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SUMMARY

Factorial experiments can be set out in row-column designs using the
generalized cyclic methods of construction. Various methods for the
construction of such designs are given in a systematic manner.
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1. Introduction

Factorial experiments can be set out in p X q row-column designs. The
simplest type of design would be to use a Latin - Square for the v-treatment
combinations. The main effects and interaction would then be estimated
independently of both row and column parameters. As for large v, the fully
orthogonal designs are impractical, so there is a need of row-column design
in which the number of rows, columns or both are less than v. Orthogonality
must necessarily be sacrificed so that certain treatment comparisons will be
confounded with rows or with columns or some with rows and other with
columns. A general procedure for constructing factorial designs in various
blocking structures, including row-column desigﬁs have been given by
Patterson [7] and Patterson and Bailey [8]. John and Lewis [5] have considered
the use of n-cyclic designs in row-column factorial experiments, but no
systematic method of construction was given.

Let us consider a class of incomplete block designs  with
n
v=mm,..m =TI m; treatments in b blocks of k units per block. Each
i=1
treatment is replicated r times. A treatment is denoted by the n-tuple
a a,...a; where a is an integer between 0 and m,-1 (i=1, 2, .., n). A
set of generalized cyclic [GC(n)] is gencrated by the cyclic development of
an initial block consisting of k treatment combinations in such a way that the
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Jj-th block of the set is given by adding the j-th treatment combination in the
initial block. If we can arrange the v treatment combinations in p rows and
q columns such that

(a) a single treatment combination is applied to each of the pq cells of the
design; ‘

(b) the treatment combinations are replicated the same number of times
(bence pq must be a multiple of v); and

(c) the rows and columns form a GC(n) set respectively; then the design is
called generalized cyclic row column design.

Orthogonality of these designs may be obtained by using the method of
Mukherjee [6].

The information matrix A for the p X q generalized cyclic row-column
designs is given by

1 , 1 N
A=rlv—HNlNl*BN2N2+EEVV

where N, and N, are the row-treatment and column-treatment incidence matrices
respectively; and E_ is the matrix with every entry one.
The reduced normal equations for estimating the treatment parameter
T is
AT=0Q
where Q is the vector of adjusted treatment totals. The information available

on the factorial effects is provided by the canonical efficiency factors (c.e.f.)
of the design given by

m=-1 m

n .

u; i;

, i I}

Cu uy.u pq Y .. z A, ...i cos my, -
(=0 i, =0 j=1

for u; = 0, ..., m -1 j=1,2, .., n Where &, , is an element from the
g
first row of the respective concurrence matrix (NN’).

Again any contrast which is basic for the row and column components,
with c.e.f.’s e, and e, respectively, gives rise to a c.e.f. for the row-column

design is given by e = ¢, +e,~ 1.
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2. Methods of Construction of GC(n)
Row-column Designs

Lemma 2.1: (Dcan and Lewis [3]) : Cyclic development of an initial block
generates a binary GC(n) with exactly v/d distinct blocks if and only if the
initial block can be expressed as S € R where

(i) S is a subgroup of G whose order d = 1 is a2 common factor of k and
v,
(i) R is a subgroup of G of size k/d,

(iii) There is no subgroup S' of G of order greater than d for which the
initial block may be expressed as S"®R’, Rc G.

Theorem 2.I: If rv = pq is pot a prime power, p is the number of rows
and q is the number of columns where p and q are such that either of them
is not divisible by other, r is the number of replications, then a GC(1)
row-column design with parameters v, p, q and r can always be constructed
as :

0 p 2p ... (gq-1p
q

X = 2q

.(p -1)

In this design if np = (0, 1, 2, ..., p—1) mod v then we will consider
the elements 1, 2, ... p~1 if they are not occurred previously in the initial
row. Similarly in the initial column if mq = (0, 1, 2, ... ¢-1) mod v we will
consider the elements out of 1, 2, ..., g-1 if they are not occurred previously
in the initial columm, subject to the condition that the number of treatments
common between initial row and initial colunm should be equal to r.

Proof: By using Lemma 2.1 the initial row of the X matrix provides the
GC(1) design of size q and initial column provides GC(1) design of size p.
If the p and q are divisible of each other then the condition that the number
of common treatments between initial row and initial column will be greater
than r and design will not be constructed. If in the initial row and initial column
np = 0 mod (v), 1 mod (v}, 2 mod (v}, ... and mq = 0 mod (v), 1 mod (v),
2 mod (v), ... respectively, then the treatment 0, 1, 2, ..., will not be taken
into account since they have already been taken in the first row and first column,
the treatments will be cousidered on that place between 1 to p-1, 2 to p-1,
3 to p-1, ... in the rows and 1 to g-1, 2 to ¢-1, 3 to ¢-1, ... in the columns
respectively if they have not occurred previously,
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As an example consider v = 12 treatments arranged in 4 rows and 6
columms in two replications, the design so obtained is given by:

0 4 8 1 5 9
x-|6 10 2 7 11 3
1 5 9 2 6 10
7 11 3 8 0 4

The efficiency e,, considering each row as a block is 0.845. Similarly
the efficiency e,, considering each columa as a block is 0.565. Therefore, overall
efficiency of the design comes to be 0.41.

Theorem 2.2 : If rv = pq is a prime power and p, g < v then we can
not construct GC(1) row-column design.

Proof. By using the mcthod of David and Wolock [2] for finding the
fractional sets for prime powers, the fractional sets for the initial row and the
initial column do not exist simultancously. Hence the GC(1) row-column design
does not exist.

Lemma 2.2: Tn single replicate s*-factorial experiment where s is a prime
number then there will be (s-1) generators which will provide (s-1) independent
solutions of GC(2) design of size s in which all main effects will be
unconfounded.

Proof In s> factorial experiment there will be s generators of type
aa; i,j= 0,1, 2, ..., s-1. The total number of non-zero generators are
s*~1. The generators in which a=0 or 3 = 0 are 2(s-1). These
2(s — 1) generators will give solutions in which main effects are confounded.
So the generators which provide main effect unconfounded are (s —1)%

A generator aa; is said to be independent of vy, if n(aiaj) (mod s) # (uiuj)

wliere n is any integer. Out of (s —1)* generators (s — 1)(s — 2) generators are
such that which give solutions just repetition of the solutions given by remaining
(s—1) generators. Hence there are only (s—1) generators which provide
(s — 1) independent solutions of GC(2) design of size s in which all main effects
will be unconfounded.

Theorem 2.3: For v = s where s is a prime we can obtain *~ lC2 solutions

for GC(2) row-column (s X s) design in which all main effects are unconfounded
in single replication.
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Proof: By using Lemma 2.2 we take 2 solutions out of (s — 1) independent
solutions. The total number of GC(2) row-column designs will be *~ lC2 in
single replication in which all main effects are unconfounded.

As an example we take v = 57 in 5x5 factorial experiment. Here
s = 3, therefore, the four generators are 11, 12, 13, and 14. Taking generator
11 for the initial column and 12 for the initial row we obtain the GC(2)
row-column design as:

60 12 24 31 43
11 23 30 42 04
22 34 41 03 10
33 4 02 14 21
44 01 13 20 32
In this design canonical efficiency factors e, ¢,,, €;, and e, have zero
value in the rows while all other components of main effects and interactions
have value one. Similarly, in columns, the components e¢,,, €,;, €, and
¢,, have value zero each while the components of all main effects and other
interactions have efficiency one. So we observe that all main effects in this
row-column design are unconfounded while 4+ 4 d.f. of interaction AB are
completely confounded.

By taking other combinations of generators the remaining five GC(Q2)
row-column design can be constructed.

Remark: Theorem 2.3 can easily be constructed by taking the elements
in the i-th row and j-th column in the (s xs) GC(2) row-column design as

[+ j)mods, (t)i+tyj) mod s where t; = 1,2,..,52;t, = 2,3, .,8-1,
4y <ad(,j=012,..,s1).

Lemma 2.3: In s* factorial experiment where s is even there will be
(s —d) generators which will provide (%—-d) independent solutions of main

effects unconfounded, d being the number of odd integers having common
divisors with s other than one.

Proof Procecding as in Lemma 2.2, out of s>~ 1 non-zero generators,
the generators in which either a; or a; equal to zero are 2(s - 1). These
2(s — 1) generators will give the main effects confounded. In the same way

2
(33— +sd - 2s —d* + 1) gencrators are such that in which either a; or a; or both
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have a common divisor with s other than 1 and the solutions obtained from
these generators will give the main effects partially confounded. In remaining

(*% —d)? generators (%_ &) (-;— —d ~ 1) are the gencrators which give solutions

just repetition of the solutions given by (%-—d) generators. Hence there are

only (% — d) generators which will provide (-;- — d) independent solutions of main
effects unconfounded.

Theorem 2.4: For v = s> where s is even, we can not construct single
replicate GC(2) row-column design in which all main effects are unconfounded.

Proof. By using the method of generators (John and Dean [4]) for
v = s> when s is even, two generators which provide main effects unconfounded
in rows and columis simultancously in single replication do not exist. Hence
we can not construct the GC(2) row-column design in single replication in 'which
all main effects are unconfounded.

Theorem 2.5: For v = (2x")* where t is a prime number greater than
2 and n is any positive integer we can obtain 2"~ %(t — 1)(t - 2) solution for
GC(2) row-column (21" x 4t") design in two replications in which all main
effects are unconfounded.

Proof By using Lemma 2.3, there are t"~ '(t—1) independent solutions
from which we can construct GC(2) design in which all main effects are
unconfounded in single replications. In the same procedure as in Lemma 2.3,
the total number of generators which will provide GC(2) row-column design
with each of ©°~'(t—1) generators in two replications are 2"~ '(t—2). Total
number of GC(2) row-column design will be 20"~ '(t-2) € '(t-1). By
interchanging the rows and taking 1t combinations of these
2" Kt - 1Xt—2) we get 28" Xt - 1)(t - 2) solutions.

Following example will clear for t = 3 and n = 1, the construction of
the design for v = (2x3') = 6* treatments in 6 X 12 row-column factorial
experiment. Following Lemma 2.3, here s = 6 and d = 1. Total generators
which give independent solutions in single replication are (11, 15) and those
which give independent solutions in double replication are (12, 14, 21, 41).
The combination which will provide GC(2) row-column design in double
replication are (11, 12), (11, 21), (15, 14) and (15, 41). Each combination will
give three solutions. One solution with combination (11, 12) is given below:



CONSTRUCTION OF GENERALIZED CYCLIC ROW-COLUMN DESIGNS 119

00 12 24 30 42 54 11 23 35 41 53 05
11 23 35 41 53 05 22 34 40 52 04 10
22 34 40 52 04 10 33 45 51 03 15 21
33 45 51 03 15 21 44 50 02 14 20 32
44 50 02 14 20 32 55 01 13 25 31 43
55 01 13 25 31 43 00 12 24 30 42 54

The other two solutions for this combination are obtained by adjusting
4th and 6th rows in 2nd replication.

Canonical efficiency factors e,,, €,,, €, €5, and e,, have zero value in

colurnns while all main effects and other interaction factors have full efficiency
ie. 1. Similarly in rows the components e,, and ¢,, have c.e.f’s 0.75 each

while e, and e,; have 0.25 each. All main effects and other interaction factors
have ce.f. equal to 1 each. Therefore, in the row-column design out of 24

degrees of freedom of interaction AB, 5 d.f. are completely confounded while
4 d.f. are partially confounded.

Theorem 2.6: For v = (tx 2"} where t is a prime number greater than
2, n > 1 is any positive integer, we can obtain 2°*~3(t — 1)(t - 2) solutions

for GC(2) row-column (12° x 12**') design in two replication in which all main
effects are unconfounded.

Proof: The theorem can easily be proved on the similar pattern as the
Theorem 2.5.

Example. We take v = (3 x 22 = 127 treatments in 12 x 24 row-column
factorial experiments, Here s = 12 and d = 2. Total generators which give
independent solutions in single replication are (11, 15, 17, 1.11) and those which
give independent solutions in double replications are (12, 21, 1.10, 10.1). The
combination which will provide GC(2) row-column design in double replication
are (11, 12), (11, 21), (15, 1.10), (15, 10.1), (17, 12), (17, 21), (1.11, 1.10),
(1.11, 10.1), Each combination will give 6 solutions ie. a total of
8§ x 6 = 48 solutions.

Corollary: In Theorem 2.6 when t = 1 thea the value of d is zero and
the total number of solutions will be (2°~ ')’
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