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SUMMARY

This paper deals with the optimality and efficiency of Nearest Neighbour

Balanced Block Designs (NNBD) using Generalised Least Square method

" of estimation for different correlated models (AR(1), AR(2), MA(1), MA(2)

and ARMA (1, 1)). NNBD turns out to be optimal for AR(1) model and

the performance of NNBD is quite satisfactory for the remaining models.

The efficiency of the proposed design in comparison to regular block design
is substantial for the above correlated models.

Key words: Auto-regressive model, Moving average model, ARMA
model, Correlated errors, Generalised least square estimation, Optimality
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1. Introduction

In the analysis of the comparative experiments, it is usually assumed that
the observations are independently distributed. The usual methods of local
control adopted in comparative experiments such as randomized block design,
latin square, BIBD and PBIBD serve the purpose well, when fertility variation
is smooth and well known. These methods perform poorly in more realistic
situations where fertility variation changes in an unknown fashion. Under these
circumstances, it may be useful to adjust for fertility in a more continuous
manuer such as making use of the inter-dependence among neighbouring
observations (Gill and Shukla, [3]}.

Usually in comparative experiments the treatments are allocated at random
to plots within a block ignoring the order of allocation of the treatments.
However in neighbour design the ordering of treatments with in blocks and
number of times that any two treatiments appear in adjacent plots within block
are important. These designs are known as one dimensional designs. These
designs may be block designs in which the neighbours of a given plot are
those of the immediate left and right.
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Street and Street [9] has considered the use of BIBD (one dimensional
NNBIBD) for use in seed orchards with t = (a2 prime number) of form
6u+ 1, (u is a non negative integer), b, k, r and A are the parameters. Universal
optimality of NNBD using ARMA models has been introduced by Santharam
and Ponnuswamy [8]. Efficiencies of NNBD using ARMA models have also
been studied by Santharam and Ponnuswamy [8].

In the present paper, we have taken NNBD with the parameter structure
t=35,b=35 k=35 r=35, A=1 and investigated the optimality and
efficiency of NNBD for

p=01(0109 and oY = (1,.1),(2,.2)...(9,.9)

(where p,,p, and p are the correlation coefficients) when errors behave
according to AR(1), MA(1), ARMA (1, 1), AR(2) and MA(2) models.

2. Universal Optimality
Keifer [5] introduced the universal optimality criterion which includes the
well known D, A and E optimality criteria as special cases. The sufficient

conditions for a design d* in A (where A is a class of unary block designs)
to be universally optimal are;

(i) the matrix C: is completely symmetric in the sense that all the diagonal
elements are the same and all the off diagonal elements are the same.

(i) t(C) = u(C)), for all d in A

In some cases, it is not possible to find a design with specified parameters
having completely symmetric information matrix. In such cases, it is expected
that a design with information matrix nearly completely symumetric and
satisfying condition (ii) is nearly optimal.

AR(1), MA(1), and ARMA(, D in
Nearest Neighbour Balanced Block Design (NNBD)

Iet A be a class of unary block designs for t treatments in which each
treatment is applied to r plots, the tr plots being arranged in b blocks, each
k<t let ybe atrxl random vector corresponding to the observations,
Consider a fixed effect additive linear model

y = X7+ZB+&e+1 ¢y

where X is the obscrvation-treatment incidence matrix of order trxt; Z is the
observation-block incidence matrix of order trxb; 7 and B are vectors of
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treatiment and block effects, respectively: £ is a random error vector representing
local variation in soil fertility with E(€) = 0 and Var (€) = 62 : 1 is an
additional error vector with E(m) = 0 and Var (1) = cf] 1, representing other
sources of variability in plots which are independent of local fertility. Therefore,
Var (y) = o[+l = V, say.

The model (1) is called an error-in-variables model (Besag [1]) and is
closely related to the smooth “trend plus error’ model of Wilkinson ef al. [11)).
This is a general model which gives a better fit in situations where the error
structure is non-stationary (Besag [1]; Wilkinson e al. [11]; Patterson {6]).

The five correlation models considered for the error vector € in (1) are
the first-order autoregressive model, the moving average modcl,
autoregressive-moving average model, second order auto-regressive and moving
average models.

3. Information Mairix

Cousider the model ¥ = X7+ZB+¢e+7

The gencralised least squares nonmal equations for estimating 7 and [ are

XVIXE + XVIZB = XV ly
2V X+ V' ZB =2V ly

Reduced normal equations for T can be written as

CT=Qy
where
C=XV'X-xXVviz@zvizy'zv!
and
Q=XV'-xVv'z@v'zy'zv''x

The matrix C (Gill and Shukla {3]) is called the information matrix of
a design for treatment parameters. To emphasize the dependence of information
matrix on design, we write it as C, for d € A, row sums and column sums

of C, are zero for each d € A. We assume that rank (Cp) = t—1 for each
d € A, so that all the treatment contrasts are estimable.
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4. Deviation from Exact Optimality

Since tr(C,) is constant over the class A, the departure from exact
optimality of a design can be measured by the departure of C; from complete
symmetry. This departure is measured by two indices E,, and E, called
D-efficiency and A-efficiency, respectively by Cheng and Wu [2}.

Let Yy, w0 ¥y, be the non-zero eigenvalues of C,. The design is
universally optimal if all y,’s are equal. However, such a design for a given
set of parameters may not exist. The information matrix of the hypothetical
optimal design would bave eigenvalue ¥ = (t—=1)"'(y, +... +7,,.,) with
multiplicity t - 1. The product Iy, = v,, ... ¥, ., is maximum for this design
and is equal to ¥~ ! The D-efficiency of a design d relative to the hypotbetical
universally optimal design can be defined as Ej, = - “I'I}fdi. Similarty, the
harmonic mean of the y,’s is a maximum for the hypothetical design and is
equal to y. The A-efficicncy of d is defined similarly by
E, = -1y @t

Conversely, an incfficient design is one with highly dissimilar y,;’s. This
happens when parameters ¢, M; and g, are different to the maximum possible

extent. This is the case with a regular design which has the same spatial
configuration of treatments in every block. Therefore, D-efficiency and
A-efficiency of a regular design are the lower bounds of the efficiencies.

Table 1 and 2 show the A-efficiency, E, and the D-efficiency E; of
complete nearest neighbour block design with t = 5, r = 5 when errors behave
under autoregressive, moving average and ARMA processes. These lower
bounds are the respective values for regular designs with the same number

of treatments and replications. The ratio oflloz = ¢ takes values 0 and —;- An

empirical value of o obtained from a series of trials was 0.42 (Patterson [6)).

Conclusion

In this paper we have investigated the optimality of block designs when
observations within a block are assumed to be correlated and generalized least
square method of estimation has been used, when the errors follow AR(1),
MA(1), ARMA (1, 1), AR(2) and MA(2) modcls. The gain in efficiencies (A
and D) of NNBD over regular block design is substantial for all the above
models.
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5. Comparison of Efficiency

In this section a quantitative measure of efliciency of the proposed designs
in comparison to randomized block designs is derived. For this we assume that
the covariance matrix is known except for some constant multiplier. Since the
covariance matrix has to be estimated from he data, the efficiencies given here
are the upper limits attainable. We compare the average variance of an
elementary treatment contrast 7 -7 in both cases.

For a regular block design the variance of an clementary treatiment contrast,
estimated by ordinary least squares mcthods, is given by

v, ="'’ 1 -p)

where o is the variance of an observation, p is the average correlation between
observations from any two plots within a block, the average being taken over
all possible randomizations; r is the number of replications.

If observations within a block follow an errors-in-variable autorcgressive
model, then (Williams [10])

ot =cll+al-pHA~-p)Y)

= 2p 1-p }
dd Yy o= 1-
an P {1+ o1 = pHNt - 1)1 =) { (1-p)

so that

2
08

_ %% o2 2 _(1-D‘)}
Vi= o [““(1 ‘))'(t-l)(l-p){l Wi—p)

When errors follow a first order moving average model, then

o 2
2" 7o)
T+p° (I+pt

When errors follow first order ARMA model, then

@-1
= g2 a__2 -
V= o, (1 * oo t(t_'l)sgl(t )Yy

p = a0+ pH) 1+

where a4 =

EHELE
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For generalized least squares estimation, the average variance of an
elementary treatment contrast, estimated from a design d, is

t=-1

V= 20-11 Y o

i=1
where y,’s are non-zero values of C; (Kempthorne [4]).

We define the efficiency of a design d relative to a randomised block
design as V,/V,. Table 3 shows this efficiency of complete nearest neighbour

balanced block design witht =5, r= 5.

Conclusion

The gain in efficiency of NNBD over regular block design is substantial
for all the models considered when the correlation between adjacent plots
(p) increases. Among the models considered for the elementary treatment
contrast, the NNBD under ARMA (1, 1) model shows the highest efficiency.
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