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SUMMARY 

This paper gives an exposition of the class of estimators proposed in 
Srivastava (4], and further investigated in various articles, some of which 
are included in the References at the end. This class of estimators is 
pre-eminent in Sampling Theory, It is believed that in almost every situation, 
it showd produce estimators better than those available in the literature. 
A few directions of research useful in Agricultural Statistics are also 
indicated. Agricultural Statisticians involved in sampling may do a great 
service to themselves by developing this class of estimators for their fields 
of application. 
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1. Introduction 

A series of papers, starting with Srivastava [4], have been published on 
this method of estimation, which bears the author's name 
("Srivastava-Estimation"). Many of the revelant works are listed at the end. 

The purpose of this paper is to present some lines of research wbichmay 
tum out to be particularly useful in Agricultural Statistics. 

In what follows, we briefly (but, lucidly) explain the class of estimators 
and a few major special cases, and discuss some of the main properties of 
these briefly. Finally, we indicate some new lines of research which may be 
specially fruitful in Agricultural Statistics. 

Let U denote the finite population (or the "Universe") consisting of N 
units, denoted by {t, 2...N}. For the i-th unit (i = 1•..., N), let Yj denote the 

value of a variable of interest y. Then, the population total is 
(y\ + ... + yN), and will be denoted by Y. 

I 
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Throughout, let k (1 S k S N) be an integer, and let i = (il •••• ' \.) be an 

unordered s~t of k distinct integers chosen out of {I, 2 •...• N}. Tbougb 
(iI' ..., ik) is unordered, we sball. for convenience. write it as an ordered set 

with 1 S i l < ~ < ... < \. S N. 

For any fixed k, let V <i) be a real nwnber defined for all possible 

i. (Clearly, the nwnber of cboices of i is (~} All that we assume about V 

is that it is known function in the sense tfiat for every value of t the value 
of V (..D. which is a real nwnber, is known. 

Let 

(2.1) 

where 1:1 denotes a swn which runs over all distinct (~ ) possible values of 

1 In Srivastava [41. the problem of estimation of Q (V) was considered (for 
all k. and for all V). 

TIlrougbout, by a "sample" we shall mean a set of distinct units drawn 
from the population U. Let wdenote a sample, and let IwI stand for the number 
of units in w. 

A "PhYSical Sampling Tecbnique" (PST) will, throughout, signify any 
method of drawing a sample from the population. In this paper, the theory 
covers all PST's. Note that a given PST may lead to a sample of variable 
size. Thus, in Binomial Sampling, a unit i e (1, ..., N) may be selected with 
probability. say Pi> O. Clearly, in this case, I w I will vary between 0 and N. 

Another example is given by Simple Random Sampling With Replacement 
(SRSWR). Suppose we draw 5 units using SRSWR. Clearly, Iw I wiD DOW 

vary between 1 and 5. SRSWR is an example of a PST whicb may lead to 
a situation where a particular unit may get drawn more than once. If w' is 
the set of units drawn using such a PsT, then in our theory below, we shall 
consider our sample to be wwhere wis the largest set of distinct units contained 
in W'. 

One may wonder whether we are throwing away information by restricting 
w' to w. Let mi (2'! 0) be the nwnber of times unit i (= 1, "', N) occurs in w', 

N 

so that I w'l = L m., and Iwi equals the nwnber of distinct values of i 
i", 1 I 
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sucb that mj > 0, Then, it is intuitively clear that unless tbe PST is such that 

tbe m. have infonnation conceming~ (= (yp ..•• YN»' we do not lose any 

infonnation in restricting (I)' to (I). This fact is also supported by the published 
literature on tbis problem. Indeed (I) may give better results. For example, if 
tbe PST is SRSWR, tben i~ is known that tbe arithmetic mean of tbe y-vaJues 
of tbe units in (I)' (say YII)')' is a worse estimator of tbe population mean 

Y= (YIN) tben YII) when YII) is tbe arithmetic mean of tbe y-vaJue of tbe units 

in YII)' (However, it is weU known that tbe Horvitz-Thompson estimator 
1\ 

(YHr) of Y is not admissible when tbe sample size is variable, and tbat a new 

admissible estimator (Y 82) (Srivastava [5]) should be used instead. Thus, in 
1\ 

particular, under SRSWR, tbe estimator Y 52 is the best known estimator (under 

total ignorance of ,V. 

Now, consider any arbitrary, but fixed, PST. Let (I) be a sample, and let 
p (00) be tbe probability of drawing 00 under tbe given PST. Thus p is the 
'sampling measure' induced by tbe PST. 

We now consider the problem of estimation of Q<V), given a sample 
(I) obtained by using a particular PST, witb sampling measure p. 

Let r be a function which maps samples (I) to real number, i.e., r is a 
known, finite, real valued fUnction, sucb tbat the vaJue of r (00) is known for 

all possible 2N samples (I). If (I) is empty, we take r «(I) = O. Tbe function 
r, called a 'sample weight function., was introduced in Srivastava [4], and is 
a key concept in tbe development of tbis class of estimators. 

Let t be an integer, witb 1 S t S N. Let j ;;;; j (t) ;;;; (jl'···. jt)' witb 

lSjl<~< .. ·<jtSN. 

Define 

(2.2) 

where the stun ~ runs over aJl samples (I) wbich contain tbe t units 

Up ...,jt)' Now, for a given t (witb 1 S t S N), k (with 1:S k S N). and 

! =(i l ,··" \) (as before), we defiue tbe class Tr (1 t). The class Tr (1 t) is 

tbe set of values of j (= (h, ...,.it» such tbat the unordered set (j1'''''~) 

contains tbe unordered set 0 ...... \) and furthermore, such that 
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1I:r <! (t»* O. For all pennissible 1, andi define vr Q, t) to be the number of 

elements in the set Tr Q, t), so that 

vr (i, 1) == 1Tr Q, t)1 	 (2.3) 

wbere, for any set K, IKI denotes the number of elements in K. 

Now, for any real number z, Jet z- denote the Moore-inverse of z; this 

means that z- = 0, if z = 0, and z- == liz if z * O. Also, for all pennissible 
t and 1 we introduce real numbers sucb that a Q, t) = 0, if v r Q, t) = 0, and 

sucb that 

N 

L a(10 = 1 	 (2.4) 
t= 1 

For any fixed k and 1 and for any given sample 00, define 

N 

Pr Q., (0) = r (00) L la (1 O]lvr Q., 0- {1:3 11I:r <1. (t»f } (2.5) 
t= I 

wbere, for any given t, the sum 1:3 runs over aU values of 

! (t) = (j1"'" jt)' such that the unordered set 1<= (il''''' \» is contained in 

the unordered set (jl"'" jt)' and furthermore sucb that the unordered set 

(iI' •• ,' jt) is itself contained in the sample 00, (It is clear that ~ will run over 

an empty set if i is not contained in 00, and/or if t> 1001.) 

Let 
A A 

QSr ('If) == Q ('If) = 1:4 1Pr (1 (0)] 'If (J) (2.6) 

wbere 1:4 runs over all values of i which are contained in 00. (Note that if 
A 

k> I €Ill, then Q ('If) is undefined.) 
A 

In Srivastava [4], the quantity Q ('If) was proposed as an estimator of Q('If), 

Remark 2.1 

(1) 	~ Sampling TIleory (ST) literature, usually the estimation of Y and 
Y, and also of the variance of the PJ;Pposed estimator of these is 
considered. The theory related to Q ('If) provides a three-fold 
generalization of the above. We elaborate these below. 

------.....---~--- ._ .._._----------------- ­
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(2) 	 Firstly, we consider Q ("') itself. When k = 1 and 
'" (j) = '" (il) = YH' we get Q ("') = 'I. the population total. But. we 
can choose any value of k, and any function ",. Thus, the fll'St 
generlization is from Y to Q ("'). For example, wben k = 2, and 

'" (j) = (Yil - Yili. for all.!., the quantity Q ("') is a constant multiple 

of S2 (the population variance, which equals 
N _ 

(N 	 0- 1 L (YI - Yi). 
i-I 

Similarly. if k = 2 and'll (iI' i2) = IYiI - Yill, the quantity Q ('II) is a 

constant multiple- of Gini's mean difference. Also take 

k = 2, '" (i •• ~) = (ail Yu + ai2 Yili, where (a1' ...• ~) (=! say) is a 

fIXed set of real numbers. Then, Q ("') will be a quadratic form 
Y.' r y, where r (n x n) is a matrix of real numbers (which will be 
polynomials in the .a's). Now, quite often, an expression for 
Var (y) (where y is some estimator of Y, and "Var" stands for 
"variance") can be written in the form Y.' r y, for a suitable choice 
of a: For all such situations, the theory discussed here is applicable, 
and it will provide new classes of estimators, many of which may 
tum out to be far superior to those available now. 

(3) 	 The second dimension of generalization is the function r. Notice that 
r is unrestricted. It turns out that many of the most famous classes 
of estimators in ST correspond to simple choices of r. However, other 
choices may, and often do, give significant improvements. (An example 
is Y$2' in the context of SRSWR, mentioned earlier.) 

(4) 	 A third dimension of generalization comes through the introduction 
of the quantities (l (i, t), which is a set of n arbitrary real numbers 
subject to slight restrictions. The idea behind these is as follows. 
Suppose we wish to estimate a quantity Q ("'), where '" (D is a 
function of.1 which is a set of k units from U. Thus, Q ("') is a sum 
of quantities, which are functions of units, taken k at a time~ Now, 
for fixed k, let t be sllch that k ~ t ~ I001. To estimate Q('II), we could 
look at t lInits at a time from the sample. This will be ilJustrated below 
by working Ollt the two cases where (l (i, t) equals 1 for t = 1 or 2, 
and equals zeros otherwise. 

First, take t = 1, and let 

(l Q.. 1) = 1 and (l (it t) = 0, for t > I 	 (2.7) 
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Then, 

i (t) = (1) (= j. say), 

and 

Vr q (t» = Vr ( 1) = Vr 0) = r p (ro) r (ro) (2.8) 
21 

where r runs over all ro containing the unit j. 
21 

For simplicity and convenience of exposition. henceforlh we shall asswne 
that for t = 1 and 2. Vr <1. (t» is positive for aU pennissible values of 

1.(t). Thus. V 0) dermed above is always positive. Hence. under (2.7). for 
f 

k = 1,1 = i. we get 

~r (i. ro) = r (ro)lVr (i) (2.9) 

For later use. derme. for all j (= 1•.. '. N) and for all ro: 

aiw = 1. if i e ro 
= 0, otherwise (2.10) 

1\ 1\ 

When k = 1.1= i, V (j) = Yi' we get Q (V) = Y. and QSr (V) reduces to Y SrI' 

where 

N 
1\ Yi 
YSrI = r(ro) r -(i) (2,11) 

i = 1Vf 

Now. consider the situation where 

r (00) = 1. for all possible 00 (2.12) 

In this case, V
f 
CD reduces to V (i) where 

'1'(1) = :E2 P(ro) (2.13) 

so that V (i) is the probability that, under the PST being used,)he set of t 
units (i1' .... ~) will all be included in the sample. Under (2.12). YSr1 reduces 

1\ 

to Ym where 
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N 
Yi a..,1\ ~ 

YHT = L, --. (2.14) 
. I Vr (I)
1= 

Now, we consider the case where 

a (12) = 1 and a (1 t) = 0 fort ;e 2 (2.15) 
1\ 1\ 

Under (2.11), QSr ('II) reduces (for Q (V) = Y) to YS12 

where 

(2.16) 


where 

L * 
runs over all units i' (;e i) in roo 

1\ 1\ 

Notice ~at YHT utilizes the Vi' whereas Y 512 involves the V (i, i'l; thus, 

in a sense, Y S12 looks at two units at a time. Notice also that by choosing 
1\ " 

a's appropriately, we could have a linear combination of YHT and YSI2" 
1\ " 

Similarly, there will be an analog (say Y for the case when (2.11)sa) of YSl2 
" 1\ 

does not bold just as YSri is with respect to Y HT' 

1\ 1\ 

The estimator Y sa' or even YS11' have not been studied in any detail, 
1\ . 

but Y Sri bas been investigated in many articles. (So, for example Srivastava 

and Ouyang [6], [7], and other articles included in the reference.) 

2. Discussion of Properties 

We now give a brief and informal disc~ssion of some of the major 

properties of the class of estimators given by Qsr (V). For details, the reader 
should look into the references. 

Remark 3.1. In Srivastava [4], it is proven that for all (pe~sible) k, 

V, choices of a's, and functions r, and all PST's, the estimator QSr ('I') is 
unbia~ed for Q (V). ~xpression~ in reduced form, are provided for 

Var (Qsr ('II», and Cov (QSrl (VI)' Qsa ('1'2» (in an obvious notation). Also, a 

class of estimators of these quantities, using the samples. is provided. 

---------------- ..•_.._ ........... ­



252 JOURNAL OF mEINDIAN SOCIElY OF AGRICULTURAL STATISTICS 

Definition. For any PST, a function r will be called "regular" if it satisfies 
the condition: 

1 1 1
-()=-+ + ... + 	 (3.1) 
r 00 rit rj2 rin 

for all non empty samples 00 (where 1001 = n, and 00 consist of the units 
(iI' ..., in» such that p (00) > 0, wbere rj (i = 1, .. " N) are some set of positive 

real numbers. (Note that (3.1) includes (2N -1) - g ] conditions, where g is 
the number of distinct ro's such that p (00) = O. If g = 0, then 0 will take the 

values (1, 2,..., N), and there will be (~) samples with 1001 n.) 

Remark 3.2. (Srivastava and Ouyang [6)) 

(1) 	 Suppose y> 0 (i.e., Yi > 0 for all i). Also~ suppose that (3.1) is satisfied, 

and also that 

yIY = "'r (i)irj for alii = 1, ..., N (3.2) 

Then, 

1\ 

(2) 	 If r is regular, then Y Sri is admissible in the class of linear homogeneous 

unbiased estimators of Y. 

(3) 	 It is easy to see that when 1001 is variable, (3.1) can not be satisfied 
iJ (2.11) holds. Indeed, when 1001 is variable, it is well known that 
YliT is inadmissible. For this situation, the admissible special case of 
1\ 1\ 1\ 

YSri is not Y liT' but Y 52' where 

N 

Y
1\ 

S2 = L ajro Y/1t'j (3.3) 

i = 1 

where, for all i, 

(3.4) 

1\ 

(4) 	 For fIXed sample size case, the tbeory of YliT has given birth to the 

so-called "p.p.s. sampling", which says that our PST should be such 
that the resulting sampling measure p (00) is such that "'I is proportional 

1\ 

to Yi' where Yi is a guess-value of Yi' for all i. Using Y 52' we now 

.~------------------------......- ­
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have "weighted pps sampling", in which we need to have that the 

1t/1 are proportionaJ to the fl' 

Remark 3.3. 

(1) 	 In generaJ, suppose that we are given the vector y, and aJso a measure 
p using which the sample has been drawn. It is clear that we should 
like to choose the function r so that equations (3.1) and (3.2) (where, 
in (3.2), the YI are replaced by the fl> are satisfied. (The equations 

(3.1) and (3.2» taken together are known as Zero-Variance Equations 
(ZVE) , since they lead to zero variance when y = ~. 

(2) 	 The ZVE are non-linear. An iterative procedure bas been proposed 
(Srivastava and Ouyang (6], [7]) which converges rapidly. Notice that 

in the computation of the w, 0), the snm is to be taken over all 

w which contain the unit i. When N is large, the nnmber of such Ul'S 

may become too large. For this, a sampling procedure has been 
developed which allows the computation of 'if, (0 relatively easily; this 

procedure will be described elsewhere. 

(3) 	 In Srivastava and Ouyang (6], the "principle of invariance" was offered. 
This says that Y is invariant under a permutation of the elements of 
the vector (Yl' ... , YN)' or equivaJentJy, under a permutation of the units 

(I, 2, ..., N). This allows us the estimation of Y by estimating the 

total of a population U* whose y-vaJues are (y;, ..., y~) (= i, say) 

where y; S; y; S; ... S; y~, and where (y;, ..., y~) is a permutation of 

(yI' ••., YN)' Of course, we have to obtain a guess-value ~* for y*. 
Suppose we do have a good guess value x*. 

After drawing the sample w (from U), say Ul = (iI"'" in)' we look at 

the vector (YiP •••• Yin)' SUppose (y'p ''', Y'n) is a permutation of 

(YiP"" Yin) such that (Y/I S; y'z S; ... S; y'n)' Let (jl' .. ·,jn) be such that 

1:;:. j) <jz < ••• <jn:;:' N, and furthermore such that ~'h* is closest to Y/h' 

Then. we regard our sample to be 00* (drawn from U*), where Ul* consists 

of the units (j), ..., jn)' Next, we obtain a guess value y* of y*. and using x* 
in the ZVE, we find the function r by iteration. Having obtained r, we compute 
the estimate. 

------------.--.~.~- .......--.~.. - ­
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" Remark 3.4. Besides Y HT' most of the other well known estimators of 

" Y are also special cases of QSr ('If). Some of these include the Lahiri-Midzuno. 
the Hartley-Ross. and the Mickey estimators. 

3. Future Lines of Work 

In the papers included in the references. particularly in Srivastava [9]. 
many large areas of research which should be quite fruitful. are pointed out 
Here. we discuss three new lines of investigation. which may be very useful 
in agricultural work. 

Remark 4.1 

(1) 	 This is in continuation of Remark 3.3. Recall Y..* 'Wd y*. If the choice 
of y* is made totally independently of 00*. then Y SrI (which involves 

the function r derived from y* using the ZVE) will be an unbiased 
estimate of Y. On the other hand. if y* depends in some way upon 
the 00*. then some bias may get introduced in YSrI' However. the biased 

estimator may still be quite good from the view point of mean square 
error. Such investigations can be easily carried out using simulation 
techniques. 

(2) 	 A good guess value y* may come as a result of having a model­

oriented approach. Thus. the set (y;..... y~) can be considered to be 

a set of order statistics from some population whose form we might 
be able to determine from previous experience. Indeed. it should be 

useful to study the dependence of (rl..... rN) upon (y;..... y~) such 

that the ZVE are satisfied. assuming that 1001 is fIXed. and p(oo) is a 
constant (i.e.. SRSWOR). For different important super-populations. 
one could obtain the order statistics. consider" the same to be y*. and 
then obtain r. and study the behavior of YSrI through simnlation. 

Sometimes. in the above process. one may use 00* to get some clues 
to y*. Of course. this will make YSrI biased and nonlinear. but the 

fmal result may turn out to be excellent Indeed. in some examples 
tried by the author. this is the case. 

(3) 	 Another line of investigation consists of applications to "Successive 
Sampling" situation. In this case. y may be the value of Y.. estimated. 
say. in the previous year. Agricultural forecasts are made every year. 
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Thus, it should be quite worth while to investigate this direction of 
research, which may give a much improved estimate of Y. 

(4) 	 Fioally, there is the area of "Subsampliog", which arises in almost 
every sampling activity in practice. Suppose there are N primary units, 
the j-th primary unit having Mj secondary units. We choose a few 

(say n) primary units, and in eacb chosen primary unit, we select a 
few secondary units. Suppose. SRSWOR is used at both stages. 

For each sel~d primary unit, we can estimate the total of the subunits 
by using the previous methods. Next. a function r can be worked out 
by using the vector (M I, "', MN) i.e.• by considering it to be rougbly 

proportional to (YI' ••. , YN) wbere Yi is the total for the i-th primary 

unit. 

(.5) 	 The above ilJustrates a few lines for research wbich should be fruitful. 
Of course, these can be combined with many other suggestions given 
in other papers, including Srivastava [91. 
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