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SUMMARY 

This paper deals with the optimality and efficiency of Nearest Neighbour 
Balanced Block Designs (NNBD) using Generalised Least Square method 
of estimation for different correlated models (AR(I), AR(2), MA(1), MA(2) 
and ARMA (I, 1». NNBD turns out to be optimal for AR(1) model and 
the performance of NNBD is quite satisfactory for the remaining models. 
The efficiency of the proposed design in comparison to regular block design 
is substantial for the above correlated models. 

Key words: Auto-regressive model, Moving average model, ARMA 
model, Correlated errors, Generalised least square estimation, Optimality 
and efficiency. 

1. Introduclion 

In the analysis of the comparative experiments, it is usually assumed that 
the observations are independently distributed. TIle usual methods of local 
control adopted in comparative experiments such as randomized block design, 
latin square, BIBD and PBIBD serve the pUI})ose well, when fertility variation 
is smooth and well known. These methods perfonn poorly in more realistic 
situations where fertility variation changes in an unknown fashion. Under these 
circumstances, it may be useful to adjust for fertility in a more continuous 
manner such as making use of tile inter-dependence among neighbouring 
observations (Gill and Shukla, [3)). 

Usually in comparative experiments the treatments are allocated at random 
to plots within a block ignoring ilie order of allocation of ilie treatments. 
However in neighbour design tile ordering of treatments wiili in blocks and 
number of times iliat any two treatments appcar in adjacent plots witllin block 
are important These designs are known as olle dimensional designs. TIlCse 
designs may be block designs in which the neighbours of a given plot are 
tI10se of the inunediate left and right. 
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Street and Street [9] bas considered the use of BIBD (one dimensional 
NNB IB D) for use ill seed orcbards witb t = (a prime number) of fonn 
6u + 1,(u is a non negative integer), b, k, r and A. are the parameters. Universal 
optimality of NNBD using ARMA models has been introduced by Santharam 
and Ponnuswamy [8]. Efficiencies of NNBD using ARMA models have also 
been studied by Santharam and Ponnuswamy [81. 

In the present paper, we have taken NNBD with the parameter stmcture 
t = 5, b = 5, k = 5, r = 5, A. = 1 and investigated the optimality and 
efficiency of NNBD for 

P = 0.1 (0.1) 0.9 and (Pl' P2) = (.1, .l~. (.2•.2) ... (.9, .9) 

(where PI' P2 aod P are the correlation coefficients) when errors behave 

according to AR(1), MA(l), ARMA (1, I), AR(2) and MA(2) models. 

2. Universal Optimality 

Keifer [5J introduced the universal optimality criterion which includes the 
well known D, A and E ,optimality criteria as special cases. The sufficient 

conditions for a design d* in 6. (where 6. is a class of unary block designs) 
to be universally optimal are: 

(i) the matrix ~ is completely synunetric in the sense that all the diagonal 

elements are the same and all the off diagonal elements are the same. 

(ii) tr(C:) ~ tr(Cd). for all d in 6. 

In some cases, it is not possible to find a design with specified parameters 
baving completely SyuUlletric infom13tion matrix. In such cases, it is expected 
that a design with information lTl3trix nearly completely synuuctric and 
satisfying condition (ii) is nearly optimal. 

AR(l), MA(1), and ARMA(l. 1) in 

Nearest Neighbour Balanced Block Design (NNBD) 


Let 6. be a class of unary block designs for t treatments in which each 
treatment is applied to r plots, the tr plots being arranged ill b blocks, each 
k ~ t, let y be a tr x 1 random vector corresponding to the observations. 
Consider a fIXed effect additive linear model 

y = Xr+ Z~+E+T) (1) 

where X is the observatioll-treatment incidence matrix of order tr x t; Z is the 
observation-block incidence matrix of order tr x b; rand p are vectors of 
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treatment and block effects. respectively: f: is a random error vector representing 

local variation in soil fertility with E(f:) = 0 and Var (e) = 0; 0 : 11 is an 

additional error vector WiUl E(11) = 0 and Var (11) = o~ I. representing other 

sources of variability ill plots which are independent of local fertility. Therefore, 

Var (y) = 0;0 + o~I = V. say. 

The model (1) is called an error-in-variables model (8esag [1]) and is 
closely related to the smooth 'trend plus error' model of Wilkinson et of. t11]). 
TIlis is a general model which gives a better fit in situations where tbe error 
structure is non-stationary (8esag [1]; Wilkinson et 01. [11]; Patterson (6]). 

TIle five correlation models considered for tbe error vector f: in (l) are 
the first-order autoregressive model, Ule moving average model, 
autoregressive-moving average model, second order auto-regressive and moving 
average models. 

3. In/ormation Matrix 

Consider Ule model Y = X1 + z~ + e + 11 

The generalised least squares llonnal equations for estimating 1 and ~ are 

X'V· lxi + X'V· lZp =X'V- 1y 

Z'V-1Xr + z'v·1zB =Z'y-ly 

Reduced nonnal equations for r can be written as 
A 

C1=Qy 

where 

and 

Q=X'V· I - X'V· lZ(Z'V· lZr IZ'V· IX 

TIle matrix C (Gill and Shukla [3]) is called the illfonnation matrix of 
a design for treatment parameters. To emphasize the dependence of infonnation 
matrix on design. we write it as Cd for d E A, row SLUllS and colLUllll SUlllS 

of Cd are zero for each d E A. We asslUne Ulat rallk (Cd) = t -1 for each 

d E fl, so that aU the treatment contrasts are estimable. 
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4. Deviationfrom Exact Optimality 

Since tr(Cd) is constant over tlie class A, the departure from exact 

optimality of a design can be measured by the departure of Cd from complete 

symmetry. This departure is measured by two indices Eo and EA called 

D-effi,ciency and A-efficiency, respectively by Cbengand Wu [2]. 

Let Ydl' ... , Yd,t-l be the non-zero eigenvalues of Cd' The design is 

universally optimal if all Ydi's are equal. However, sucb a design for a given 

set of parameters may not exist The infonnation matrix of the bypothetical 
optimal design would bave eigenvalue Y = (t _l)-I(Ydl + ... + Yd, t-I) with 

multiplicity t - 1. The product nYdi = Yd1 ••. Yd,t- 1 is maximum for this design 

and is equal to "1- I. nle D-efficiency of a design d relative to the hypothetical 
universally optimal design can be defined as Eo = y-(t-I)I1Ydi' Similarly, the 

hannonic mean of the Ydi'S is a maximmu for Ule bypothetical design and is 

equal to y. nle A-efficiency of d is defined similarly by 
EA = (t _l)y-l (I:Yd/r 1. 

Conversely, an inefficient design is one with highly dissimilar ydi'S. This 

happens when parameters ei, IJ,j and gij are different to the maxUulUU possible 

extent. This is the case with a regular design which has tbe same spatial 
configuration of treatments in every block. Therefore, !)..efficiency and 
A-efficiency of a regular design are the lower bounds of the efficiencies. 

Table 1 and 2 show the A-efficiency, EA and the D-efficiency Eo of 

complete nearestneigbbour block design willi t = 5, r = 5 when errors behave 
under autoregressive. moving average and ARMA processes. These lower 
bounds are the respective values for regular designs with the same number 

of treatments and replications. The ratio (J~/o; = a takes values 0 and t. An 

empirical value of a obtained from a series of trials was 0.42 (patterson [6J). 

Conclusion 

In Ulis paper we have investigated the optimality of block designs when 
observations within a block are asswlled to be correlated and generalized least 
square methnd of estimation has been used, when the errors follow AR(1), 
MA(1), ARMA (1. 1). AR(2) and MA(2) models. The gain in efficiencies (A 
and D) of NNBD over regular block design is substantial for all the above 
models. 
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5. Comparison ofEfficiency 

III this section a quantitative measure of efficiency of the proposed designs 
in comparison to randomized block designs is derived. For this we aSSWlle that 
the covariance matrix is known except for some constant multiplier. Since the 
covariance matrix bas to be estimated from the data. the efficiencies given here 
are the upper limits attainable. We compare the average variance of an 
elementary treabllent contrast 1j .. 1j ill both cases. 

For a regular block design the variance of an elementary treabnellt contrast, 
estimated by ordinary least S<luares methods, is given by 

where 0 
2 is the variance of an observation, p is the average correlation between 

observations from any two plots within a block, the average being taken over 
all possible randomizations; r is tbe munber of replications. 

If observations within a block follow an errors-in-variable autoregressive 
model, then (Williams [101) 

02 = a~(I + a(I .. p2) (1 .. p2r I) 

P .. 2p { 1.. 1 .. pt }and 
.. {(l + a(1 .. p2)}(t .. 1)(1 .. p) to .. p) 

so that 

.. ae 2 2 (I .. P ) 2 2 [ {I }]V I .. r(l .. p2) 1 + a(I .. P ) .. (t -1)(1 .. p) 1 .. t(1 _ p) 

When errors follow a first order moving average model, then 

-I 2( 2 a 2VI == 2r 1+ p ) (1 +--~ .. ~ )ae 1 + p- (1 + p-)t 


When errors follow first order ARMA model, then 


(1- I) 

VI = 2r-Ia~o (l + ~ .. t(t: 1) r (t - s)Ys) 
s = I 
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9 OPTIMAlJ7Y AND EFFICIENCY OF NEIGHBOURING DESIGN 

For generalized least squares estimation, the average variance of an 
elementary treatment contrast, estimated from a design d, is 

1-1 

V2 = 2(t - 0- 1 2: td/ 
i= I 

where l'di's are non-zero values of Cd (Kempthome (4). 

We define tbe efficiency of a design d relative to a randomised block 
design as VIN2' Table 3 shows this efficiency of complete nearest neighbour 

balanced block design with t = 5, r = S. 

Conclusion 

TIle gain in efficiency of NNBD over regular block design is substantial 
for all tbe models considered when tbe correlation between adjaceut plots 
(p) increases. Among the models considered for tbe elementary treabneut 
contrast, the NNBD under ARMA (I, 1) model shows the highest efficiency, 
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