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SUMMARY 

Factorial experiments can be set out in row-column designs using the 
generalized cyclic methods of construction. Various methods for the 
construction of such designs are given in a systematic manner. 
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1. Introduction 

Factorial experiments can be set out in p x q row-column designs. The 
simplest type of design would be to use a Latin - Square for the v-treabnent 
combinations. The main effects and interaction would then be estimated 
independently of both row and column parameters. As for large v, the fully 
orthogonal designs are impractical, so there is a Ileed of row-colUllm design 
ill which tlle number of rows, colunms or both are less than v. Orthogonality 
must necessarily be sacrificed so that certain treabnent comparisons will be 
confounded with rows or with coltunIls or some with rows and other with 
COhUlUIS. A general procedure for constmcting factorial designs in various 
blocking structures, including row-cohul1n desiglls have been given by 
Patterson [7] and Patterson and Bailey [8J. John and Lewis [5] [mve considered 
the use of n-cyclic designs ill row-colunU1 factorial experiments, but no 
systematic method of construction was given. 

Let us consider a class of incomplete block designs with 
n 

v = m l n~ ... mn = n m. treatments in b blocks of k units per block. Each 
j=l J 

treatment is replicated r times. A treatment is denoted by the tHllple 
a, a2 ... an: where a j is an integer between 0 and 11\ 1 (i = 1, 2, ... , n). A 

set of generalized cyclic [GC(n)] is generated by Ule cyclic development of 
an initial block consisting of k treatment combinations in sLlch a way that the 



114 JOURNAL OF mE INDIAN SOCIE7Y OF AGRICULTURAL STATISTICS 

j-th block of the set is given by adding the j-th treatment combination in the 
initial block. If we can arrange the v treatment combinations in p rows and 
q colunms such that 

(a) 	 a single treatment combination is applied to each of the pq cells of the 
design; 

(b) 	 the treatment combinations are replicated the same munber of times 
(hence pq must be a multiple of v); and 

(c) 	 the rows and colunUls form a GC(n) set respectively; then the design is 
called generalized cyclic row cohUlln design. 

Orthogonality of these designs may be obtained by using the method of 
Mukherjee [6]. 

The illfonnation matrix A for the p x q generalized cyclic row-colnmn 
designs is given by 

A = rIv - ! N1 N'I -! Nz N'z+..t Evv 
q P pq 

where N1 and N2 are the row-treatment and cohUlln-treatment incidence matrices 

respectively; and Eyy is the matrix with every entry one. 

The reduced nonnal equations for estimating the treatment parameter 
r is 

Ar 
1\ = Q 

where Q is the vector of adjusted treatment totals. The infomlation available 
on the factorial effects is provided by the canonical efficiency factors (c.e.f.) 
of the design given by 

for 	u. = 0, ... , m. -1; j = 1, 2, ... , n. Where J.... . is an element from the 
J J 	 II' .••• 1. 

first row of the respective concurrence matrix (NN'). 

Again any contrast which is basic for the TOW and cohUlln components, 
with c.e.f.'s e1 and e2 respectively, gives rise to a c.e.f. for the row-colnmn 

design is given by e = e1 + e2 - 1. 
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2. 	 Methods olCons/ruction oIGC(n) 
Row-column Designs 

Lemma 2.1: (Dean and Lewis [3]) : Cyclic development of an initial block 
generates a binary GC(n) with exactly v/d distinct blocks if and only if the 
initial block can be expressed as S (;9 R where 

(i) S is a subgroup of G whose order d 2! 1 is a common factor of k and 
v, 

(ii) R is a subgroup of G of size kid, 

(iii) There is no subgroup S' of G of order greater tllan d for which the 
initial block may be expressed as S' (;9 R', ReG. 

17leorem 2.1: If rv = pq is 110t a prime power, p is the munber of rows 
and q is tlle number of COIUIlUlS whcrc p and q are such that either of tllcm 
is not divisible by other. r is tlle number of replications. theu a GC(1) 
row-column design with parameters v, p. q and r call always be constmcted 
as : 

o p 2p (q -1)p 
<I 
2q

X= 

(p -I)q 

In this design if np :::: (0. I, 2•...• P -1) mod v then we will consider 
tIle elements 1, 2, ... p - 1 if tIley are not occurred previously in the initial 
row. Similarly in the initial column if mq = (0, 1. 2, ... q-l) mod v we will 
consider the elements out of 1. 2 ..... q-l if they are not occurred previously 
in the initial COIUllUl, subject to tIle condition tIlat tlle number of treat.ments 
COllmlon between initial row and initial column should be equal to r. 

Proof. By using Lemma 2.1 the initial row of tlle X matrix providcs the 
GC(l) design of size q and initial column provides GC(1) design of size p. 
If tlle p and q are divisible of each other then the condition tllat tlle number 
of common treatments bctween initial row and initial COIUIlUl will be greater 
tIlan r and design will not be cOllstmcted. If in tlle initial row and initial COhUllll 
np = 0 mod (v). 1 mod (v), 2 mod (v), ... and mq = 0 mod (v). 1 mod (v), 
2 mod (v) .... respectively, then tIle trcatmcnt 0, 1, 2, ... , will not be taken 
into accoullt since they have already been taken in the first row and first colullm, 
tlle treatments will be considered on that place between 1 to pol. 2 to p-l, 
3 to p-I .... in the rows and 1 to q-l, 2 to q-l, 3 to q-l •.,. in the columns 
respectively if they have not occurred previously. 
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As an example consider v = 12 treatments arranged in 4 rows and 6 
COitUlUlS in two replications, tbe design so obtained is given by: 

481 5 
10 2 7 11 x -- [~1 5 9 2 6 

7 11 3 8 o I~1 
The efficiency et , considering each row as a block is 0.845. Similarly 

the efficiency e2, considering each cohmul as a block is 0.565. Therefore, overall 

efficiency of Ule design comes to be 0.41. 

Theorem 2.2 : If rv = )Xl is a prime power and p, q < v then we can 
not construct GC(I) row-cohunn design. 

Proof. By using the method of David and Wolock [2J for finding Ule 
fractional sets for prime powers, the fractional sets for the initial row and the 
initial COlUllUl do not exist simultaneously. Hence the GC(l) row-COIUllUl design 
does not exist. 

Lemma 2.2: In single replicate S2-factorial experiment where s is a prime 
nwnber then Ulere will be (s-1) generators which will provide (s-1) independent 
solutions of GC(2) design of size s in which all main effects will be 
unconfounded. 

Proof. In S2 factorial experiment there will be S2 generators of type 
ajaj : i,j = 0,1, 2, ... , s-l. TIle total nwnber of nOll-zero generators are 

S2 - 1. TIle generators in which aj = 0 or aj = 0 are 2(s - 1). These 

2(s -1) generators will give solutions in which main effects are confounded. 

So the generators which provide main effect unconfounded are (s -ll. 
A generator aiaj is said to be independent of lI jUj if n(aiaj ) (mod s) :F (uiuj ) 

where 11 is any integer. Out of (s - 1)2 generators (s -1)(s - 2) generators are 
such UIat which give solutions just repetition of the solutions given by remaining 
(s - 1) generators. Hence tbere are only (s - 1) generators wbich provide 
(s - 1) independent solutions of GC(2) design of size s in which all main effects 
will be unconfoundcd. 

Theorem 2.3: For v =8
2 where s is a prime we can obtain s- lC solutions2 

for GC(2) roW-COhUlUl (s x s) design in which all main effects are unCOllfounded 
ill single replicatioll. 
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Proof. By using Lemma 2.2 we take 2 solutions out of (s - 1) independent 
solutions. The total llwnber of GC(2) row-colul1Ul designs will be s- lC2 in 

single replication in which all main effects are Ullcollfounded. 

As an example we take v = 52 in 5 x 5 factorial experiment. Here 
s = 5, therefore, the four generators are 11, 12. 13. and 14. Taking generator 
11 for tbe initial colunUl and 12 for the initial row we obtain the GC(2) 
row-colunUl design as: 

00 12 24 31 43 
11 23 30 42 04 
22 34 41 03 10 
33 40 02 14 21 
44 01 13 20 32 

In this design canonical efficiency factors e12, e24, ell and e43 have zero 

value ill the rows while all other components of main effects and interactions 
have value one. Similarly, in columns, the components ell' ande14, e32 

have value zero each while the components of all main effects and other e41 
iuteractions have efficiency one. So we observe that all main effects in this 
row-colunUl design are unconfounded while 4 + 4 d.f. of interaction AB are 
completely confounded. 

By taking other combinations of generators the remaining five GC(2) 
row-colullm design can be constructed. 

Remark: Theorem 2.3 can easily be constructed by taking Ole elements 
in the i-tit row and j-th colLulU) in the (s x s) GC(2) row-cohmul design as 

[(i +j) mod s, (t.i + t2i) mod s} where tl = 1,2..... s-2; t2 = 2,3...., s - 1, 
t. < t2 and (i.j = 0, 1,2, ... , s-I). 

Lemma 2.3: In S2 factorial experiment where s is even there will be 

(s d) generators which will provide <t -d) independent solutions of main 

effects uncollfounded, d being the nwnber of odd integers having common 
divisors WiOl s olher than olle. 

Proof. Proceeding as in Lemma 2.2. out of S2 - 1 nOll-zero generators, 
the generators ill which either a or a equal to zero are 2(s - 1). Thesei j 

2(s - 1) generators will give the main effects confounded. In the same way 

(3!2 + sd _ 2s - d2+ 1) generators are such that ill which eitber aj or a or bothj 
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have a common divisor with s other tllan 1 and tlle solutions obtained from 
tllese generators will give the main effects partially confounded. In remaining 

<t -d)2 generators <t -d) <t -d - 1) are t1Ie generators which give solutiolls 

just repetition of the solutions given by <t -d) generators. Hence there are 

only <t -d) generators which will provide <t -d) independent solutions of main 

effects ullcollfouuded. 

Theorem 2.4: For v = S2 wheres is even, we can not construct single 
replicate GC(2) row-colwlln design in which aU main effects are unconfounded. 

Proot By using tlle method of generators (John and Dean [4]) for 

v = S2 when s is even, two generators which provide main effects uncollfoullded 
ill rows and colwnils simultaneously in single replication do not exist Hence 
we cannot construct the GC(2) row-cohmm design in single replication ill'which 
all main effects are lI11confollnded. 

Theorem 2.5: For v = (2 x ('i where t is a prime llWllber greater t1Ian 

2 and n is any positive integer we can obtain 2t3n 
- 2(t -1)(t - 2) solution for 

GC(2) row-column (2tn x 4(') design in two replications ill which all main 
effects are uuconfolluded. 

Proot By using Lenuna 2.3, there are tn-I(t - 1) independent solutions 
from which we can construct GC(2) design in which all main effects are 
uncollfoullded in single replications. In the same procedure as in Lerruna 2.3, 
t1Ie total llWllber of generators which will provide GC(2) row-colullm design 
wit1I each of ('-I{t-l) generators in two replications are 2tn -

1(t-2). Total 

tnDumber of GC(2) row-colwrul design will be 2tn - I(t - 2) - l(t -1). By 
ninterchanging the rows and taking t combinations of tllese 

2t2n 
-

2(t-1Xt-2) we get 2en
-

2(t-1)(t-2) solutions. 

Following example will clear for t = 3 and n = 1, the construction of 

tlle design for v = (2 X 31
)2 = 62 treabnents in 6 x 12 row-column factorial 

experiment Following Lemma 2.3, here s = 6 and d = 1. Total generators 
which give independent solutions in sillgle replication are (11, 15) and t1Iose 
which give independent solutions in double replication are (12, 14, 21, 41). 
The combination which will provide GC(2) row-colunUl design in double 
replication are (11, 12), (11,21), (15, 14) and (15, 41). Each combination will 
give tllree solutions. Oue solution wit1I combination (11, 12) is given below: 
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00 12 24 30 42 54 11 23 35 41 53 05 
11 23 35 41 53 05 22 34 40 52 04 10 
22 34 40 52 04 10 33 45 51 03 15 21 
33 45 51 03 15 21 44 50 02 14 20 32 
44 50 02 14 20 32 55 01 13 25 31 43 
55 01 13 25 31 43 00 12 24 30 42 54 

TIle other two solutions for this combination are obtained by adjusting 
4th and 6th rows in 2nd replication. 

Canonical efficiency factors e42, e24, e ls ' and e3l have zero value in eSI 

colWlms while all main effects and other interaction factors have full efficiency 
i.e. 1. Similarly in rows the components ell and e .... have c.e.f.'s 0.75 each 

while e and e41 have 0.25 each. All main effects and other interaction factors lS 

have c.e.f. equal to 1 each. Therefore, ill the row-column design out of 24 
degrees of freedom of interaction AB, 5 d.f. are completely confounded while 
4 d.f. are partially confounded. 

Theorem 2.6: For v = (t x 2n)2 where t is a prinle number greater than 

2, n > 1 is any positive integer, we can obtain 23n 
- 3t(t - 1)(t - 2) solutions 

for GC(2) row-co[ullUI (t2n x t2n +1) design in two replication in which all main 
effects are unconfounded. 

Proof. The theorem can easily be proved on the similar pattern as the 
Theorem 2.5. 

Example: We take v = (3 x 22'1 = 122 treatments in 12 x 24 row-colW1Ul 
factorial experiments. Here s = 12 and d = 2. Total generators which give 
independent solutions in single replication are (11, 15, 17, 1.11) and those which 
give independent solutions ill double replications are (12, 21, 1.10, 10.1). The 
combination which will provide GC(2) row-colunm design ill double replication 
are (11, 12), (11, 21), (15, 1.10), (15, 10.1), (17, 12), (17, 21), (1.11, 1.10), 
(1.11, 10.1). Each combination will give 6 solutions i.e. a total of 
8 x 6 48 solutions. 

Corollary: In TIleorem 2.6 when t = 1 tben the value of d is zero and 

the total number of solutions will be (2n- 1)3. 
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