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SUMMARY

The object of this paper is to consider a generalized estimator
representing a class of estimators and to find better estimators in the
proposed class than the existing ones for the estimation of regression
coefficients in linear regression model when the error components have
the joint multivariate Student-t distribution. Approximate expressions of the
bias, the risk of the proposed gencralized estimator and the efficiency
(dominance} condition with respect to the risk criterion under a general
quadratic loss function over the minimum variance unbiased estimator
(MVUE) are obtained. A comparative study among some estimators is also
made.

Key words: Lincar regression model, Multivariate Student - t distribution,
Bias, Risk, Generalized dominance condition.
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1. Introduction
Consider the linear regression model

y = XB+u (L.1)

where y is a T x 1 vector of T observations on the variable to be cxplained,
X is a Txp full column rank matrix of T obscrvations on p explanatory
non-stochastic variables, B is a non-null p % 1 vector of regression coefficients
and u is a Tx1 vector of disturbances having a multivariate Student - t
distribution with probability density function (pdf) given by

fwy, 6% = po™ T {7+ @uye’y T+92 1.2)

where >0, >0, u, € (~=,) (i = 1,2,..,T) are respectively the degrees
of freedom, dispersion parameters of the distribution, the error components and

'}'7/2 (x-ﬁ-T]
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is the normalizing constant. Further, the error vector u has mean vector
E(u) = 0 for y> 1, variance-covariance matrix

Euw) = yy-2)"' 6’1 = 6l for y>2
and the common variance of u.’s is oi = y09(y-2)

The ordinary least squares estimator of B is
b=XX\'Xy=p+XX)"Xu (1.3)
which is the minitmun variance lincar unbiased estimator (MVLUE) also.

let D be a knn)‘vn pxp positive definite symmetric matrix,
0 = F'X’XB, {(y—-Xby = v and '
_ -XbYy-Xb) _ _ Wb _ yMy
b’X'Xb bX'Xb ~ b’X’Xb

t

where M = I - X(X'X)"'X’.
Seeing the forms of the existing estimators {for example, see Singh [2]),
a gencralized estimator 3 A representing a class of estimators of P is proposed
as
) A
By = I-1(UD]b (1.4)
where t has at least first m (= 6) moments finite and f(f) satisfying the validity
conditions of Taylor’s (Maclaurin’s) scries expansion with its first three

derivatives with respect to t being bounded, is a bounded function of t such
that f(0) = 0, and :

_ofl .
f(t)-O(e]as -

For choices of D and £(t) satisfying the above conditions, several existing
particular estimators can be obtained. For example, for D = I, the following
estimators {considered by Singh [2]}

— Jpe 1A, A =
B = [1_ -2 T 'wul ]b

® Yy - i1 -yy-2)'T")

I IS (VI )l it
bX’Xb + Wy - 2) T '
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_ JEp— .
_ I_Jg(y 2) :I'l'tl1 b 1.5
1+¥y-27 T 't
B;g: - —I (T_p)“la'a.l }b
=] I- < -
y'y—a’u{l-(T-p) h

(i)

_ _I— (T-p ' va.I
bX'Xb+(T-py ' 0'u

i -1
I (PR ¢ )Nk 9 g (1.6)
1+(T-p).t

and for k,(>0), k, (< 1) being the characterising scalars,

5 _[, k00,1 .
R o

B k.1 ;
= I—m b (.7

with  the ])anicular forms of f() given by () yy-27'T 't

(T—py" kit
(u) (- )_ and (i) ———— T+ kz)t
at t = 0), belong to the proposed class Bg of estimators.

respectively (each having the value zero

A
Some more estimators belonging to the class Bg are

3& =[1-kyy=27' T @+ 02 - 13D |b (1.8)
A~ [ xea+os-1D

Be, = | 1- 1+(1 -k (19
By, =[1-%, @ +k0-1)D [o (1.10)

where k;, k, and k; are the chinracterising scalars to be chosen suitably satisfying
the regularity conditions of [ .
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The apprexunate expressions for the bias anga  the risk
p({i ) = E([i - By Q(B - B) where Q is a positive definite symmetric matrix
are given in the Appendix.

2. Some Remarks

(a) It may be casily seen that the results obtained by various authors are
the special cases of the present study. For example, for the estimator

Bo|i-—atl iy by Singh [2
p= TV a-KX y Singh [2]
we have D = I, F(0) = k, fimd "(0) = -2k, (1 —k;) which when substituted
in the expression for bias (Bg) of the Theorem 1 of the Appendix, gives the
same expression

k(T py [H acz('r—-p-¢~2)-'r}-yo’}B
8(y-2) 8(y-4)

of bias (J}) obtained by Singh [2]. Also, the risk p(f) obtained by Singh [2]
for the estimajor B may be easily seen to be the special cgse of the risk
expression p(Bg) of the proposed peneralized estimator Bg for D=1,

£(0) = k, and £(0) = - 2k (1 - k,).

(b) We know that the risk associated with OLS estimator b is

_L__ .

2
- rey-1
—E——(y_z) r (X' Q) @.1)

and ignoring terms that are O {8 2tr(X’X)"!), O(6"’B'QDP) and
o@®? B’ D’'QDP), for y>4 from Theorem 2 of the Appendix, we have

4
o6, = y " [(T-p) Yo f'm)}(

G- -9e

[ ~2uqr+ AT =+ DIOFDQDY + 43'QDF) } 22)
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A
From (2.!*1) and (2.2), in the sense of having p(ﬁs) < p(b), the dominance
condition of Bg over b is
2BQDB

0<+1(0) < 2d -2

-~ 1
B'D'QD B) (T-p+2) 2.3)

rQ _ _ {(XX)'Q} ., BQDP
pPD'QDp/e  p'DQDP/e ~  p'D'QDB

A
For D = I, the dominance condition (2.3) of Bs over b, reduces to

where d =

0<f(0) € 2(d"-2XT-p+2)"! (2.4)

. Q" m(XX)y'Q)
pQive pQi/e

It may be mentioned here that the dominance conditions of various

estimators over b may be easily seen to be special cases of the dominance

conditjon given by (2.3). For example, for the estimator B (belonging to the
class Bs of estimators), we have D = I, £(0) = k; which when substituted in

where d* > 2

(2.3) or (2.4) gives, as the special case, the same dominance condition
O<k, € 2(d"-2)t-p+2)! (2.5)
for ﬁ to be better than b as obtained by Singh [2].

A
(¢) We can see that the class Bg of estimators contains some better
estimators than the existing ones. For example, for the estimator

§33 = [I—k, {(l+k3t)"2—l}D]b

we have £'(0) = k kk; which after substituting in (2.3) or (2.4) and D =1,
gives the dominance condition

0 < kikk3 € 2d" - 2(T-p+2)" (2.6)
A
for the estimator [,  to be better than b in the sense of having

N e,
p(ﬂga) < p(b).

From (2.5) and (2.6), for D = 1, 0 < k, < 1 and 0 < k, < 1 the range
A
of the dominance condition (2.6) for fig3 to be better than b is wider than that

of the condition (2.5) by Singh [2] for ﬁ to be better than b; hence for


http:condit,j.on
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0 <k, < 1and0 <k, < 1, in the extended range of the dominance condition
(2.6) over the dominance condition (2.5), the estimator B is better than both

B and b.
Appendix

From Zeliner {4], it is known that the multivariate Student - t distribution
is a member of the class of p.d.f.’s.

plw) = J Pan(WT) p(7/.)dr ey

where pMN(lnl':) = Qurty ™ exp (-uww2r?), —eo<u <o and p(r/.) with

7>0, is a proper p.Lf. of 7. In particular, considering p(7/.) to be Inverted
Gamma (IG) p.d.f.

2
Py, 0%) = 2 [-;% exp (- yo'r21%) )
13

with y,0,7 in (0, «), we see that the p.df. p/) becomes the pd.f.
f(wy, 6®) given in (1.2). The error vector u may be regarded as following a
multivariate normal distribution with random standard deviation generated from
the distribution (2) and given T with p.d.f. (2), the conditional distribution of
u under our regression model is multivariate normal with mean vector 0 and

variance - covariance matrix 721, Thus given 7,
A
B =B+ X'X)'X'u 3

¥
has a multivariate normal distribution with mean vector B and variance -
. . . L. . A, .
covariance matrix (X’X)"' 721 and further it is also independent of o 2 which
given T is distributed as 7235 _ .

Let
z=7"XX)b, §=1"'XX)P and v = 0W*
so that given 7,Zz~-MN @, 1), v~ X%T-p) and z and v are independent.

Also, let € = (z - 9), then given 7, e is distributed as multivariate normal
with mean vector O and variance - covariance matrix L

Theorem 1: If y> 4, then ignoring terms that are 0(21 } 6,j>0,
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A N _ 2
B = p-T=Dhe r«»[ | _ (D =2) = {FOVAONT - p+ Diyo ].DB

o(y-2) 8(y-4)
where '(0) and £7(0) are respectively the first and second derivatives of f(1)
with respect to t at the point t = 0.
Proof. We have
Be = b- V). Db

Expanding f(t) in third order Taylor’s series about the point t = 0 and
noting that f(0) = 0, we get

2

BB = 6-B) -{ £(0) + £0) + 57 £'(0) + f"’(t )} @)

where '7(t") is the third derivative with respect to t at t"=wt, 0<<1.

Utilizing (b-B) = 1(X’X)"%e with E(e) = 0

vl v e e+2e |
___________—____, ey 1 =S =T
LS oxom vz T oy - Y [” 83 ]

and taking expectation on both sides, we have

Ey) = B~ E ErDXX) ‘“{v(s'z‘»)"{a 5—“'8’5&)‘ £0)
FIVEBI Eeg—%-i)“ £(0)
2
+e G+ e—‘*sizs—er () (e +5)] ®)

since E(.) = EE (), where E_ denotes the conditional expectation given 7.
Now, 88 = 7720 and considering
Ag=v(3'8) [f’(()) (1 -8 Ne'e + 25°e) + 45825 ey + L m’ v(5'5) }x

(e +3)
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[ (0)

= (148) v{ £(0) {1 - (1Y0)(e’e + 25’) + H(r10))(5'e)? } + —— (7o) |x }

(e +9)

to be the approximating polynomial of

A = v(E8) ! { £0)1 + 5%825_'5,-1 2 COMEO)

’ ’ 2
1+ E—E-g%é%s—‘-‘:‘-)‘* + e PO

.(1+—E—e-g-,—?—e)‘3}.(e+8)
we  have ezlA—Asl—-—g-»(} as 6 goes to oo, and

6 A
IE(A)-E(AQ!] = 0( G; y } j>0, and hence, E([}g) in (5) can be expressed

as

a — ey 172 1 (>0 6
E(Bg)-—B+EE,:rD(XX) Ag+0O % j> 6)

Further, we have
E(vz) = (T-pk
E,(ve'ez) = (T-p).pd
E,(8'evz) = (T-p)d
E,(v('e)z) = (T-p)E'8)
E(v'z) = (T-pXT-p+2)
Substituting these results in (6), we get

E,) = B~ EEDXX) " Ag

2
=B-E {ﬂ)(xfx)— 17 (B ]l:f’((}) {:(T ) (%}{(T -ppd+ AT~ )8}

()

+ 4T°X(T - p)(S’S)S] (THONT —pNT—p+2)d
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4 "
= B——E‘('r_;lllt’(ﬂ)l-;z_%{(p—ﬁ—zfr(g))) (T—;)+2)}}.DB]

Using E(r%) = ?-Y—) for y>2 and

4
E(T") = __ye for r>4
@) = ong-a O
{from Zcllner ([3], pp. 371-372)} for y> y, (large so that error bound becomes

uniform in 1), we get

(T—p)yo’f'm)[l {(p =2) = (V2T = p + 2)) Yoz] D

A
EQ,)=p-
B =P 6(y-2) o(y-4)
)
which gives the required expression in Theorem 1.
A A
Next we proceed to find the risk p(Bs) for Bs'

Theorem 2. For y> 6 and positive deflinite symmetric matrix Q, ignoring
A
terms that are 0[513} the risk p(Bg) is given by
A A A

p(By) = E(By - BY QB ~P)

= _Y_ __YL f(OXT - { -2 he

q-2"C Goag—ae  OT P -2Q
2

Yo kk **
+(Y_6)e{(T—p+2)f'(0)lrQ +2(p-2)1rQ

£7(0)

~(T-p+2)— =~ £0)

rQ™ } + %{(T -p+2r@O)p'D'QDP + 4B’QD[5}
(,},—8),2)_{ (T -p+ 2)rl(0)B’D QDB + (p - 2)B QDB

_(T=p+2) O
212 Cqn|
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where Q" = XXy " QXX) "
Q+* = (X'Xy ?QD XXy '?
Qrr+ = (X'X) ' D'QDX'X)"
Proof. We have
p(By) = EB, - BYQ(, - B)
= EE;1] (2 - Y(X'X) 2 = 0z (X'X)" "2 D' [Q
07 (2 - 8) - 10 DX 2
EE,[(2-8/Q"(z - §) - 200z ~ 5YQ"z + (DY Q™2 ]
(8)

Expanding f(t) in third order Taylor’s series about the point t = 0 and
noting that f(0) = 0, we have

E,(Bs - Qi — B
= E,Tz[ e'Q’e ~2v(¥'8) ‘{ (1+ Eeg—me)‘ r(0)

i

S GON “g—mer £(0)

2 ’ ’
% &8 X1 + E—ES‘”—;E) 3 ) } .e'Q*(e +9)

+{ v(&8) (1 + “g—%e)‘ r(0)

e’e + 20 e)_ £0)

1 5 cev-2
+2v(58) 1+ 55

3 2
V' eene3 e'ce+2W'e..3 .,
+——6 @8y (+ 8 R )}

(e’+8)Q™ (e +8)} ®
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Considering

By = —2£(0) 72[ v@EE) ' - vy { Qe +ee)+y t:((g)) }

sy 3 s\ [ ’ ’ f‘v(ﬂ)
+ 4v{3'3) {((8 e)+@'eXe’e))~ (5 )f'(())}

—8v('8Y 4 (5'e) ] {€'Q™(e +8)}

4 2
= -Zf'(O)%-[ -—v—{(zﬁ’e-%- € e)+v f”((})}

2 1(0)

4
L @ -yeo ]

6
- 8v—39; &e) ](e'Q"e +€’Q"8)

and

By =1v(8'8) ? {f(b)}’[l - 458! (8'5)](&' +89Q™ (e + 8)
76 2 2 472 2 Lot WER KR
= gf(f’(O)) V-5 ViEe) |(e'Q e +2e'QTE +5QD)

to be the approximating polynomials for second and third terms of (8)
respectively, we see that

021 - 2(e’Q™z - Byl —2— 0

and 6" ([ Y'2'Q"*z - By | —E— 0 as 6 goes o «

Also

IE,(-2()e'Q""z) - E,(Bg) = O [313— ]

and FELf1))2'Q"™ "z~ E/By)| = O [-615- ]
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A A
and hence, the risk p(p s) of the generalized estimator Bg may be expressed as

p(ﬁg) = EE,7(e’Q"e)+EE,(By +Bp) + O [é ] (10)
Also, we have the following results

E(e'Q™e) = TrQ™

E@’e.eQ™e) =0

E(e’e . €'Q"e) = (p+2)uwQ”

E((3’e)* €’'Q™e) = (rQ™)8’8 +28'Q""8

E@’eXe’'e)e’Q™e) =0

E@’e)? (e'Q™"3) =0

E@’e) (8'Q™9) =0

E@e)(e'eXe’Q™® = (p+2¥Q™3

E(’e)(e'Q™d) = 3(8'8)'Q™"3

E@’e)’ (€'Q"e) =0

Substituting these expected values in E (By) and ET(B;) and simplifying,
we have

KK

4 2
E/(Bg+Bg) = % f'(O)(T—p)[ —2UQ'+%{(T—|)+ PO trQ

+ 2(]) - 2) "Q“ —— (T - p + 2) tt:((g)) u, Qtt}

2
s {(T —p+2)r(0) 5 Q" 5 + 45Q™ 8}

874 , e ;X
—F{(T-—p+2)f(0)8 Q™5+ (p—2)5 Q™5

TP+ FO) 5, e }
TR 5]
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4 2
= -%-f’(O) (T»p)[ —2trQ'+%{(T—~p+2)(”(0)!1'Q"'+2(p~2)trQ"

—(T-p+2 == 5

;((g)) « Q,.,} . {(T - p+ 2 (0) f'D'QDP + 4'QDP }

2 .
- %’2— {(T ~p+ 2rOPDQDB+ (p - 2pQpp - T=E+BED B’QDBH
(11)
(since Q™5 = 7 Xp'QDP and §'Q™™s = 77 H'D'QDP)

Substituting the expressions for E (B, + B;) from (11) in (10) and noting
that

E(e'Q'e) = r Q”

2
n_ YO
E(T7) 7-2)
2 4
4 _ 2]
E@) = (y-2Xy-4)
6
EGY = 130 we have

-Dy-4y-6)°

2 .
fy_ .10 . Yo —pl-2rQ
pBy) = -2 G- FOT p)[ rQ

+(}'~6)6{(T p+2r@uQ™ +2(p-)trQ

PRSP (U Jpe _1.{ e
(T p+2)f,(0)trQ }-i-e (T-p+2r0)

2
-p'D'QDB + 45'QDB } - (‘)’%5 {(T ~p +2)((0)F'D'QDB

+(p-2popp -T2 LW gopp } }

A
which gives the required result for the risk p([}g) in Theorem 2.
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