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SUMMARY 

Many authors seem to be unaware of the importance or the existence 
of the earlier papers of Choquet and Deny [4] and Deny [6] on its 
convolution equation, even when these have links with their own papers. 
Lau and Rao [9] and Davies and Shanbhag (5] among others have 
established variants or extended versions of the results of Choquet and 
Deny (4] and Deny [5]. and have given various applications of these. The 
recent monograph of Rao and Shanbhag [15] should provide the reader 
with the relevant details of the literature in this connection. In the present 
paper, we make some further observations on the literature on integral 
equations, pointing out, in particular, that certain results of Laczkovich [8] 
and Baker [3] are essentially simple corollaries to, or variants of corollaries 
to, the general theorem of Deny [6] or the theorem of Choquet and Deny [4]. 
In the process of doing this, we are led to some new versions of the existing 
results on integral equations. 

Key words: Integrated Cauchy equation, Exchangeability, de Finetti's 
theorem, Choquet-Deny theorem. Deny's theorem, Lau-Rao-Shanbhag 
theorems. 

1. Introduction 

Cboquet and Deny (4) showed that if S is a locally compact Abelian 
topological group, then a bounded continuous function H: S ~ R satisfies 

H (x) = JH (x + y) fl. (dy), XES 	 (1.1) 

s 

with fl. as a probability measure, only if H (x + y) = H (x) for eacb 
y E 	supp [fl.] and each XES. With an additional condition that S is second 
countable. Deny [61 gave an extended version of this result He showed that 
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if H : S ~ R+, with H as continuous without necessarily being bounded, satisfies 

(1.1) with Ii as a Radon measure (that is not necessarily a probability measure) 
such that the smallest closed subgroup of S generated by supp ij.J.] equals S 
itself, then (asstuning it to be trivially so when H == 0) H has an integral 
representation as a weightro average of Ii-hannonic exponential functions. (A 
function e: S ~ R+ is called an exponential function if it is continuous and 

satisfies e (x + y) = e (x) e (y) for all x, yeS; an exponential function e is 

referred to as Ii-hannonic if Je (x) Ii (dx) 1.) 

Shanbhag (181 and Lan and Rao [9) have given variants of Deny's theorem 
in the cases when S = No {O, I, ... }) and S = R+ respectively, and, under 

some mild conditions extended versions of Deny's theorem, subsuming the 
Lan-Rao-Shallbhag theorems, to the case when S is a semigrollp are given by 
Davies and Shanbhag [5], Lan and Zeng [10] and Shanbhag [19]. Rao and 
Shanbhag [15] have discllssed and unified many results on functional equations 
including some of these. 

Laczkovich [8] and, more recently, Baker [3] have given certain results, 
on functional equations. Indeed, one of these results, namely Theorem 2 of 
Laczkovich, is a direct corollary to Deny's theorem, while, among the 
remaining, Theorems 1 and 3 of Laczkovich and Theorem 1 of Baker are slight 
variations of corollaries to Deny's theorem or the Choquet-Deny theorem; the 
authors of the two papers cited here do not seem to be aware of this. In the 
present paper, we show explicitly how these latter results of Laczkovich and 
Baker are either linked with or follow as consequences of the two celebrated 
theorems from the prior literature, referred to. In tile process of doing this, 
taking a clue from Theorem 1 of Laczkovich, we observe tile validity of certain 
versions of the results of Deny, Lau and Rao, and Davies and Shanbhag, with 
apriori local integrability condition (with respect to Lebesgue or Haar measure) 
relative to the functions involved in them deleted. Included among corollaries 
of these versions is essentially Theorem 1 of Laczkovich, which does not insist 
apriori that tile local integrability condition ill question be met. We also make 
bere some observations on characterizations of stable laws, tbat are linked with 
the results on functional equations. 

2. Some Known Specialized Results of Functional Equations 

The following are some specialized results that are to be lISed ill, or of 
relevance to, our present discussion. 
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Theorem 1. Let H be a non-negative real locally integrable Borel 
measurable function of R+, other than a function which is identically equal 

to 0 almost everywhere [LJ. such that it satisfies 

H (x) =f H (x + y) J1 (dy) for almost all [L] x e R.. (2.1) 

for some a-fmile measure J1 on (the Borel a-field of) R+ with J1 ({O}) < 1 

(yielding trivially that J1 ({o}e) > 0). where L corresponds to Lebesgue measure. 
Then, either J.1 is arithmetic with some span l. and 

H (x + nA) = H (x) bn, n :::: 0,1 ... for almostall [L] x e R.. 

with b such that 

r bn J1 ({nA)} :::: 1 
n .. 0 

or J1 is nonarithmetic and 

H (x) oc exp {1'\x} for almost all [L] x e R+ 

with 1'\ such that 

J exp {1'\x} J1 (dx) = 1 
R+ 

Corollary 1. Let {(vn,wn):n = O,t, ... } be a sequence of vectors with 

non-negative real components such that vn i:- 0 for at least one n, Wo < 1, and 

the largest coounon divisor of the set {n: wn > O} is unity. Then 

Vm = r vm + n Wn' m :::: 0, 1, ... 
n = 0 

if and only if 

Vn = Vo bn
, n = 0, 1,2, ... and r wn b" = 1 

n=O 

for some b > O. 
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Theorem 2. Let H be a nonnegative reallocaUy integrable Borel measurable 
function on R, other than a function which is identically equal to zero almost 
everywbere [L], such that it satisfies 

H (x) =JH (x + y) IJ. (dy) for almost all [L] x e R (2.2) 
R 

for some o-fmite measure IJ. on R satisfying IJ. ({O}) < 1 or equivalently 

IJ. ({O}e) > 0 (with L as Lebesgue measure). Then, either IJ. is non-arithmetic 
and 

H (x) = c, exp { I'll x } + ~ exp { 112 x }for almost aU [L] x e R 

or IJ. is arithmetic with some span I.. and 

H (x) = SI (x) exp { 111 x } + Sz (x) exp { 112 x }for almost all [L] x e R 

with c1 and c2 as non-negative real numbers, SI and !1 as periodic nOD-negative 

Borel measurable functions having period A, and lli' i = 1, 2 as real numbers 

such that J exp {l1j x} IJ. (dx) = 1. (We allow bere tile case of 111 = 112; in 
R 

this case, we take c2 = 0 and !1 == 0.) 

Corollary 2. Let {(vn' w n): n = O,± I, ...} be a sequence of 

two-component vectors with non-negative real components such that w 0 < 1 and 

at least one vn '¢:. O. Tben 

vm = L wnvn+m' m = O,±l, ... 
n =_CO 

if and only if 

vm = B(m)bm + C(m)cm,m = 0,±1, ... 

and L w m bm =L wm cm = 1 for some b, c > 0 and non-negative periodic 

functions B. C with the largest common divisor of {m: wm > 0 } as their 

common period. 

Theorem I is due to Lau and Rao [9] and bas several interesting proofs 
including that based on exchangeability, given by Alzaid, Rao and Sbanbbag [1]. 
Theorem 2 is essentially a corollary to Deoy's theorem and bas been arrived 

------~ 
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at via an alternative argwnent based on a random walk approach in some recent 
articles; see Ramacbandran and Lau (12) or Rao and Sbanbbag [15] for the 
details of the references. Corollary 1 is a sligbtly extended version of 
Shanbhag's [18] lemma and Corollary 2 is a result obtained recently by 
Ramachandran [11] via real variables techniques different from those employed 
by Deny [6]. 

Davies and Shanbbag [5), Sbanbbag [19J, and Rao and Shanbhag [15] 
have given general results subsuming versions of Deny's theorem as well as 
the Lau~Rao theorem, via argwnents based on exchangeability, amongst other 
things. As illustrated in Rao and Shanbhag [15], these results have applications 
in various topics in probability and statistics. 

As a corollary to Theorem 1.2.5 in Rao and Shanbhag (15) or its 
specialized version appearing in Davies and Shanbbag [5], it follows that if 
S is a countable Abelian semigroup with zero element, v: S ~ R+ and 

w: S ~ R+ are functions satisfying 

v (x) = L v (x + y) w (y), xeS (23) 

yeS 

then, for eacb xeS 
v{x+2y)v(x+2z)<?:(v(x+y+z)i,y,z e S·(w) (2.4) 

where S· (w) is the smallest subsemigroup of S, with zero element, containing 
{ xeS: w (x) > 0 }. The exchangeability argwnent used by the earlier authors 
to arrive at more general fonns of the inequality is of elementary nature and 
it simplifies conSiderably in the present special case; one could also arrive at 
the result appearing here via celebrated de Finetti's theorem for exchangeable 
random elemeots, thougb the argument in this case would be less elementary. 
(Note th'at (2.4) follows trivially for eacb x with v (x) = 0.) 

Indeed de Finetti's theorem tells us something more about (2.3). To 
illustrate this, we may proceed as follows. From (2.3), we get 

v (x) = L v(x+y)w*(y),x e S (25) 

yes· (w) 

where 

w· (y) = L r" L nf .. I w (Yj), y e S* (w) 
k '" I k 

{ (y I' ..., Yt): I. Yj = Y } 
I 
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(We allow bere some or all of the w· (yrs to be equal to 00). If 

v (0) = O. we get from (2 . .5), the restriction of v to S· (w) to be identically 
equal to zero. Consider now the case of v (0):;:. 0 and iiefine a sequence 
{ XII : n = 1, 2. ...} of excbangeable random elements with values in 

S· (w). sucb that 

V (Xl + ... + "n) II • 

P {Xl = Xl' .... Xn = "n} = v (0) nj • 1 w (Xi) 


xl ..... "n e S· (w); n = 1,2,... (2.6) 

We bave then. in view of de Finetti's theorem (and the fact that w* (y)'s are 
all nonzero), that for all x, y e S* (w) 

1o = v (0) {v «x + y)+ (x +y»-2v «x + y)+ x +y)+ v (x + y+x + y)} 

= E {«P {XI '= x+ ylr}! w" (x+ y»-(P {Xl = X Ir }/w* (x» 

(P {Xl = ylr } tw· (y»2) 

wbere r is the tailor invariant a-field of {XII}' Hence. it follows that 

(P {Xl = X11 }/w· (x» (P {XI = ylr }tw· (y» 

= P{XI = x+ylr}/w·(x+y),x.yeS"{w),a.s 

which implies, in view of (2.6), that there exists a collection 

{e (x, .): xeS· (w)} of r-measurable noD-negative real-valued measurable 
functions sucb that 

e (x,.) e (y,.) = e (x + y, .), x, yeS" (w) (2.7) 

and 

v (x) = v (0) E (e (x•.», x e S* (w) (2.8) 

In view of (2.3), (2.7) and (2.8), we then get on appealing of Fubini's 
theorem that. 

o = E {l - L e (x,.) w (x)i ) 

Jt e s· (w) 
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implying that 

r e (x,.) w (x) = 1 a.s (2.9) 

xeS· (w) 

Modifying the defmition of e (x, .>, xeS· (w), sligbtly on a null set. we can 
then produce a version of it so that (2.7), (2.8) and (2.9) "a.s" deleted are 

met. Consequently, if we equip S or S* (w) with discrete topology, we get that 

the restriction of v to S* (w) has an integral representation in tenns of 

fl*- bannonic exponential functions. where fl* is the measure determined on 

S* (w) by {w (x), x e S* (w)} and exponential or !J,*-bannonic exponential 
functions are defined in tile obvious way. (Note that we allow here an 

exponential or !J,* -bannonic exponential function to bave 0 as one of its values.) 

The result that we have obtained above was established via Cboquet's 
theorem by Rao and Shanbbag [l5] via a somewhat related approacb by 

Ressel [17]. As a consequence of the result if follows that if S* (w) = S, then 
we have either v == 0 or v (0) ;#:. 0 and tIlere is an integral representation for 

v in terms of !J,*- harmonic exponential functions; Corollary 2 in the case 
when there exist at least one negative n for which w n > 0 and at least one 

positive n for which w II > 0 follows trivially as a corollary to this result and 

bence to de Finetti's theorem, and in other cases it follows as a corollary to 
Corollary 1, wbich in turn, is also a corollary to de Finetti's thenrem as observed 
by Rao and Sbanbbag [16]. Following essentially the technique of Remark 4.4.3, 
(iv) on pages 100 and 101 in Rao and Sbanbbag [15] (see also a relevant 
comment in RetIlaIk 5 in the next section), one can produce an integral 
representation for v in terms of !J,-harmonic functions, where !J, is tile measure 

determined on S by {w (x), xeS} when S· (w);#:. S, v is not identically equal 
to zero and tile following structural condition is met. 

Condition: Let w (0) < 1 and, for every xeS + (supp [!J,J \ {O}), there exist 
r-l 

k;:: 1 and YI' ..., Yk e S* (w) such that x + r Yj e S + Y ' r = 1,2, •••, k andr 
j. 1 


k 


x+ r Yj e S* (w). 
j. 1 

(To understand the implications of the condition better and to bave a clearer 
idea of the role played by de Finelti's theorem or its weaker versions, in tile 
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problem of solving general integral equations relative to semigroups of the type 
discussed here, the reader is referred to Rao and Shanbhag [15].) 

In this case, the extension e (x, .) ,x e S, of e (x, .) x e S* (w) to S can 

also be seen to be such that for each x ~ S* (w) 

e (x,.) = (I - w (On- I L W (d) (e (x +d + Yd' .)le (Yd"» 
d eD 

k 

where D = {x e S : x:;: 0, w (x) > 0 }, Y: is L Yj of the condition above in the 
j z I 

case when the point x of the condition is our x + d, and the ratio under the 
sununation is to be understood as zero for each (d, fil) for which 

e (Y:, fil) = O. 

Obviously, Deny's theorem in the case when the group is countable follows 
as a corollary to the last result that we have referred to above; note that in 
the present case we can choose e (x,.) to be nonvanishing for each 

x e S* (w) and take e (x, .) = e (XI' ,)Ie ("'2,,) whenever x :;: XI - "'2 with 

Xl' Xz e s* (w). This specialized version of Deny's theorem, in tum, gives 

Laczkovich's [8] Theorem 2 as an obvious corollary; without being aware of 
Deny's work, Laczkovich proved this theorem via the Krein-Milinan theorem. 

Before moving to the next section, let us make the following specific 
remarks: 

Remark 1: As mentioned earlier, (2.4) also follows because of de Finetti's 
theorem. This is so because v (0) = 0 implies the inequality trivially when 
x = 0 and if v (0):;: 0, in the notation considered before, the theorem gives 

p { X I = y, Xz = Y } P { X I = Z, XZ = z } 

~ (P {XI = y, X2 ::: z}y, y, z e S* (w) 

implying (2.4) for x = 0; on applying the partial result to v x (.) = v (x + .) for 

each x, we then arrive at the general inequality. 

Remark 2: In the case of arithmetic J.I., the conclusion of Theorem 1 bolds 
without the requirement of H being a locally integrable Borel measurable 
function and with "almost all [L]" in the representation for H replaced by "all", 
provided we replace "almost all [L)" in (2.1) by "all" and delete "almost 

--_.........._­
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everywhere [L]" appearing immediately after "identically equal to 0"; analogous 
remark also applies. to Theorem 2. 

3. Comments on the Papers by LAczlwvich and Baker 

We now make specific comments on the two papers referred to. 

3a Laczkovicb [8]: 

This paper contains 3 theorems n~ly Theorems 1, 2 and 3. Theorem 
2 of the paper is. as mentioned by us in our previous section. an obvious 
coroUary to Deny's theorem, while Theorem 3 in the cited reference is a 
coroUary to Theorem 1 given therein. We shall therefore restrict ourselves now 
to discussing Theorem 1 of the paper in question and getting it via (2.4) 
essentially as a simple coroUary to Theorem 2 of Section 2. which. in turn. 
is a corollary to Deny's theorem. 

Suppose f: R -+ Rj. is a Borel measurable function satisfying 

k 

f (x) = L Aj f (x + aj), x e R (3.1) 
j = 1 

where AI' ..., Ak are known positive real numbers and ai' i = 1,2, ..., k are 
known distinct non-zero real numbers. We can indeed express (3.1) as 

f(x) = Jf(x+y),...(dy), x e R (3.2) 
R 

where ,... is the measure on R such that it is concentrated on {ai' ..., ~ } and 

satisfies Jl ({ai }) = Ai' i = 1,2, ..., k. 

If Jl in (3.2) is arithmetic with span A, then, on using Theorem 2 (and 
recalling the relevant observation in Remark 2), we get easily that (3.2) is 
equivalent to the condition that f is either identicaUy equal to zero or of the 
form 

f (x) = £1 (x) exp {TJ I x} + £2 (x) exp {TJ2 x} +, x e R (3.3) 

where ~,TJi' i = 1,2 are as in Theorem 2. 

Consider now the case when Jl is non-arithmetic, and assume that f is 
not a function that is equal to zero almost everywhere [L]. Let S be the subgroup 

---------------......-~~ 
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of R, generated by supp [J.1]. For each x' e R, defme the function vx' on S 

such that 

vx' (.) = f (x' + .) 

(2.4) with obvious notational alteration is valid for each v x" From the inequality, 

we can then easily conclude for each x' e R, YES and me {I, 2, ... } that 

vx' «m -1) y) vx' «m + 1) y) 2: (vx' (my)l (3.4) 

and hence 

f(x ' + (m -1) y) f(x' + (m + 1) y) 2: (f (x' + my)r (3.5) 

(This foUows on observing that (2.4) in the case when S is a group implies 

v«m -1) (y -z» v «m+ 1) (y -z»2: (v (m (y -z»r, y, Z E S* (w) 

m= 1,2, ... 

on taking x = (m - 1) (y - z) - 2z). From (3.5), we can conclude inductively 
that for each x', f (x' + my) = 0, for each m and y whenever f (x') = 0 and 

f (x' + my )I f (x') 2: (f (x' + y)l f (x,»m for each m and y whenever f (x') :t: O. (In 
view of the known properties of moment sequences, one could also get this 
last result directly via the specialized version of Deny's theorem in the case 
of a countable group, or its corollary appearing as Theorem 2 in Laczkovich [8]; 
our argument given here is obviollsly of more elementary nature.) As for any 
real 0, 

16 (x) = exp {ox} f(x), x E R 

satisfies (3.1) with Ai replaced by Ai exp {- oa) for i = 1, 2, ..., k, whenever 

f satisfies (3.1), it is clear that there is no loss of generality in assuming 
AI> 1 in tile problem of identifying tbe solution to (3.1). Assume then this 

to be so; this gives immediately 

{y : r 1, 2, ... } of points of S, such that it converges to -. Because of 

f(x+nal)::;f(x), xER, n = 1,2, ... (3.6) 

Given any positive integers m and n, we have a sequence 
na l 

== 
r m 

Laczkovich's elementary Lemma 2 and what we have seen, it then follows 
iliat for almost all [~]x E R, and m and n as stated 
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= 0 iff(x) = 0 
1 

f( x+ ~l) {< (f(X+DaI»)m­
- f(X) rex) ~ f(x), iff (x) *0 

implying that f ( x + ~ a1 ) ~ f (x). Applying the cited Lemma 2 once more, 

we can bence conclude diat if Y E R+ 

f (x + yal) ~ f (x) for almost all [L] x E R (3.7) 

This gives in view of Fubini's theorem that 

f (x + yal) ~ f (x) for almost all [L] y E R for almost all [L] x E R 

implying that f is locally integrable. This, in tum, implies that the conclusion 
of Theorem 2 (appearing in Section 2) now bolds with f in place of H. 

Remark 3: Essentially the same argument as above. but without any 
reference to Laczkovicb's [8] Theorem 2, implies that if the measure I! in 
Theorem 2 is concentrated on a countable set, then the conclusion of the theorem 
holds even wheo H is not assumed apriori to be locally integrable; this latter 
result obviously subsumes the result arrived at above concerning Theorem 1 
of Laczkovich. The analogue of the result corresponding to Theorem 1 (i.e. 
the Lau-Rao theorem) also holds. (These modified results hold even without 
the apriori restriction that I! be a-finite.) 

Remark 4: If we are prepared to use the specialized version of Deny's 
theorem in the case of a countable group, in place of the inequality (2.4), then 
the local integrability of f above, or of H of the result relative to 
Theorem 2. mentioned in Remark 3, follows via a shorter argument Lemma 2 
of Laczkovich and the Jensen inequality imply. in this case, immediately that 
if y E [0, 1], then 

f(x+y)S;(f(xW-Y(f(x+ l))yforalmostall [LJ x E R (3.7') 

giving, in view of Fubini's theorem, that 

f(x + y) ~ (f (x)i -Y (f(x + 1»)y for almost all [LJ y E [0.1] for almost all x E R 

It is worth pointing out at this stage that a version of Deny's theorem referred 
to here gives easily as its corollary the specialized version of Theorem 2 in 
the case wbere I! is concentrated on a countable set, and hence, as a by-product 
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of wbat we have just seen, also now its modified version mentioned in 
Remark 3. The analogue of this statement with the result for the countable 
semigroup meeting the structural condition stated in Section 2, in place of the 
version of Deny's theorem, holds for Theorem 1; indeed, the result relative 
to the countable semigroup, on applying a slightly modified version of the 
argument implied bere, yields the foUowing version of a result of Davies and 
Sbanbhag [5] (or of CoroUary 3.4.5 in Rao and Sbanbhag [15]): 

Theorem 3: Let n;;:: I, S = n~ 1 S. with S. = Z or No or -No or R or 
1 - 1 1 

R+ or -R, and let G be the smallest subgroup of Rn containing S. Further, 
let A be the restriction to S of a Haar measure on G, h: S -7 R+ be a Borel 

measurable function and Jl be a measure on S with Jl ({O}) < 1 such that it 
is concentrated on a countable set Assume th~ there is a dense subset or 
equivalently a countable dense subsemigroup S of S such that for every 

1\ 

xeS + (B \ (O}), there exists k;;:: 1, Yl' ..., Yk e S· for which 
r- 1 1\ Ie.. 

X + L. Yj e S + Y ' r = 1,2, ..., k and x + L. Yj e S*, where S is the 
I-I 

r 
I" 1 

subsemigroup, with zero element, of S generated by B and 
B = {yeS:Jl({Y}»O}. Then 

h (x) =Jb (x + Y) Il (dy) for almost all [A] xeS 
s 

implies that 

h (x) =J exp {< x, Y > } v (dy) for almost all [A] xeS 

(- 00, oot 
where v is a measure on [- 00, oo]n such that it is concentrated on the set of 
points y at which < ., y > is a (well dermed) function from S to [- 00, 00) such 

that Jexp {< x, y> } Jl (dx) = 1. (We define here 0 (± 00) = 0 and e-'" = 0). 

Remark 5: One can also arrive at the inequality (3.7') via a minor variant 
of the argument based on (2.4), given above to establish (3.7). The argument 
in question, with certain modifications, can further be applied to obtain the 
modified version of (3.7') corresponding to the integral equation of Tbeorem 

1\ 

3. In the case when S of Theorem 3 is a group of such that S = S*. the 
modifications needed are simple, while in the case when the S is not so, one 
can provide the necessary modifications involving the following observations: 
If (2.3) holds and the structural condition of Section 2 is met, then appealing 



373 FURmER VERSIONS OF mE CONVOLUTION EQUATION 

to (2.4) with z = 0 and (2.5), it can be seen (in the notation met earlier in 
Section 2) that given xeS and d e D and integers m, m' > 0, we have, for 
eacb x' e S 

v (m' x + x' + d) = L L ... L v (m' x+x' +d+m(d+Yd)-0·· ..n - ZI e S (w) z" e S (w) 
n n 

+ L Zj) (II w* (Zj» w* (m (d + Yd» 
j .. 1 

k 

wbere S** (w) = S* (w)\ {m (d + Y~)} (and Y~ obviously is '" y. of the""1 I 

structural condition mentioned wben the point x of the conditions is our 
x + d). (Incidentally, if we take m, m' = I, we get from the assertion, in view 
of (2.3). the first equation on page 101 in Rao and Sbanbhag [15]; this follows 
even wben we do not involve Ressel's (17] result in our analysis. Also it is 
worth pointing out bere that the above equation concerning v bolds even with 

"y~" in place of "d+ Y~".) This follows on noting among other things that the 

term under the summation sign with respect to n, with w* (m (d + y~» deleted, 

in the equation above tends to zero as n ~ 00, and hence using (2.4), with 
n 

z = 0, inductively that the term with "v (m' x + x' + d + L. 21)" in place of 
I 

n 

"v (m' x + x' + d + m (d + Y:) + Ll z)", tends to zero as n ~ O. Tbe assertion 

with ";:>:" in place of "." holds if we replace "m, m' > 0" by Urn> 0 and m' = 0". 
In view of (2.4), wbat we have observed bere, with m = 2, then implies that 

v (m' x + x' + d) v «m' + 2) x + x' + d);:>: (v «m' + 1) x + x' + d)i 

x, x' e S, d e D, m' :; 0, 1. 2, ... 

wbich, in turn, implies, because of (2.3), that 

v (m' x + x') v «m' + 2) x + x');:>: (v «m' + 1) x + x')i 

x. x' e S, m' =0, 1, 2, •.. 

Remark 6: Under the stated assumptions, the equation 

k 

L Ai exp {"-ai} = 1 
i .. I 
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in A with A as real has either no roots or one root or two roots only. From 
what appears in Laczkovich [8], one gets the impression that the author of 
the paper was unaware of the fact while writing the paper; note that he uses 
the notation "N" for the number of roots without clarifying what its possible 
values are. 

3b Baker (3] 

Let f: (0,00) ~ R. such that sufficiently close to zero it is positive and 

f (x) = nj= I If (~j x)]Ti, x e (0, (0) (3.8) 

where 0 < ~j < 1 and Yj> 0 for j = 1, 2, ..., N are known constants. From (3.8), 

it is immediate that f is positive on the whole of (0,00). Clearly, we have bere 
a unique real number a such that 

N 

L ·PfYj = 1 (3.9) 
j = I 

. log f(x)
If we now asswne for some real c, the function u + c, X E (0,00) to be 

x 
. such that sufficiently close to zero and he&:e, in view of (3.8), everywbere 

nonpositive or nonnegative continuous, then we have from either of Theorems 
1 and 2, for some cD 

f (x) = exp {cD (log x) xu}, X E (0,00) (3.10) 

where cD is a periodic function with period A if the subgroup of R generated 
by {log PI' ..., log ~N} is the lattice {nA.: n E Z }, for some A. > 0, and Cl> is 

identically equal to a constant if the subgroup in question is not of the form 
stated. If we take "bounded" in place of "continuous". then, in view of the 
specialized version of the Choquet-Deny theorem corresponding to a countable 
group, (3.10) still holds with Cl> as periodic function with periods 
log ~i' i = 1,2, ... , N. 

Consider now the case with a as a positive integer and (': R ~ R. such 

that 

(3.11) 

-- ...... --.~--------
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N 

and let (' have a.-th order derivative at zero. Since L 'Yj > 1 and 
j - I 

(' (x) -t (' (0) as x -t 0, it follows that if (' (0) '" 0, we have (' (x):S; e for 

all 0 < e < 1 and x e R, implying that (' == O. In view of the stated condition, 
it also follows that if (' (0) > 0, we have (' (x) > 0 for all x e R and 

(' (0) = 1. (To see that (' (0) = 1, Dote that (' (0) = «(' (O)~i 
N 

~). In the case 

when (' (0) = 1 (with obviously (' (x) > 0 for all x e R), we can define 

F (x) = log (' (x), x e R 

In view of the condition concerning the a.-th order derivative at 0 of t. 
we see that t is differentiable a. - 1 times in a neighbourhood of the origin; 
this, in tum, implies because of (3,11) that ( and hence F is differentiable 
a. - 1 times everywhere on R. Denoting for each r = O. I, "', a. - 1. the r-th 
order derivative of F by F r). we see that 

F
N 

r
) (x) = L 'Yj ~j Fr

) (x ~j)' x e R, r = O. 1•.. " a. - 1 (3.12) . 
j .. 1 

implying because of (3.9) that F r) (0) = 0, r = O. I, ..., a.- 1. As 
(' (x) = eF(x), x e R and t has the a.-th order derivative at zero, it then 

immediately follows that Fa - I) (xYx has a limit as x -t 0, As for X:F 0 

N N 

Fa-I) (x)/x = lim L ,.,L (ll~"1 rjm ~Jm)Fa-I)(x ~jl .. , ~jn)/ (~jl ... ~jn) 
X~oOjl = J in=1 . 

in view of (3.9), we can immediately conclude that for some real c 

Fa-I)(x) = cx,x e R\ {O} (3,13) 

a ex
Since Fr) (0) = 0, r = 0, I, ...• a.-I, (3.13) implies that F (x) =Cl!' 
x e R or equivalently that (' (x) '" exp {exa/a.!}, x e R. (The results that we 

have arrived at are valid even when R is replaced by R.,) 

The latter set of results that we have observed here give Baker's 
Theorem 1. Obviously we have reproduced now some of the steps of Baker 
in a simplified fonn But, what we have revealed shows that Theorem 1 of 
Baker is linked with the result concerning f given in this section. To see the 
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link better, note that the function exp (Fu-I) (x) }, x E (0, (0) or 

exp {Fa - I) (- x)}, x E (0, (0) meets the requirements of f relative to 
a. = 1 (with obvious notational alterations) and in this case 
Fa-I) (x)/x, x E (0, (0) (or Fa-I) (- x)/x, x E (0, co» is bounded close to zero; 

indeed any periodic function <I> (z), z E R, has a limit as z ~ - 00 or as 
z ~ co only if it is identically equal to a constant 

Although Baker's result is appealing as a result on functional equations, 
it cannot be considered to be of much importance in characterization problems 
involving characteristic functions of stable distributions that are nonnormal; on 
the other hand the restrictions to (0, co), of characteristic functions of symmetric 
stable laws (or except in the case of a. = 1, of moment generating functions 
of extreme stable laws) satisfy functional equations of the form (3.8) with 
a. E (0,2] (and a. E (0,2), in the case of nonnormal laws). 

For various applications of the Cboquet-Deny and Deny type functional 
equations in characterization problems of stable laws, the reader is referred to 
Ramachandran and Lau [12J and Rao and Sbanbbag [15]. In particular, Rao 
and Sbanbbag [15] have given througb Theorems 6.4.1 and 6.4.6 in their 
Chapter 6 certain characterizations of discrete and continuous multivariate stable 
laws, involving the following results from Hardy [7; page 37] in Number 
Theory: if m is an integer greater than or equal to 2 and p is a positive integer 

with none of p, p2, ..., pm-l as a perfect mth power (i.e. as the mth power 

of an integer), then 30 + a1 S + ... + am _ 1 Sm I =°with 30, al' "', am _ 1 as 

rational numbers and S = pl/m if and only if a = al = ... = am -1 = 0.o 
(Incidentally, the statement of the result as appearing in Hardy [7) is slightly 
inaccurate and what is given here is a corrected version of it.) These latter 
characterization have obvious generalizations in view of the general nature of 
the afore mentioned results from Number Theory. For example, it is now an 
easy exercise to see via the result that the characterization results of stable 
distributions referred to here bold if in place of the power 2 we take any integer 
power greater than or equal to 2. 
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