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SUMMARY 

A generalized ridge-cum-stein-rule estimator containing ridge estimator, 
stein-type estimators arid some more as special cases, is proposed for the 
estimation of the vector of regression coefficients in linear regression model 
with non normal disturbances. The risk of the proposed estimator under 
general quadratic loss function is derived following small a-asymptotic 
approach. A comparative study is carried out and some better estimators 
in the sense of having smaller risk are found. 

Key words : Operational ridge estimator, Stein-rule estimator, Small 
a-asymptotic. Risk. Efficient estimators. 

1. /1lfroduction 

Let us consider the linear regression model 

y = Xp+u (Ll) 

where y is a T x 1 vector of observations on the variable to be explained, X 
is a T x p full cohunn rank martix of T observations on p explanatory variables, 
~ is a p x I vector of regression coefficients and u is a T x I vector of 
disturbances whose elements lit (t = 1, 2 •..., T) are independently and 

identically distributed having first four moments finite, that is, 

E (l~) 0, E (1I~) = a2
, E (ui) = cr 1). E (ui> = a4 

(1'2 + 3) 

(where 11 and 12 are Pearson's measures of skewness and kurtosis of the 

distribution of disturbances respectively). 

This paper concerns with some general small a-asymptotic results (as 
a -4 0 ) on the Ii,nes of Kadane [51. For details regarding advantages of smaU-a 
asymptotic approach over the large sample theory, one is referred to Kadane 
[5]. 

-------...-~..--~.. --...-----------  ------~-
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The ordinary least squares (OLS) estimator of P in (Ll) is given by 

b = (X' xr I X' Y (1.2) 

For 0 and B being known p x p positive definite matrices and 

z = (y -'Xb)' (y - Xb) let the oJlerational generalized ridge-cum-stein nale 
b' B b ' 

estimator be defined as 

Po" = II + k z Dr I g(z)b (1.3) 

where k (>0) is a characterizing scalar, z bas atleast first m (;:: 4) moments 
finite and g(z) being a real valued function of the random variable z and 
satisfying the validity conditions of TayJor's (Maclaurin's) series expansion with 
its first two derivatives with respect to z being bounded in probability, is a 
bounded function of z such that 

g (z 0) = 1 and g (z) = Op(1) as 0' 4 0 

It may be easily verified that the operational ridge-tYlle estimator 

P" [I + kz (X' xr I rib, the stein-type estimator "P = [1 + kzr Ib and the R s 

generalized estimator "P [I + kzOr Ib in Vinod and Ullah [8] are the special 
cases of the proposed oJlerational generalized ridge-cmn-stein nale estimator 
"PG for 0 = (X' Xr I, 1, 0 respectively and g(z) == 1 in all the above cases. 

Some new estimators which belong to the proposed class of estimators are 

" -IPm =: [1 + kzO] (1 + kl z)b (1.4) 

" -I k.,Pm = [I +kzO] (I + kl z) - b (1.5) 

" -I k.,Pm = [I + kzD] {2 - (I - kl z) -}b (1.6) 

where k, kl' k2 are the characterizing scalars to be chosen suitably so that 

(1 + kl z) ; (1 + k,Z)k2 ; {2 (1 - k} z)k2 } and their frrst two derivatives with 

respect to z remain bounded. 

" 2. Properties of/he ESlima/or Btl 
For cOllvenience, we introduce the following notations: 

M :::: I X (X' xr I X': M = I M 

N = I - (X' xr I X' (J *M) X; N =: I N 

~.~ -~.-~ ~-.. -- ....  .. ...~-
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q 	== n{n+2)+Y2tr(M*M);n = T-p (2.1) 

_ trN (X' xr 1 QO. _ trN (X' xr I Q 
(2.2)

<PO 	 - tr (X' Xr I QO' <PI - tr (X' Xr I Q 

(2.3)e = 
O+Yz 

where '*' denotes the Hadamard product of matrices. 
1\ 

The risk fUllction of the estimator f)c under the general quadratic loss 
1\ 1\ 	 • 

fUllction (~G ~)' Q(~~ -~) is given by 

(2.4) 

where Q is a positive definite synunetric matrix. 

Theorem: The risk function of the estimator 
1\

PG to order 0 (0
4
) when the 

disturbances are small in Kadane's sense [5] is given by 

1\ W0' Q (X' Xr IX' (I*M) e 
P (~G) == 

2
0

3 
tr (X' Xr I Q - 20 kYl - WB B 

+ 0
4 

k ro + 20
3 

g'(0) Yl 
WQ (X' Xr I X' (J*M) e 
- WB P 

+ 0 4 g'(O) { r 
I 

2k P' 0' Q ~ q}
(Il' Bpi 

(2.5) 

where g' (0) is the first derivative of g(z) with respect to z at the point 
z == O. 'e' is a T x 1 vector with all its clements equal to 1 and 

q WO'QOB [k _ 2(u+Y2)P'BB [{(1-e<P)tr(x'xrIQO}
(Il' B Bi qP' 0' QOB 0 

2W B (X' xr ! QOB { ew BN (X' xr I QOB } ] 1- 1-	 Q~
WBP WB (X' xr I QOB 

rl == q WQB 2 [g, (0) + 2 (n +B:2~~' BI) [ {(l - 9<Pl) tr (X' Xr I Q } 
(Il' BB) q 

_ 2W B (X' Xr 1 QP {I _ eWBN (X' xr 1 Q ~ }]] (2.7) 
WBB WB (X' xr I Q B 
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Now we know that the risk associated with OLS estimator b under general 
quadratic loss function (b - ~)' Q(b - fS) is 

pCb) E(t P)' Q(b-P) == 02 tr (X'Xr l Q (2.8) 

Further, for the estimator 

(2.9) 

in Villod and Ullah [8) the risk for "Pis 

" /\ /\ 


p (P) == E (P - PY Q (P - B) 

2 3 Il' D' (X' X)-l x' (I*M) e 
0 tr (X' xr IQ - 20 k 1'1 l! WB P 

+ 0 
4 

k ro (2.10) 

Thus, from (2.5), (2.8) and (2.10), we have 

(~ ) = (A) 3 (0) WQ (X' xr 1 X' (I*M) e 
P I'G P p + 0 g 

f 

1'1 WB B 

+ 0 4 g' (0) r 204 g' (0) k WD' QBq (2.11)
1 (pt B fS)2 

From the algebraic inequality Vinod and Ullah [8) we have 

o~ l1p ~ Q>i ~ l1i ~ 1; i == 0, 1 (2.12) 

. where Q>o' Q>l are given in (2.2) and 11 1, 11" arc the smallest and largest eigen 

values of the matrix N respectively. Also from Rao (61, we have 

. nJ! ~. 0 (2.13)mll1l3 WQB > up > 


and 


(2.14) 

where S; is the minimum eigen value of the matrix BQ- 1and ~L; is the maximum 

eigell value of the matrix (X' Xr I Q. 

From Villod and Ullah [8] regarding 9 = ~in (2.3) we have 

n + 1'2 


(2.15) 
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9<0, when 12 < 0; II ~ 2 (2.16) 

9<0, when 12 < 0; (l +12) > 0; II = 1 (2.17) 

For the disturbances being symmetrically distributed (that is 1'1 = 0), from 

(2.11), we have 

1\ 1\ B' 0' QB 
P (R) P (R) :::;;: 0 4 g' (0) r - 204g' (0) k q (2.18) 
~ P 1 WB~ 

1\ 

Also, from Vinod and Ullah [8], we know that ~ is superior to b in the 
sense of having smaller risk, if 

2 (11 + 
0< k S; ---=-=- op [(1 - 9$0) tr (X' Xf I QO 2111 (l e1')}1 

q 

or if 

(2.19) 

where j - p and 1 correspond to symmetric leptokurtic distributions 
(1'1 :::;;: 0, 1'2> 0) and symmetric platykurtic distributions 

(1'1 = 0, 1'2 < 0, n ~ 2, n =1 with 1'2 + 1 > 0) respectively, op is the minimum 

eigen value of the matrix B (O'QOf I, III is the maximum eigen value of the 

matrix (X' Xr I QO and 

1 2-291')' 29($ -1').)
do = tr (X' Xr 1 QO ~ J = 2 + 0 J > 0 

III (1 - 9<po) 1 9<po 

In (2.18) since W0' Q B being positive definite is greater tban zero,
1\ 1\ 

BG is superior to Bin the sense of having smaller risk if 

k > 0, g' (0) > 0 and 0
4 g' (0) r l < 0 

or if r) < 0 for g' (0) > 0 and k > 0 (2.20) 

or from (2.12) to (2.17), the condition (2.20) is satisfied if 

2 (n + 12)
k> 0; 0 < g' (0) S; o~ [(1 e.j)t) tr (X' Xf 1 QO - 21l~ (1 - e1')j)] 

q 
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where j = p and 1 correspond to symmetric leptokurtic distributions 
(1'1 = 0, 1'2> 0) and synmletric platykurtic distributions (1'1::= 0, 1'2 < 0, 

11 ;.::: 2; n 1 with 1'2 + 1 > 0) respectively, and 

" " Further, in the efficiency condition (2.21) of ~o over ~, if k is chosen 
" ?,ccording to the efficiency condition (2.19) of ~ ovKr b, then tbe estimator 

Po will be more efficient than both the estimators Band b. 

Some Remarks 
" (a) 	 for !lonnal distribution (12= 0), the dominance conditions for ~o over 

~ in (2.21) reduces to 

zs; ~i 
k > 0; 0 < g' (0) ::; (n + 2) (d) 2) 

d) = -\- tr(X'Xr 1 Q>2 	 (2.22) 
~I 

A 

which ensures that the estimators of the class ~o satisfying the 
~ominance condition (2.22) have smaller risk than that of the estimator 
p. 

(b) 	 For skewed distributions (1'1 t:. 0), we have 

" " 3 , WQ (X' Xr 1 X' (I*M) c 
p (PG) P (P) 2cr g (0) 11 WB B 

+ cr4 g' (0) r) 2cr4 g' (0) k WD' Q~ q 
(WB Bf 

2cr
3 g' (O) n WQCOy (b, S) + cr4 g' (0) rl 

2cr4 g' (0) k WD'Q B 	 (2.23)
(WBpi 

-	 u'Mu v'Mv . 1 d' rb . dw lere 1 s = -- :=.L..::...:L IS tIe IStu ance estUllator an 
n n 

Cov(b, S) = (X' Xr I X' E (u' Mu. u) = 1'1 (X' xr I X (I*M) e is the 

covariance between band s. For all the elements of COy (b, S) and 
p being of opposite signs and g' (0) > 0 making the coefficient 

I 
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2g' (0) n WQCOV (b, S) of 0 
3 negative, and for 1'2> 0, 1'2 < 0, 

1'2 = 0 and ranges of g' (0) given by the conditions (2.21) and (2.22) 

maki~g the coefficient g~(0) r l of 0 
4 negative, we observe from (2.23) 

tha~ ~o d0ll}inates over ~ ill the sense of baving smaller risk, that is 
p (~o) - P (~) < 0 for the skewed distribution of disturbances. 

(c) 	 In particular,,/or the estimator ~Ol [I + kzDf 1 (1 + k1z) b belonging 
to the class ~o of estimators, we have g' (0) kl so that for normal 
distribution, by choosing k > 0 and kl > 0 sHcll that 

2S~ ~l~ 
k > 0; 0 < k)::; (n + 2) (d) - 2) 

~	 tr (X' xr )Q> 2 (2.24) 
~) 

1\ 1\ 

satisfying (2.22), we see that the estimator ~G1 is better tlml ~ {see 

Vinod and UlJah [8]} in the Seilse 1\of bavill,f smaller risk. Similar 
remarks follow for the estimators ~02 and B03 also for nomllli or 
nonnonnal disturbances. 

(d) 	 From Vinod and Ullah (8), for nonnal distribution the dominance 
condition of ~ over b is 

20p ~I (2.25)0< k < (n + 2) (do - 2) 

J;lence, i,llcorporating (2.15) in the efficiency condition (2.22) of 
~G over ~, tlle estilnator ~G is more efficient than both the estilnator 

~ and the OLS estimator b if 

20p ~ll U; ~l~ 
0< k::; (n + 2) (do - 2); 0 < g' (0)::; (11 + 2) (d t - 2) (2.26) 

3. Derivation ofResults 

For u O'v. the model (lJ) can be rewritten as 

y = 	Xp +ov (3.1) 

where 0' is Slllllll approaching to zero and v I' v2'...,vT are independently am! 
identically distributed with 

(3.2) 

..--.-.-..-  ..~.. --------------- 
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Further, we bave 

(y - Xb)' (y - Xb) = 0 2 v' Mv (3.3) 

b - P= 0 (X' Xr 1 X' V (3.4) 
and 

1 1 
b' B b = P' B P+ 20p' B (X' Xr 1 X' V + ci v' X (X' xr 1 B (X' xr 1 X'v 

__1__ 20B' B (X' xr 1 X' v 
{upto order 0 (o)} (3.5) 

- p' B P <P' B p)2 


Now, we have 

1\

Po = [l+kzDr i g(z)b 


::: [I - kzD] g(z)b + ... {Following Vinod and Ullah [8]} 

Expanding g(z) about tbe point z .. 0 in second order Taylor's series and 
noting g(z - 0) - I, we have 

1\ Z2 
Po = {g(O) + z g' (0) + 2! g" (z*) } b - k z {g (0) + zg' (0) 

2 

+ ~! g" (z*) } Db + ... 

::: b + z {g, (0) kD} b z2 g' (0) kD b 


2 3 


+~! gH (z*)b-~!gH (Z*)kDb+ ... (3.6) 

wbere g" (z*) is the second derivative of g(z) with respect to z at the point 

z ::: z·; z· = zw, 0 < w < 1. Using (3.3), (3.4) and (3.5) in (3.6) and retaining 
tenns upto order 0 (0

3
), we have 

1\ 

Po - P = 0 £1 + ~k £2 - 02g' (0) S; + a3k £3 - <lg' (0) S; (3.7) 

wbere £1 (X' Xr 1 X' v (3.8) 

(3.9) 


'i::3 = _v' Mv [D (X' Xr 1 X' _ 21}' B (X' Xr 1 X' v DR ] 
':> P' BP v P' BP I-' 

(3.10) 
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r* = _V' Mv [(X' xr 1 X' _ 2W B (X' Xr 1 X' V It] (3.11) 
':>3 WBP V WBP ... 


Hence from (3.7) the bias of 
1\

P to order 0 (02
) is
G 

• 1\ 1\ 0 2 kn 0 1 g' (0) n 
BIas (Po) = E (Po) - P = - WBP 0 P+ WB P P (3.12) 

(since E(v) - 0 and E(v' Mv)- tr M - n - T - p} 

The risk associated with 
1\

P upto order 0
4

, isG 
1\ 1\ 1\ 

p (Po) =E (Po - P)' Q (Po - P) 

3= 02 E<S'I Q SI) + 203 k E (S'I Q S2) - 20 g' (0) E <S'I Q si) 
4 

k
2+ 204 k E (S'1 Q S3) - 204 g' (0) E (S'I Q sj) + 0 E <S'2 Q S2) 

+ 04 {g' (0)}2 E <Si' Q si) - 204 g' (0) k E (S' 2 Q S2) (3.13) 

It can be verified that 

E (S'I Q SI) = tr(X' Xr 1 Q (3.14) 

1
E(S'I QS2) = - P'~P P'O'Q(X'Xr X'E(v'Mv. V) 

_ _ W0' Q (X' xr 1 X' (I*M) e (3.15) 
- 11 WB P 

1 
E(r' Qr*) = _ WQ(X'Xr X'(1*M)e (3.16)

':> 1 ':>2 11 P' B P 

E (r' Q r ) _ W0' QOB . E (r, Q r*) _ W0' QB (3.17)
':>2 ':>2 - q (W Bpi' ':>2 ':>2 - q (P Bpi 

(3.18)E (s~ Q si) = q (~:~:)2 
E <S'I Q S3) = - P' ~ P [11 tr (X' Xr 1 QO + 12 tr (X' xr 1 QO N 

-wi B {n WB (X' Xr 1 Q 0 P 

+ 12 WB N(X' xr 1 Q0 B } 1 (3.19) 
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E (S'I Q S;) = - W~ B [n tr (X' xr I Q + 1'2 tr (X' xr I Q N 

w! B {n WB (X' xr I Q B+ 1'2 WB N(X' xr I Q B}] 

(3.20) 

After substituting from (3.14) to (3.20) in (3.13) and noting that N = I -N, 
1\ 

we get the required expression for the risk p (13 ) to order 0
4 as given in (2.5). G
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