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SUMMARY 

In this paper we compare a number of different methods of estimating 
treatment effects froth field trial data collected sequentially from 
experimental units arranged in strips which contain spatial trends. The 
methods of analysis compared are completely randomized design analysis, 
incomplete block design analysis based on blocks of differing sizes, two 
forms of nearest neighbor analysis, and methods of estimating treatment 
effects based on models having polynomial approximatiolU for trend of 
varying degrees. 

Keywords : Incomplete blocks, Nearest neighbor analysis. Polynomial 
approximation. 

J. introduction 

The presence of strong local gradients in field trial experiments is weU 
documented, e.g., see Papadakis Ill], Bartlett (1] and WilkillSOIl. el at (15) 
for references conceming this problem. For example, Weibe (14) conducted 
a unifonnity field trial at the agricultural research experimcllt statioll located 
in Aberdeen, Idaho. In this unifomuty trial, Federation wheat was planted in 
each of 1500 plots arranged in 12 series of 125 plots each. It was observed 
ill each of the 12 series that plot yields varied substantially but seemed to vary 
systematically around a relatively "smooth" trend. In a tme field trial 
experiment, trends sllch as those observed in the Weibe uniformity trial can 
cause great difficulty ill trying to estimate treatment effects, particularly when 
the differences among treatments are small compared to the magnitude of the 
trend. 

Traditionally, blocking has been used by experimenters as a means to 
account for trends Stich as present tn the data described above. However, even 
the usc of relatively small blocks ill fields may only be partially sllccessful 
in accounting for trend. This may occur becausc the trend is dependent on 
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environmental factors and thus not be predictable prior to the experiment or 
there may be significant trends even within small blocks. 

As an alternative to accounting for trends by blocking in a field trial 
experiment, different methods of analyzing data in the presence of trends have 
been proposed. One set of methods which have received agood deal of attention 
in the literature over the years are called nearest neighbor (NN) methods. These 
fonns of analysis are related closely to techniques which have been derived 
for analyzing nonstationary time series data. In particular, NN methods of 
analysis essentially consist of applying a differencing operator to an ordered 
set of field trial data. The purpose of differencing is to reduce the influence 
that "smooth" spatial trends may have on the observed field trial data so that 
treatment effects may be more efficiently estimated. 

In this paper we compare several different methods of estimating treatment 
effects in the i>resence of trend via simulation studies. In particular methods 
of estimating treatment effects based 011 blocking are coo~)ared to several types 
of NN analysis as well as methods of analysis which estimate treatment effects 
based on models that include polynomial approximatiolls for trelld. 

2. NOla/ion and Background 

All methods considered in this paper for analyzing data obtained from 
a field trial experiment are based on the mixed linear model whose general 
fonn is 

Y :: X ~+ue+ E (2.1) 

where Y is a vector of observations, ~ is a vector of fixed parameter effects, 
X is a matrix of known constants, detennincd from the experimental design 
for the fixed effects, e is a vector of random effects, U is a matrix of known 
constants detennined from the experimental design for random effects and E 

is the usual random error or residual teon. We assume throughout that 

(2.2)var(: )= [~ ~] 
where W:::: Var(9) and V = Var(e). So E(Y) = X ~ and 
Var (Y) == UWU' + V. We assume there is interest in estimating both the 
random and the fixed effects in the model when both are present. 

For fixed effects, attention is usually focussed Oil the estimation of 
estimable fUllctions of the foml l'~. For the model given in (2.1) the general 
least square (GLS) solution for P is 
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A 

~ = (X' [Yar (Y)f 1 xrx' [Yar (Y)f 1 Y (2.3) 
. . A 

where A-denotes a generalized inverse for a given matrix A. So l' ~ is the 
best linear unbiased estimator (BLUE) for l'~. We note that when 

Yar (Y) (}"2 In' tile expression given in (2.3) reduces to the usual ordinary 

least squares estimator for ~. 

For models with random effects. it is often of interest to estimate various 
linear combinations of the variance components. A number of methods are 
ayailable for estimating variance components. Two of the most widely used 
and when apprOI)liate the ones used in this paper are maximum likelihood (ML) 
and the restricted maxinllUD likelihood (REML) procedures described in Iiarville 
[7]. 

Instead of estimating the fixed effects and variance components of a mixed 
model separately. ill recent years there has been interest in estimating predictable 
functions of the (onn l' ~ + m' e where l' ~ is an estimable function. Such 
predictable functions can be estimated from the mixed model generalization 
of (2.3) derived by Hend,erson (8) and Harville [6) are given by 

~] _ [X' W 1 X X' Y- 1 U ] [XI Y- I Y ] (2.4)
[ e - U/y-IX U'y-I U+WI U'y-Iy 

Henderson calls the estimator l' B+ Ill' ederived from these equations for 
l' ~ + Ill' e tile best linear unbiased predictor (BLUP) for l' ~ + m' e . We shall 
adopt tbis tenuino!ogy in this paper. 

In more recent years, it has becn suggested that in certain types of field 
trial experiments where the number of treatments is fairly large (more than 
20, say), it may be more efficicnt to assume the treatment effects are random 
and to estimate them using BLUP analysis. This latter approach is contrary 
to the traditional assumption in field expcriments that treatment effects are fixed 
and are typically estimated by obtaining BLUE's. It has been fOlllld that in 
experiments which are unbalanced and the distribution of treatment effects fairly 
symmetric, BLUP estimators for treatment effects can be more efficient than 
the traditional BLUE's. For more discussion of this topic, the reader is referred 
to Copas [3]. 

3. NN Analysis Methods 

As mentioned in the inU'odllction, in field trial experiments, it is not 
uncommoil for spatial trends to exist. The presence of slIch trends can cause 
sllhstantial difficulty in trying to estimate the tmc errects of the treatments being 



COMPARISON OF FlEW TRIAL ESTIMATION TECHNIQUES 31 

investigated. This is particularly true wben the magnitude of the trends are large 
when compared to the magnitude of the differences in the effects of the 
treatments being studied. 

To handle situations such as this, several different methods of NN analysis 
have been proposed for usage. Papadakis [ll] appears to have been the first 
to propose NN analysis as a means of analyzing field trial data in the presence 
of trends. But in recent years, other forms of NN analysis have been. proposed, 
e.g., see Bartlett [1], Wilkinson el at (l5], Besag and Kempton [2] and Glecson 
and Cullis [5] to name several. However, all of the different fonns of NN 
analysis IJroposed share the same general approach. Following Stroup and 
Mulitze [13], let 

Y=X~+S+E (3.1) 

where Y is an u x 1 vector of observations, X is a matrix of constants describing 
the design for fixed effects, including the treatment effects, /l is the vector of 
flXed effects, S is a "smooth" trend vector, and E is the vector of random 
error or residual tenus. We assume Var (e) :::: ri In' We also assume throughout 

that there is no interaction between the trend and the fixed effects. 

The basic idea behind NN analysis is to apply a differencing operator 
to each side of model (3.1) to reduce the magnitude of the effects of the 
"smooth" trend. To demonstrate this process with a simple example, suppose 
we aSSlUue that t treatments under study are being applied sequentially to 
experimental units occurring in a single stril). For this example tbe vector 
~ in (3.1) can be replaced by tbe t x 1 vector t of treatment effects. If we 
let Y' (Yl' ... Yn) dellote the ordered vector of observations obtained, then 

NN analysis involves taking differences d,:::: Yl - Y2' ~:::: Y2 - Y3' ... , 

dn_ 1 :::: Yn-l-Yn between successive or adjacent pairs of observations in Y 

and analyzing the differenced observations. This process is equivalent to 
applying the differencing matrix 

D = [~ 
o· 

-1 
1 

d 

0 

d 

0 
0 

{) J] 
to both sides of model (3.1) to obtain 

d :::: OY :: OXt+OS+Oe :::: Zt+(F+;) (3.2) 

where Z :::: OX, F :::: OS, and;) :::: De. If differencing has been successful, then 
the effects of the smooth trend will have been reduced and F :::: OS can 
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essentially be considered as part of a Ilew residual vector for the vector d of 
differenced observations. The amount of variability contributed to the residual 

vector F + S by F is often approximated by Var{F) = 0: In _ I; hence 

Var (d) = Var(F) + Var(S) = 0: In _ I + 0 2 DO', 

If needed, to try and further reduce the effects of trend ill the model, 
one could again take differences between the successive components of d. 
However, experience and simulation studies have shown that in field trial 
experiments second and higher order differencing does not generally reduce 
the effects of trend and in fact usually results in a loss of efficiency for 
estimating treatment effects. The reader is referred to Wilkinson, et al [15] 

for a further discussion of the effects of higher order differencing on trend 
and efficiency. Based 011 first differences, the GLS solution for the treatment 
effects is 

t (Z' [Var (d)f I Zr Z' [Var (d)f 1 d (3.3) 

The above analysis is based 011 the assumption that the treatment effects 
are fixed and hence l' t is the BLUE for any estimable function of the fonn 
1'1. 

As mentioned previously, an alternative method to obtaining estimates for 
treatment effects in a field trial experiment can be used if it is assumed that 
the treatment effects are random. In particular, BLUP estimates for the treatment 
effects can be obtained. In addition, one can find NN analysis BLUP's 
(NNABLUP's) for treatment effects when trend is present as described in Stroup 
and Multize [13]. In the example described above, we assmne t is a vector 
of random treatment effects, such that E (t) 0 and Var (t) G. Typically, 

G ::: a; It' Thus, for the example, a nearest neighbor mixed model is 

Y ::: Ut+ S+ E (3.4) 

where U replaces X in (3.1). Applying the difference matrix D to both sides 
of (3.4) gives 

d DY DUt+DS+DE Zt+F+b (3.5) 

where Z = DU. Once again, the residual vector for the differenced observations 
consists of F + S and the variance of this residual vector is 

R '= O~ In + 0 
2 DO', The BLUP for t can now be obtained from (2.4) to be 

(3.6) 

~~~~~~-~~~~~----------
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The covariance matrices Wand R depend on the variance components

0;,0: and 02for treatment, "smooth" trend and random error, respectively. 

These variance components can be estimated using iterative maximum 
likelihood methods such. as described in Harville [7] and demonstrated for 
examples such as described above in Stroup and Mulitze [13J. 

4. The Simulation Study 

The primary purpose of this study was to compare a munber of different 
methods for analyzing field trial data in the presence of trend. The methods 
of analysis compared were completely randomized design analysis, incomplete 
illtr.~block analysis using blocks of size 3, 4 and 6, NNBLUE analysis, NNBLUP 
analysis and the estimation of treatment effects using models of the fonn 

(4.1) 

where p ranges in value from one to three. In (4.1), tp is the effect of treatment 

p which is applied to the ith experimental unit in a sequence of n experimental 
units and the remaining temIS in the model represent a polynomial 
approximation for the trend of degree p. p = 1,2. 3. It is assumed throughout 
that the plots are equally spaced and the polynomial approximation is a function 
of the order in which the observations are obtained. 

To compare these methods of estimating treatment effects in the presence 
of trend various sequences of 36 observations were selected from Weibe 
unifonnity trial mentioned above. These sequence of 36 observations were used 
to simulate typical trend which might occur in a field. Twelve random treatment 
effects were generated from anonnal distribution having a mean of zero and 
a standard deviation of 60. This particular distribution was selected because 
of its symmetry (which seems to favour BLUP analysis, e.g .• Copas [3] and 
because the magnitude in the differences between the treatment effects generated 
tcnded to be smaller than the magnitude of the variation ill the various sequences 
of 36 observations caused by trend thus causing estimates for treatment effects 
to be influenced by the trend. Each of the twelve generated treatment effects 
were then added to three of the observations in a given sequence according 
to each of two experimental designs. Both designs were constmcted so that 
they could be viewed as block designs with blocks of differing sizes and also 
have additional desirable properties. In particular the first design, denoted by 
Dl, was constfllcted so that the sum and sum of squares of the position numbcrs 
of the experimental units (1 through 36) to which each treat.ment was assigncd 
were as equal as possible. This assignment of treaunents to experimental units 
essentially had the effect of making the estimates for differences in treatment 
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effects obtained from the design as close to being orthogonal to the linear and 
quadratic polynomial tenns in model (4.1) as possible. Such designs are 
sometimes called nearly linear or quadratic Ireful free designs. The second 
design, denoted by D2, was constmcted so that when considering it as a block 
design with 9 blocks of size 4 (each set of 4 successive observations was a 
block), it was the dual of a balanced incomplete block design having 12 blocks 
of size 3. Such an incomplete block design is optimal for estimating treatment 
effects under most optimality criteria, e.g., see Shah and Sinha [12]. The order 
of treatments in blocks for D2 was also arranged so that no treatment occurred 
next to any other treatment in the sequence more than once. Designs having 
this latter property are sometimes called nearly neighbor balanced and have 
been shown to be efficient when NN methods of analysis are used for estimating 
treatment effects, e.g., see Wilkinson, et al [15]. Each method of analysis 
described above was then used to estimate the treatment effects. When 
implementing BLUP analysis, to cut down on the amount of computation 

required, the tme value of o~ was assumed known and the value of 0: was 

estimated for each sequence of 36 observations selected from the original Weibe 
[141 data. This latter estimate was obtained by differencing successively the 
original observations in each sequence and then using the variance of these 

differenced observations as the estimate of 0:. Also, in the initial simulations, 

estimation procedure for treatment effects were compared for 0 
2 > 0 and 

0
2 = O. In all cases, all measures 'of goodness for estimating treatment effects 

described below were essenHally the same for 0 
2 > 0 and 0

2 = O. These result~ 
are analogous to those found ill Stroup and Mulitze [131. Hence, because the 

inclusion of 0 
2 > 0 in the model substantially increases the computation required 

for estimating treatment effects and because it contributes nothing of value to 

the estimation process, only models with 0 
2 = 0 were subsequently considered 

amI only the results for R :::: 0; In _1 are presented here. 

For each sequence-design-method of analysis combination, three measures 
of analysis effiCiency were computed. These were tlte mean squared deviations 
between the true values of the SIJanning set of estimable treatment differences 
ti - t1,i :::: 2...., 12 and their estimated value f; - fl derived from the data, the 

correlation between the actual and the estimated treatment effects and the rank 
correlation between the tOle and estimated treatment effects. The above 
procedure was carried Ollt for each 20 different sequences of 36 observations 
derived from tlle Wei be data and for each such sequence-design combination, 
500 different set of 12 treatment effects were generated. The averages for the 
mean squared deviations and correlation coefficients were then computed for 
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each of the 40 different design-sequence combinations. SAS IML was used 
for all computations. Results typical of those obtained in the study are given 
in Tables 1 and 2 in the Appendix. Plots of the variOllS sequences of 36 
observations selected from the original Wei be data and used to simulate field 
trend for the tables given are also given in Figures 1 and 2 in the Appendix. 
In Tables 1 and 2, colnmn oue corresponds to the various methods used to 
analyze the data generated for the various design-sequence combinations, 
colnmns two, three and four give the average measures of goodness of estimation 
computed for design Dl under the different methods of data analysis being 
compared and cohullns five, six and seven give the average measures of 
goodness of estimation computed for design D2 under the different methods 
of data analysis being compared. The following shorthand notation is also used 
in the tables: 

crd == complete rdndomized design analysis. 


llnablue .. nearest neighbor best linear unbiased estimator analysis. 


Ilnablup .. nearest neighbor best linear unbiased predictor analysis. 

block size k .. illcomplete block analysis based 011 blocks of size k for 
k=3,4,6. 

linear (quadratic, cubic) - analysis of treatment effects based on a model 
including a linear (quadratic, cubic) approximation for trend. 

Rank Correlation '"" the averdge correlation between the ranks of the tme 
treatment effects and the ranks of the estimated treatment effects. 

Correlation - the averdge correlation between the tme treatment effects and 
the estimated treatment effects. 

MSE = tbe average of the mean squared deviations between the tme values 
of the spanning set of estimable treatment differences ~ - tl for 

i == 2, . '" 12 and their estimated values. 

The actual assignment of treatments to 1)lots under designs Dl and D2 is given 
in the Appendix,. 

In evaluating the results of the study, the following general observations 
seemed clear: 

1. 	 As found in Stroup and Mulitze [13], initial simulations indicated that 
the model assuming 0 

2 > 0, i.e., R = I" o~ + DD' 0 
2
, was no better for 

estimating treatment effects according to the measures of goodness 
02described above than the model assllming == 0, i.e., R = III 0;. 
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Because of these findings and because the assumption ri > 0 adds to 
the computational complexity of the simulation study but seemed to 
contribute nothing to the estimation procedures being compared, the 
only results presented here are for the case 0 

2 = O. 

2. In design 01, the average correlation coefficients were almost always 
higher for the NNBLUE's than for the NNBLUP's whereas for design 
02, the NNBLUP's slightly out performed the NNBLUE's in temlS 
of average correlation coefficients. However, for both designs, the 
differences in average correlation coefficients for NNBLUE analysis 
and NNBLUP analysis was usually small. In both designs Dl and D2, 
the average mean squared deviations between estimable functions of 
the term tj ­ t l , i = 2, ...,12 and their estimates were almost always 
smaller for the NNBLUP's than the NNBLUE's, but again the 
differences tended to be relatively small. These findings are slightly 
different than those given in StroUI) and Mulitze [13] who found that 
NNBLUP's tended to be better than NNBLUE's. However, these small 
differences may be due to differences in how the data for the two 
simulation studies were generated as well as differences in the two 
types of experiments being considered. The studies done in Stroup and 
Multize (13] involved larger number of unequally replicated treatments 
while the study conducted here involved smaller numbers of equally 
replicated treatments. 

3. Smaller block sizes tended to do worse than medium block sizes in 
both designs. In the initial simulations, blocks of size 2 were also 
considered but proved so bad as to be excluded from the study after 
several mns. Blocks of size 4 and 6 tended to be best for this particular 
simulation study. The fact that small blocks do not do a very adequate 
job of accounting for trend is somewhat surprising. However, it may 
be that the usage of larger Illunbers of small blocks requires tile usage 
of too many degrees of freedom for the estimation of block effects 
to account for trend at the expense of efficiently estimating treatment 
effects. 

4. For design D I, the one cOllstmcted so as to be close to orthogonal 
to linear and quadratic trends, the polynomial models consistently 
estimated treatment effects better than either blocking or the NN 
methods of analysis under all measures of goodness. 

5. In design 02, the polynomial models consistently had higher average 
correlation coefficients than the NN methods of analysis but were only 
slightly better under the mean s(]uared deviation measure of goodness. 
The best of the incomplete block methods of analysis tended to slightly 
out perform the polynomial models in D2 under all measures of 
goodness but the worst of the incomplete block methods tended to 
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perform significantly worse than tbe polynomial models under all 
measures. 

6. 	 For both designs 01 and 02, in most data sets, there were only small 
differences (less than .02) in the average correlation coefficients for 
models containing differing degrees of polynomial approximations for 
trend. Thus, the estimation of treatment effects under such polynomial 
models appear fairly robust against the wrong d~gree of polynomial 
approximation being included though some loss of efficiency does 
occur. 

7. 	 With regard to designs 01 and 02, 01 conSistently out perfonned 02 
under the polynomiaJ models and the completely randomized design 
model whereas design 02 out perfonned 01 under both the block and 
the NN methods of analysis. These latter results are perhaps not 
surprising since 01 was constructed to be nearly orthogonal to 
polynomial trends of degrees one and two where as 02 was constructed 
so as to be an optimal block design with nearest neighbor properties. 
This latter property for 02 has been shown to make NN procedures 
more efficient. 

8. 	 Neither design 01 nor 02 seemed to consistently out perform the other 
over all sequences of observation's considered. 

5. Conclusions 

Based on the results of the simulation studies perfonned here, it appears 
that NNBLUE analysis has a tendency to be as good as NNBLUP anaJysis 
though the differences are usually small. Therefore, beeause NNBLUE's are 
computationally simpler to find than NNBLUP's, the fonner method of NN 
analysis may be preferable to the latter when estimating treatment effects in 
the presence of trend. This fUlding is in conflict with that detennined in Stroup 
and Mulitze [13] but may be due to differences in the studies conducted. 

Blocking can be an eFrective means of accounting for trend as indicated 
by the results obtained in the study for design 02. However, one must be careful 
to select the correct block size in a field trial experiment. Seleetion of the wrong 
block size can be disastrous as indicated by some of the rather large differences 
in average correlation coefficients derived from intra block analyses based on 
blocks of different sizes. The seleetion of proper block size prior to conducting 
a field trial experiment may be difficult and thus appears to be a major problem 
when nsing blocking to account for trend. 

Estimation of treatment effects based on models containing polynomial 
approximations for trend tend to be generally as or more efficient than either 
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NN analyses or incomplete block analysis. This result seems to be fairly robust 
even against inclusion of an incorrect polynomial approximation for trend in 
model (4.1) as changing the degree of the approximating polynomial slightly 
does not seem to have large effects on the measures of estimation efficiency 
considered beret 
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APPENDIX 

Designs Used in the Simulation Study 

Dl = { 1,2,3,4,5,6,7.8,9,10,11, 12,6,11,5. 10,4,12,9,3,8,2,7, I, 
l2,7,8.9,10,l1.1,2,3.4,5,6} 

D 1 is nearly linear and quadratic trend free. 

D2 .. {4, 2,3,1,5,10,7,4,12,6,3,5,7,9,12,2, 1,6,8,7,11,10,1,12, 
8,3,10,9,11,6,4,9,2,5,8,11 } 

When considering successive sets of fOllr plots in D2 as blocks, the 
resulting incomplete block design is the dual of a balanced incomplete block 
design. Design D2 is also nearly neighbor balanced with 110 treatment adjacent 
to any other treatment more than once in tbe sequence. 
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Table 1 : Data Set 32 

Model 

Design Matrix Number 1 Design Matrix Number 2 

Rank Correlation MSE 
Correlation 

Rank 
Correlation 

Correlation MSE 

crd 0.79526 0.84761 16'I8 0.71234 0.74524 5220 

nnablue 0.74590 0.80240 4450 0.74401 0.76306 2420 

nn~blup 0.74508 0.79903 2491 0.74379 0.76805 1683 

block size 3 0.64983 0.70433 11463 0.65839 0.70717 3086 

block si~e 4 0.73239 0.78927 1961 0.77697 0.81845 2730 

block size 6 0.84014 0.88764 1004 0.79852 0.84306 1853 

. linear 0.79466· 0.84764 1668 ·0.83000 0.86612 1955 

quad. 0.80283 0.85525 1505 0.81664 0.85755 2386 

cubic 0.80554 0.85650 1957 0.80941 0.85023 2660 

Data Set 32 Plot of x-r. Symbol used is ••• 
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Table 2 : Data Set 72 

Model 

Design Matrix Number 1 Design Matrix Number 2 

Rank Correlation MSE 
Correlation 

Rank 
Correlation 

Correlation MSE 

crd 0.92994 0.96151 433 0.87912 0.91968 1634 

nnablue 0.94540 0.97361 242 0.92761 0.95947 742 

nnablup 0.94294 0.97151 356 0.92888 0.96085 635 

block size 3 0.89316 0.93255 660 0.85376 0.89686 1143 

block size 4 0.92117 0.95510 516 0.94771 0.97500 440 

block size 6 0.93642 0.96563 287 0.9571'9 0.98065 186 

linear 0.93041 0.96149 419 0.92206 0.95523 730 

quad. 0.93283 0.96400 226 0.94913 0.97483 411 

cubic 0.93533 0.96579 216 0.94785 0.97281 480 

Data Set 72 Plot of X·I. Symbol used is .••. 

X I 
I 

800 	 + 
I 
I 
I 
I 
I 
I 
I 
I 

100 	+ 
I 
I 
I 
I 
I 
I 
I 
I 

600 	+ 
I 
I 
I 
I 
I 
I " 
I 
I 

500 ." 
I 
I 
I 
I 
I 
I 
I 
I 

400 + 

: ................----+- ........ --- ---+--j<-----'" ... -... --- ... --- ... --":' ..... _-..,- - .. ------_... _... "".
_ _ 
42 48' 54 50 66 12 79 

Fig. 2 


