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SUMMARY

A generalized ridge-cum-stein-rule estimator containing ridge estimator,
stein-type estimators arid some more as special cases, is proposed for the
estimation of the vector of regression coefficients in linear regression model
with nonnormal disturbances. The risk of the proposed estimator under
general quadratic loss function is derived following small o-asymptotic
approach. A comparative study is carried out and some better estimators
in the sense of having smaller risk are found.
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1. Introduction

Let us consider the linear regression model
y=XB+u an

where y is a T X 1 vector of observations on the variable to be explained, X
is a T x p full cohwnn rank martix of T observations on p explanatory variables,
Bis a p x 1 vector of regression coefficients and u is a T X 1 vector of
disturbances whose elements u (1 = 1,2,...,T) are independently and

identically distributed having first four moments finite, that is,
E@=0EW) =0, E@)=0a7y, EW) =0 (5,+3)

(where y, and y, are Pearson’s measurcs of skewness and kurtosis of the
distribution of disturbances respectively).

This paper concemns with some general small o-asymptotic resuits (as
o — () on the lines of Kadane {5]. For details regarding advantages of small-o
asymptotic approach over the large sample theory, one is referred to Kadane
[51.
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The ordinary least squares (OLS) estimator of B in (1.1) is given by
b=XXy'Xy (1.2)

For D and B being known p x p positive definife matrices and

_ ~Xb) (y — Xb)
bBb

estimator be defined as

, let the operational generalized ridge-cum-stein rule

B = [1+kzDI"' g@b (13)

where k (> 0) is a characterizing scalar, z has atleast first m (= 4) moments
finite and g(z) being a real valued function of the random variable z and
satisfying the validity conditions of Taylor’s (Maclaurin’s) series expansion with
its first two derivatives with respect to z being bounded in probability, is a
bounded function of z such that

£(z=0) = landg (@) = 0,(Nasc—0
;\t may be easily verified that the operaliongi ridge-type  estimator
BR = [I+kz (X' X) x]'l b, the stein-type estimator BS = [1+ kz]‘lb and the

A
generalized estimator B = [[+ kzD]” '» in Vinod and Ullah [8] are the special
cases of the proposed operational generalized ridge-cum-stein rule estimator

BG for D = (X' X) 1, I, D respectively and g(z) = 1 in all the above cases.

Seme new estimators which belong to the proposed class of estimators are

601 = [I+kZD]_l (1 +k; z)b (L4
ﬁGz = [1+kzDI"' (1+k, 2)b (1.5)
Bas = I+keDI" ! {2~ (1 —k, 23 (1.6)

where k, k,, k, are the characterizing scalars 1o be chosen suitably so that
+k;z); ( +klz)"z; {2~ -k, z)% } and their first two derivatives with
respect to z remain bounded,
A
2. Properties of the Estimator P
For convenience: we introduce the following notations:
M=I-XXX\'X; M=1-M
N=I1-(XX"'"X0*M)X; N=1-N
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g=n@m+2)+ytr(MsM);n =T-p 2.1
N Xy'QD, . eNX'X)1'Q

{DO - ; —1 > !pl - ’ -1 (2'2)
r(X'Xy' QD tr(X’X)y ' Q

=2 (2.3)

n+ 'Yz
where ‘*" denotes the Hadamard product of matrices.
A
The risk function of the estimator [ under the gencral quadratic loss
A A,
function (B, - B)Y Q(B;~P) is given by
A A A
P B = EBs-BY QBB 2.4
where @ is a positive definite symmetric matrix.
A
Theorem: The risk function of the estimator f3; to order 0 (0*) when the
disturbances are small in Kadane’s sense [5] is given by
P D QX X)X (IxM) e
pBp
. 3, QX X)X (xM)e
+ o kr, +20 gy, P BP
+ o g {"x -—2KW(1} (2.5)
B'BP

where g’ (0) is the first derivative of g(z) with respect to z at the point
z =0, ‘e’ is a T x 1 vector with all its elements equal to 1 and

A 2 . 3
pBg) = o tr (X’ X)” Q-20"ky,

Y 2 /B
BDQ%{k_ (l]+}'2)ﬁ BI:{(]—B(I)O)U(X'X)—IQD)

Io = { (B' B B)g qBr D’ QDﬁ
2B B(X'X)'QDp | BB BN X' X) ' QDB 26
B BB BB (X' X) ' QDB )
PO , 2m+7y,)p BY _ I
"= 9 By [g O+ — 5B (@ -0p)r (X’ Xy ' Q)

2B X' QP {l_eB'BN(X'x)“QB} 29
B’ Bp FBX X 'QP )
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Now we know that the risk associated with OLS estimator b under general
quadratic loss function (b—BY Qb -B) is

pM) =E®- By Qb-P) =’r X' Xy’ Q (2.8)
Further, for the estimator
ﬁ = [I+kzDI™'b 2.9
in Vinod and Ullah [8] the risk for ﬁ is
P =EG-BYQB-p
BD X X)X (IsM) e
pBpB
+o'kr (2.10)

=o' tr (X'X)'Q-20’ky,

Thus, from (2.5), (2.8) and (2.10), we have
QX X)X (1xM)e

pBe) = pB+0’g Oy,

P'Bp
4, 4, FDQp
+0 g M -200g 0k q 210
1 (B; B B)2
From the algebraic inequality Vinod and UHah [8] we have

~where ¢y, ¢, are given in (2.2) and 1, n, are the smallest and largest cigen
values of the matrix N respectively, Also from Rao [6], we have

ming %%l% > 5; >0 2.13)
and
’ » -1
ny > &B‘(g———,{%—gﬁﬂ} 2.149

where 8; is the minimum eigen value of the matrix BQ™ Land ,u: is the maximum

eigen value of the matrix (X’ X)™' Q.

T2
n+y,

From Vinod and Ullah [8] regarding 6 = in (2.3) we have

0<0<1, wheny,>0 (2.15)
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6 <0, when 7,<0;n22 (2.16)

0<0, when 7,<0;(1+7)>0;n =1 .17

For the disturbances being symmetrically distributed (that is y, = 0), from
(2.11), we have '

A A 4 Dt
pB)-pB) =o' gO)r,-20"g Ok 1‘-;—9;& q 2.18)
: (8 :13)
A
Also, from Vinod and Uliah [8], we know that J is superior to b in the
sense of having smaller risk, if

2(n+y,) 0
0<ks—q—8p [(1 - 80,) tr (X’ X)™' QD =2y, (1 - 8]
or if
2+,
O<ks ———= §,1; [(1-6p)d,-2(1-8m)] (2.19)

where j = p and 1 correspond to symmetric leptokurtic distributions
=0 v>0 and symmetric platykurtic distributions

(r, =0, 1,<0,022,n=1 with y,+1>0) respectively, SP is the minimum
eigen value of the matrix B (D'QD)” . i, is the maximum eigen value of the
matrix (X’ X)"' QD and

1 -1 2_2911_1 29@0‘7]1)
d =— XX D 2 =2+ >0
T (Y e
In (2.18) since B'D’ QP being positive definite is greater than zero,

B is superior to {3 in the sense of having smaller risk if

k>0,2 (>0 and o g’ (0)r,; <0
orif r; <0 for g’(0) >0 and k>0 (2.20)

or from (2.12) to (2.17), the condition (2.20) is satisfied if

2+ -1 .

k>0; 0<g’(0O)s ——= §, [(1 -6 ) r X" X)" QD -2y, (1 =81l
2+7) . .

k>0; 0<g(0) g —= Sp W [(A-6¢))d, ~2(1 -6 nyl (2.21)

q
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where j = p and 1 correspond to symmetric leptokurtic distributions
(y, =0, v,>0) and symmetric platykurtic distributions (y, = 0, v,<0,

nz2;n =1 with y,+1>0) respectively, and

2-201, 20 (¢, —0:
d, =+ wxx' Q2 i _ @ =)

" -e0) ~ “" -6

A A
Further, in the efficiency condition (2.21) gf B over B, if k is chosen

gecording to the efficiency condition (2.19) of f over b, then the estimator
B, will be more efficient than both the estimators B and b.

Some Remarks
A
{a) I:or normal distribution (y,= 0}, the dominance conditions for f, over
B in (2.21) reduces to

28* ut
- ’ 1 —
k>0;0<g (O)S——L——(IHZ) d,-2)

d = - X Q>2 2.22)
Hy

A
which ensures that the estimators of the class f3, satisfying the
Qominance congdition (2.22) have smaller risk than that of the estimator

i

{b) For skewed distributions (y, #0), we have

A A ) et )
p(BG)“’D (B) = 20’3 g» ©) Y B Q(X )g?Bg( (I*M) ¢

4, —26% o' (VK FD'Qp
+0 g (0)r; 20" g (O & B BY q
=20 g @ np QCov(b,+0'g (O

_2‘4 *(0) k w 2.23)
7ETE ey (

- ' Mu ‘M . . .
where § = ——— = ry is the disturbance estimator and

n n
Cov(b, s) KX XEW@Muw =y, X X' XU*M)e is the
covariance between b and 5. For all the elements of Cov (b, 3) and

B being of opposite signs and g’ (0)>0 making the coefficient
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2¢' (P’ QCov(b,5) of o negative, and for ¥,>0, y,<0,
y, = 0 and ranges of g’ (0) given by the conditions (2.21) and (2.22)
making the coefficient g’ (0) 1, of o* negative, we observe from (2.23)
tha Bo dominates over B in the sense of having smaller risk, that is
pBs)—p (B) <0 for the skewed distribution of disturbances.

(¢) In particular, for the estimator B;, = [I+kzD]™' (1 +k,z) b belonging
to the class B, of estimators, we have g’ (0) = k, so that for normal
distribution, by choosing k > 0 and k, > 0 such that

* %

25,1
- l -
k>0,0<k1£-—9—~—n+2) d;-2)
4 = L rxr'Q>2 224)

My

satisfying (2.22), we see that the estimator ém is better than [AB {see
Vinod and Ullah [8]} in the sehse, of haviu}g smaller risk. Similar
remarks follow for the estimators B, and B, also for normal or
nonnormal disturbances.

(d) From Vinod f\uid Ullah [8], for normal distribution the dominance
condition of §§ over b is

251
et -
0<k< o) (d,~2) (2.25)

Hence, ipcorporating (2.25) in the efficiency condition (2.22) of
Bg over B, the estimator f3; is more efficient than both the estimator
B and the OLS estimator b if

28, 1 25" 1)
i L BP I , e Al PO
0<k< G+ d,~-2); 0<g’ (O)< @+ d;-2) 2.26)

3. Derivation of Results

For u = ov, the model (1.1} can be rewritten as
y = XB+ov (3.1)

where o is small approaching to zero and v, v,....,v; are independently and
identically distributed with

E(W)=0EN)=1EN)=1y, EGZ)=(+3) (3.2)
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Further, we have

(y - Xby (y -~ Xb) = 0> v'Mv (3.3)
b-B=o(XX)'Xv (3.4)
and
1 1

BBb B BB+20BBUX) ' X' v+P VXXX IBX X)X
__ 1 2pBXXN'XV
p'Bp (B’ B B’
Now, we have

ﬁg = [1+kzD] ' g(z) b

{uptoorder 0 (0)} (3.5

= [I-kzD]g(z)b+... {Following Vinod and Ullah {8]}

Expanding g(z) about the point z = 0 in second order Taylor’s series and
noting g(z = 0) = 1, we have

A

2
Bg = {g(0)+zg'<0)+§-,—g*(z')>b—kz<g(0)+zg'<0)

Z P
+-2T g”(z))Db+...

= b+z{g'(0)—-kD }b—zzg'(t))ka

2 g (z)b— g Yk Db+.. 3.6)

where g” (z") is the second derivative of g(z) with respect to z at the point
z =12 ;2" = zw, 0<w< 1. Using 3.3), (3.4) and (3.5) in (3.6) and retaining
terms upto order 0 (¢°), we have

ﬁa -B =0k +0%k & -0’ (ME+0kE - ’g (0 3.7
where E = XXXy 3.8)

&= pp DB i 5 = fpp B (3.9)

_ VMv rovlun WBX XXV
E3- B:B [D(Xx) X'v -~ ﬁ;Bﬁ DB:I

(3.10)
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& =~ Fap BB
Hence from (3.7) the bias of B, to order 0(c?) is

I ’ ’ _l ’
My [(x'xr x'y B BXX) X VB] G.11)

Bias (Bg) = E(Be) - B = g;g DB+ -—Bg,%'lﬁ 3.12)

{since E(v) =0 and E(V' My)=trM=n=T-p)
The risk associated with IABG upto order o*, is
p@e) = EGo-BY QBe-B)
= 0’BE, QE)+20°kEE,QE)~20’¢ MEE, Q%)
+20*kE(E, Q&) -20' g (MEE, Q&) +0*K*EE,QE)

+0* (g P EE) QE)-20'g (MKEE,QE) (3.13)
It can be verified that
EE,QE) =tuX'X)'Q (3.14)

EE, Q&) = B BBB D'Q(X'X) ' X E (V' Mv.v)

_ p'D' QX X) ' X (IxM) e
=-" B'BP (3.15)
EE®, QL) = -y 29K PE)'B g (1*M)e (3.16)
E (& ) = mgﬁ; E &’ * = M 3.17
(E,Q8) =q ® B bP €,Q8) =4 B BpF (G171

* LI ’

E = QB 3.18
(EZ Q §2) q (B, B B)2 ( )

EE,Q&) = —571_5 tr(X’X) ' QD+7,tr (X' X)"' QDN

BBB (np'BX'XY'QDB

+1, PBNX X)'QDB )] (3.19)
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E(E,QE) = ~—— mur (XX ' Q+p,r X'X)y ' QN

FBp
555 ("B BOXT QBB BN XX Q b))
- (3.20)

After substituting from (3.14) to (3.20) in (3/.\13) and noting that N =I-N,
we get the required expression for the risk p () to order a* as given in (2.5).

{1

[2]

(3]

4]

{5]

16]

(7]

(8]
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