) 

-----~~-- .. 
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Actually, we can divide up all the L frequencies into the following three 
blocks: 

First block: 1,2. 3, ...• m-l 

Second or middle block: m,m,m, ...• m 

Third block: m-l,m-2, ...,2. 1 

The number of tenns in the first and third blocks is (m - 1) each and 
in the second block [L - 2 (m - 1)]. 

It will be useful to have an expression for the total of all the L frequencies 
g.. Whether m = min (a, L - a + 1) = a or L - a + 1, this is simply given by: 

I • 

L r gj = (m -1) m + m [L - 2 (m -1)] = m (L - m + 1) 
j = I 

= a(L-a+ 1) (11) 

It will be convenient to consider the following three cases separately, 
corresponding to three suitable ranges on L. For the cases I and iI below. m - a, 
and for case ill, m - L - a + 1. 

The case when m - a - L - a + 1, i.e. when L - 2a - I, is included 
in case II. 

Case I : L > 3 (a - 1). This ensures the middle block of at least 'a' 
tenns each equal to a. 

Case l/ : 2 (a - 1) < L·::;; 3 (a - 1). This ensures the middle block 
of at least one but not more than (a - 1) terms each equal to a. 

Case /II : a ::;; L::;; 2 (a - 1). This corresponds to m - L - a + 1 and provides 
the middle block of (13 - L) terms each equal to (L - a + I). 

For the sake of simplicity, we shall write only S, instead of S(L, a, r). 

Case I : L > 3(a - 1) 

Depending upon r, the summation involves either the terms from the flfSt 
2 blocks or from the second block alone, or from the second and third blocks. 
The following sub-cases cover all the possible values of r. 

Sub-Case 1 : 0::;; r ::;; a - 2 

S consists of the sum of the last (a - 1 - r) terms from the first block 
and the fmt (r + 1) terms from the second block. Thus 

S - a2 
- (1I2)(a - r - 1)(a - r) (12) 
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Sub-Case 2: a-lSrSL-2a+l 


S consists of all tbe a tenns each equal to a, hence 


S = a 2 (13) 

Sub-Case 3 : L-2a+2SrSL-a 

S consists of tbe last (L - a + 1 - r) tenns each equal to a from the 
second block and the first (2a + r - L - 1) tenns from the tbird block:. 
Obviously, 

S - a2 
-- (112)(2a + r- L - 1)(2a + r-- L) (14) 

Case II : 2 (a --1) < L S 3 (a - 1) 

In tbis case, depending upon r. tbe summation will consist of the tenns 
from either tbe first two blocks, or from all three blocks. or from only second 
and third blocks. Thus the following three sub-cases arise: 

Sub-Case 1 : OSrSL-2a+ 1 

This results in tbe same situation as the sub-case 1 of Case I, and 
consequently tbe expression for S is tbe same as in that sub-case. 

Sub Case 2 : L-2a+2SrSa-2 

Here the summation extends over the last (a - 1 -- r) tenns from the 
first block, all tbe L - 2 (a - I) tenns of tbe middle block. and the 
first (2a + r - L - 1) tenns of tbe tbird block. It is easily seen that 

S - a2 
- (l1)(a -r-l)(a -r)- (l1)(2a + r- L-l) (2a + r- L) (15) 

Sub-Case 3 : a -- 1 S r S L -- a 

This results again in tbe same situation as tbe sub-case 3 of Case It 
and consequently in the same expression for S as in that sub-case. 

Case 11/ : as L S 2 (a -- 1) 

In tbis case, M - L a + 1. We separate the following sub-cases 
corresponding to tbe different values of r. 

Sub-Case 1 : r - 0 

The summation involves all tbe tenns of tbe first and second blocks 
and entirely leaves out the tbird block consisting of (L - a) tenns. We 
make use of result (11) and obtain: 

S - a (L -- a + 1) - (112) (L -- a)(L - a + 1) (16) 

Sub-Case 2 : 1 SrSm-2 
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The summation consists of the last (m - 1 - r ) tenns of the frrst block, 
all the (2a - L) tenns of the second block, and finally the first r tenns 
of the third block. Thus, again utilizing the result (11), we get: 

S = a (L - a + 1) - (l12)(L - a - r)(L - a - r + 1) - (1I2)r(r + 1) (17) 

Sub·Case 3 : r - m - 1 ... L - a 

Here the summation involves all the tenns of the second and third blocks, 
and entirely leaves out the tenns of the frrst block. Consequently. S is 
the same as in sub-case 1 above, and is given by (16). 

It is easily seen that (16) is a special case of (17) when r '" 0 or 
L - a. Thus (17) covers all the t1rree sub-cases of Case III. 

Further, in the trivial case when L - a, the only value for r is 0, and 
wegetS-a. 

AU the expressions obtained above for the values of the function S are 
given on the next page in a tabular form. It should be remembered that L 
and a are positive integers with a:::;; L while r is a non-negative integer such 
that O:::;;r:::;L-a. 

It can be algebraically verified that all the different values of S (L,a,r) 
for different L, a, and T, given in the table for the various cases can be 
represented by the following elegant and compact form: 

2S (L. a, r) ... a - (112) a. (a. - 1) - (l12)~ (~-I) (18) 
where a. =- max (a - r, 0) and p - max (2a + r - L, 0) 

Following the same procedure used for the derivation of S(L. a, r), it 
is clear that the summation (8) will be given by 

Table 1: Values of S (L, a, r) for different L, a. and r 

i 

Values of L and a 
Valuesofrin the 

range 
OSrSL-a 

Values of S(L. a. r) 

L > 3 (a-I) OSrSa-2 a2 - (1/2)(a ­ r- l)(a ­ r) 

a-ISrSL-2a+l a 2 

L-2a+2SrSL-a a2 -(1I2) (r-L+2a-l) (r-L+2a) 
2(a-l)<LS3(a-l) OSrSL-2a+ 1 a1 -(1I2)(a-r-l)(a-rl 

L-2a+2SrSa-2 a2 -(t/2)(a-r- t)(a-r)­
(1/2)(2a + r- L - 1)(2a+r- Ll 

a-1SrSL a a2 -(112) (r-L+2a-l) (r-L+2a) 
aSLS2 (a-1) o SrSL-a a (L-a+ t)-(1/2)(L-a-r) 

JL-a - r+ 1) ­ 0/2) r(r+ 1) 

S (B, b, S) '" b2 
- (112) a. (a. - 1)- (112) P(P - 1) (19) 

where a. ... max (b - s, 0) and () = rqax (2b + S - B, 0) 
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4. Correction Factor Suggested 

In an unpublisbed note, the author bad pointed out that since the 
probabilities with which the individual cells had been sampled were not equal, 
the plot-yield from the plots (around the borders of a field) comprising of cells 
baving smaller probability, sbould be given an appropriately bigher weight by 
multiplying their yields with a factor greater than one, and the plot-yield from 
the plots (near the center of a field) comprising cells baving larger probability 
should be given a lower weight by multiplying their yield with a factor less 
than one. The suggested correction factor or weight was arrived at by tbe 
following considerations. 

Ifequal chance were available to each one of the L x B cells to be sampled, 
the probability of a cell being included in a plot of size a x b cells would 
have been Q - (ab)/(LB). By extending the argument to the case when the 
cbances given to eacb one of the L x B cells were not equal, we stated that 
probability of a cell being sampled in the plot comprising a x b cells would 
now be: 

L-a B-1> 

P f(r,s)lL L fer,s) (20) 
r 0 s = 0 

where f(r, s) is given by (5). 

By utilizing (6), (11), (18) and (19), it is seen that (20) reduces to: 

a2 .1 a (a -1) -.1 ~ (~-1) b2 _.1 a' (a' -1)_.1 W (W-1) 
P = . 2 2 x 2 2 (21) 

a (L - a + 1) b (B - b + 1) 

wbere a, ~, a', and Ware given in (18) and (19). 

Siuce unequal probability sampling was regarded as a "biased" procedure, 
it was suggested that the bias could be removed by dividing the plot yield 
by the unequal probability (21) and multiplying it by the equal probability 
Q = ab/LB. This factor w, where 

w=QIP (22) 

seemed to satisfy the requirement that w > 1 for the border plots and w < 1 
for the central plots. This factor w, along with the compact formulae (18) and 
(19) was given in the notes of the seminar at Iowa State [2]. 

5. Relationship 10 Sampling with Unequal Probabilities 

Although the suggested "correction factor" was meant to remove the "bias" 
introduced by unequal probabilities of sampling, it is only a step away from 
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the generalization of sampling from equal to unequal probabilities. For example, 
if a sample Yl' Y2' •••, Yo has been obtained by assigning unequal probabilities 
to the different sampling units of the fmite population and this results in a 
situation that the j'" unit of the population, say uj ' will be included in a sample 
of size n with probability P(uj ), the correction factor w would suggest that if 
the population mean were to be estimated by 

n 

it would be a biased t-stimator. In order to remove this bias, it would be 
necessary to multiply each selected Yj (i - 1, ... , n) by a proper correction 
factor Wj' which in this case works out as QlPi • where Q - probability of a 
unit of the population to be included in the sample with equal probabilities 
= oIN, and Pi = P(uj ). Thus, we obtain an unbiased estimator of the population 
mean as: 

o 	 n 

~L Yj QIP (Uj) == ~ L Yj' P (ui) (23) 
i=l i=l 

This estimator is known in the literature as the Horvitz-Thompson 
estimator [3]. 
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