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SUMMARY
Additive main effects and multiplicative interaction (AMMI) models have been used to analyze genotype-by-environment interactions (GEI). 
Applicability of AMMI model depends on the assumption of normally distributed error with a constant variance. However, in case of count data, 
the appropriateness of AMMI model may be inappropriate as it does not conform to these statistical assumptions. It can be handled by introducing 
multiplicative terms for interaction in wider class of modeling, Generalized Linear Models known as Generalized AMMI (GAMMI) model. In this 
paper, GAMMI model with Poisson distribution and log link function has been used to analyze GEI data for number of cobs in maize during Kharif 
season for 32 genotypes grown over 13 locations across India. Here, Generalized AMMI model replaces the classical AMMI to model GEI in case of 
count data. For genotype by environment (G×E) interaction in cobs count data, GAMMI model has been applied and compared with the usual AMMI 
model for original as well as squared root transformed data. The performance of the GAMMI model was compared with the classical AMMI model 
and the AMMI model applied to transformed (square-root) data. The criterion used for comparison was explained variability in terms of number of 
axes which were determined by Gollob test. On comparison of results it was found that maximum variation was explained by the first three axes in 
case of GAMMI model i.e, 63.13 percent.
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1.	 INTRODUCTION
A differential response of genotypes across 

environments is frequently observed in multiple-
environment trials (METs) and is known as genotype by 
environment interaction. The data from these trials are 
usually summarized in a two-way table with genotypes 
in rows and environments in columns, or vice versa. 
GEI is manifested by change in ranking of genotypes 
across environments; Detection and analysis of GEI is 
essential for identifying genotypes with stability and/or 
adaptability to specific environmental conditions. One 
can use either parametric or non-parametric stability 
measures to study G×E interaction. The parametric 
measures make use of statistical assumptions about 
distribution of genotype, environment and G×E 
interaction effects. Whereas, the non parametric 
measures make no such assumptions. Gabriel (1971) 
coined the word “biplot”, where the prefix bi refers to 

the simultaneous display of both rows and columns of 
a two-way table. Kempton (1984) proposed the use of 
bi-plots in explaining GEI in crop variety trials. The 
additive main effects and multiplicative interaction 
(AMMI) model given by Gauch (1988) is one of the 
most widely used tool to study and analyze the G×E 
interaction in METs. The AMMI model combines the 
features of analysis of variance (ANOVA) and singular 
value decomposition (SVD). Initially ANOVA is used 
for estimation of additive main effects of the two-way 
data table and then SVD is applied to the residuals 
from the additive ANOVA model to decompose G×E 
interaction into a sum of multiplicative terms i.e. the 
interaction principal components (IPCs). Later on, 
adding the genotype mean to the GEI to measure 
genotype performance in each environment, Yan 
et  al. (2000) applied another type of multiplicative 
decomposition and displayed its results as biplot 
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(GGE-biplot). The GGE classes of models are obtained 
by accounting main effect of genotypes and G×E 
interaction effect and applying SVD to the data matrix 
centered on the environmental means.

The AMMI model represents observations as main 
effects and interaction effect through multiplication 
of interaction components, apart from random error 
component. AMMI model is used to analyze stability 
and adaptability in G×E interaction studies. AMMI 
provide an additive model for main effects of genotype 
and environment plus complete multiplicative terms for 
the interaction effects. Basically, the interaction terms 
was modeled by a statistical technique of reduction 
dimension called Singular Value Decomposition. 
With SVD, the interaction terms will have complete 
parameters, a parameter for every single cell of the 
two ways table. SVD visualizes the interaction terms 
by way of Biplot and makes the GEI analysis easier. 
With this feature of Biplot, AMMI is said to be most 
powerful model for GEI analysis (Hadi et al. (2010)).

AMMI model can only be applied when the 
response variable Y follows a normal distribution 
with a homogeneous variance. However, agronomic 
and plant breeding data do not always conform to 
these statistical assumptions. For non-normal data, 
multiplicative interaction terms would very likely 
reflect both heterogeneity of variance and real 
multiplicative interaction (Snee, 1982; Hinkley, 1985). 
Transformation of data does not guarantee a complete 
solution to these problems. In the case of linear 
regression and analysis of variance a transformation 
is expected to produce homogeneity of variance, 
approximate normality of errors and additivity of 
systematic effects. One transformation will seldom meet 
all three requirements. And even after transformation 
of the data, estimated multiplicative terms are likely 
to reflect mixtures of heterogeneity of variance and 
multiplicative interaction.

The advantages of AMMI model for the GEI 
analysis, together with its limitation on normality 
assumption, encouraged many statisticians to develop 
AMMI to be more generalized by introducing GLM 
to AMMI model. Van Eeuwijk (1995) proposed 
multiplicative model in terms of GLM as an extension 
of AMMI model called as Generalized AMMI 
(GAMMI) model. Introduction of multiplicative terms 
for interaction in generalized linear models removes the 
restriction of normally distributed error. GAMMI also 

keep the feature of Biplot visualization of GEI. Hadi 
et al. (2010) applied Generalized AMMI Models to leaf 
pest count data for assessing the endurance of soybean 
against leaf pest. Acorsi et al. (2016) analyzed GEIs for 
severity and incidence of grey leaf spot, a foliar disease 
in maize caused by Cercospora zeae-maydis, using a 
generalized AMMI model. 

This paper aims to evaluate the G×E interaction 
for number of cobs in maize for 32 genotypes in 13 
location/environment using GAMMI models. The 
results of GAMMI model have been compared with the 
classical AMMI model and AMMI model applied to 
transformed (square-root) data. This study is expected 
to provide useful information to study the GEI in multi 
environment trials when the assumption of normality 
is violated.

2.	 MATERIALS AND METHODS

2.1	 Genotype×Environment data used
Data on cobs count at harvest for the present study 

were obtained from the annual report of AICRP on 
Maize during Kharif 2019. Based on climatic conditions, 
different breeding trials for maize cultivation in the 
country is carried out in various zones. In AICRP, 
field corns trials were conducted in three maturity 
groups (early, medium and late). For this study, data 
on Trial No. 666 NIVT (Early) evaluated at 3 zones 
namely NWPZ, NEPZ and CWZ were used. In this 
trial, 32 early type genotypes of maize were evaluated 
at 13 locations NWPZ (Delhi, Karnal, Ludhiana, Pant 
Nagar), NEPZ (Varanasi, Bhubaneswar, Dholi, Ranchi, 
Sabour) and CWZ (Ambikapur, Chindwara, Godhra, 
Udaipur) in a randomized complete block design with 
three replications.

2.2	 Generalized AMMI models
The AMMI model for a random variable  Yij 

occurring in ith row  and jth column  of a two-way table 
is as    follows:

1

k

ij i j n ni nj ij
n

Y µ α β λ γ δ θ
=

= + + + +∑ � (1)

ijθ ~N(0,σ2);                 i=1,2,……,G; j=1,2,……,L
Where ijY  = mean yield of ith genotype in the jth 

environment/ location
µ  = general mean

iα  =  ith genotypic effect
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jβ  = jth location effect

nλ  = eigen value of the nth IPCA axis

niγ  and njδ  are the ith genotype jth environment 
IPCA scores for the axis n

ijθ  = residual
k = number of PCA axis retained in the model
The residual combines the PCA scores from the 

N-k discarded axes, where N = min (G-1, L-1).
For many practical situations, the number of PCA 

axes to be retained is determined by testing the mean 
sum of square of each axis with the estimate of residual 
through F-statistics (Gollob, 1968 and Gauch, 1988). 
The mean sum of squares of each PCA axis is equal to 
the ratio of square of the corresponding eigen value and 
the degree of freedom of each axis obtained as G+L-1-
2n. An AMMI model is a GAMMI model with identity 
link and constant variance.

Van Eeuwijk (1995) describes an alternating GLM 
procedure, using iteratively reweighted least squares 
to estimate the parameters of the GAMMI model with 
specified link and variance function. 

Fixing the values of jβ  and njδ  reduces model 
(1) to a GLM over the rows, whereas fixing the values 
of iα  and niγ  reduces model (1) to a GLM over the 
columns. This property of the GAMMI model provides 
the basis for devising a procedure for estimation of the 
parameters. 

2.2.1 �Forming Initial Values for the Environment 
Main and Interaction Effects

When a GAMMI model with k axes is to be fitted 
and no results are available from fits with m < k axes, fit a 
main effects model to the two-way table, ij i jY µ α β= + +   
and save the estimates ˆ

jβ  of the column main effects. 
Also choose arbitrary column scores, n̂jδ , for the axes 
1 to k. These scores must not be all equal and should be 
standardized and orthonormalized;

2

1 1

ˆ ˆ0, 1, for 1,.....,
L L

nj nj
j j

n kδ δ
= =

= = =∑ ∑

1

ˆ ˆ 0, for '
L

nj n j
j

n nδ δ ′
=

= ≠∑

When parameter estimates are available for 
GAMMI models with m < k axes, the values of ˆ

jβ   and 
n̂jδ , with n now from 1, ... , m, can be used as initial 

values for the GLM of the next step. For the n̂jδ  values 
belonging to the axes m + 1, m + 2,. .. k, arbitrary values 
can again be chosen. 

2.2.2 �Genotype Main and Interaction Effects 
estimation

Put ˆ
j jb β=  and ˆ

nj njd δ=  and fit the row regression  

1

k

ij i j ni nj
n

Y b dµ α γ
=

= + + +∑ .

Here the values of bj are supposed to be known and 
do not need to be estimated known as offsets in GLM. 
The dnj values represent concomitant variables on the 
column factor. They are called offsets in GLM. The 
parameters iα  and 1 2, ,.......,i i kiγ γ γ  are the intercept and 
slopes for the regression of the entries of row i on the 
variables d1,d2,…..,dk. The row main effects, ˆiα , need 
not necessarily be centered within the iteration process, 
this may just as well be done after convergence.

2.2.3 �Centering and Orthogonalizing the Genotype 
Interaction Effects

1

'
1

ˆ 0, for 1,2,...

ˆ ˆ 0, for '

G

ni
i
G

ni n i
i

n k

n n

γ

γ γ

=

=

= =

= ≠

∑

∑

2.2.4 �Environment Main and Interaction Effects 
estimation

Put ˆi ia α=  and ˆni nic γ=  and fit the column 
regression

1

k

ij i j ni nj
n

Y a b cµ δ
=

= + + +∑

Now the ia  values form offsets, while the cni values 
represent concomitant variables on the row factor.  The 
parameters ˆ

jβ  and  1 2, ,.......,j j kjδ δ δ  are the intercept 
and slopes for the regression of the entries of column 
j on the variables c1 , c2 , ….. ,ck. Again, there is no 
need to center the column main effects, ˆ

jβ  within the 
procedure. 

2.2.5 �Standardizing and Orthonormalizing the 
Environment Interaction Effects

For the calculations involved in the standardization 
and orthonormalization of the column interaction 
effects, see Section 2.2.1. If convergence has occurred, 
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stop, otherwise go back to Section 2.2.2 using the 
values for ˆ

jβ  and n̂jδ , from Sections 2.2.4.
Change in deviance of either or both the row and 

column regression can be used as the convergence 
criterion, or changes in estimates of either or both row 
and column parameters. Upon convergence the residual 
deviance of the row regression will be equal to that of 
the column regression. 

The number of multiplicative terms to be retained in 
GAMMI models can be assessed by generalizing well-
known tests for AMMI models. A simple test, proposed 
by Gollob (1968), attributes (G - 1) + (L - 1) - (2n - 1) 
degrees of freedom to the eigenvalue corresponding to 
axis n, this being the difference between the number 
of parameters to be estimated and the number of 
identification constraints imposed. Goodman (1981) 
arrived at an equivalent number of degrees of freedom 
for the interaction terms in log-bilinear models. The 
corresponding mean square is then tested against 
an estimate of error. However, in the presence of 
multiplicative interaction which clearly dominates 
noise, Gollob’s rule has been shown to be satisfactory 
(Goodman and Haberman, 1991; Gauch, 1992).

Testing of assumptions: The Shapiro–Wilk 
multivariate normality test and the Bartlett test for 
homogeneity of variance were used to determine 
whether to apply an AMMI model or a GAMMI model 
to analyze the G × E interactions for Cobs count data 
in maize.

For fitting GAMMI model alternating regression 
between row and column regressions was performed, 
where each regression includes GLM class that is done 
iteratively by using iterative reweighted least square 
(IRLS) method. 

Analysis of Deviance: In AMMI model (ANOVA 
in general) we test effect of factors by using sum of 
squares while in GAMMI model (GLM in general) we 
use deviance (Dobson 2002). We use F test to determine 
multiplicative axis by comparing ratio between mean 
deviance component tested and error mean deviance to 
F table value.

Appropriateness of Model: We investigate 
appropriateness of model by using error diagnostics 
visually, i.e., errors plot. Q–Q plots are used to 
determine if the choice of distribution is appropriate 
or not. 

Analysis of Stable Genotypes: Information 
about stable genotype can be obtained through biplot 
configuration. Biplot gives row and column scores 
plot simultaneously. Both the genotype vectors and 
the environment vectors are drawn so that the specific 
interactions between a genotype and an environment 
(i.e., the performance of each genotype in each 
environment) can be visualized. The interpretation rule 
is: the performance of a genotype in an environment is 
better than average if the angle between its vector and 
the environment’s vector is less than 90°; and it is near 
average if the angle is about 90°. The angle determines 
the direction of the interaction, i.e., above or below 
average in the specific environment; the magnitude of 
the interaction is determined by both the cosine of the 
angle and the length of the vectors. 

Analysis and graphics were obtained using R 
Studio version 1.2.1335.

3.	 RESULTS AND DISCUSSION
The first step in applying the GAMMI methodology 

was to determine variances for the number of cobs for 
location and genotype. There was a larger variability 

Table 1. Variances of number of cobs estimated for 32 maize genotypes grown in 13 environments during Kharif 2019

Genotypes Variance Genotypes Variance Genotypes Variance Genotypes Variance

AH 8178 34.269 DH 329 49.025 JH 32006 41.358 KNMH 4193 21.974

AH 8323 37.935 DH 330 32.423 JH 32328 27.974 LMH 1946 20.974

AH 8622 45.834 DKC 7204 23.001 JH 32375 22.423 Rasi 50252 31.923

AH1608 32.923 EH 3524 35.935 JH 32385 54.564 VEH18-1 31.935

AH3254 66.423 EH 3571 57.526 JH 32391 38.411 Bio 605 (C) 45.192

BAU-MH-18-1 36.807 FH 3912 26.411 KH 102E 26.089 DKC7074 (C) 27.269

BYMH-13-5 33.923 HKH 370 60.912 KMH 18-13 29.256 Vivek Hybrid 45 34.166

DH 321 33.589 IMHSB-19K-1 27.436 KMH 18-15 33.001 Vivek Hybrid 51 26.192
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in number of cobs among environments. For 
environments, variances for number of cobs ranged 
from 1.515 (BHUB) to 20.221(CHIND) (Table 2) and 
the variances for number of cobs among genotypes 
ranged from 20.974 (LMH 1946) to 66.423 (AH3254) 
(Table 1).

Table 2. Variances of number of cobs estimated for 13 
environments with 32 maize genotypes grown during Kharif 2019

Environment Variance

AMBI 15.732

CHIND 20.221

GODH 19.419

UDAI 13.192

BHU 10.318

BHUB 1.515

DHOL 7.467

RANC 4.119

SABOU 12.458

IARI 13.805

KARN 1.733

LUDH 5.081

PANT 12.483

Testing of assumptions
The  initial  assumptions  of  normality and 

homoscedasticity of the  data  were  checked  using  
the  Shapiro-Wilk test and Bartlett test, respectively. 
The results of the Shapiro–Wilk test (W) indicated that 
the data were not normally distributed (W = 0.9835, p 
< 0.0001). 

Also, the hypothesis of equality of variances from 
different locations was rejected (D.F. = 12; χ2 = 102.23; 
p <2·2 × 10−16) based on result of the Bartlett test and 
for genotypes it was accepted (D.F. = 31; χ2 = 16.931; 
p < 0.981).

Fitting of GAMMI model with Poisson 
distribution and log link function

The GAMMI model for cob count data in maize 
was fitted using poisson distribution with the log link 
function. Analysis of deviance is given in Table 3. The 
ANODEV with the log link function was significant for 
genotype and environment and also for the first three 
axes of the G × E interaction. GAMMI model with 
three axes is appropriate because mean deviance ratio 
of axis 3 is significant at p-value. Axis 1, axis 2 and axis 
3 accounted for approximately 26.12%, 20.43% and 

16.58% of variance associated with this interaction, 
respectively (Table 4).
Table 3. Analysis of deviance (ANODEV) for number of cobs in 

maize data

Source D.F Deviance Mean deviance Fcal P>F

Genotype 31 38.14 1.23 7.63 < 0.001*

Environment 12 320.69 26.72 140.53 < 0.001*

Axis 1 42 25.72 0.61 3.79 < 0.001*

Axis 2 40 20.42 0.51 3.16 < 0.001*

Axis 3 38 16.58 0.43 2.38 < 0.001*

Residual 252 38.77 0.15

Total 415 117.87

Table 4. Deviance proportion in relation to the proposed axes for 
the mean values of number of  cobs

Axes Deviance Deviance 
proportion

Cumulative 
proportion

Axis 1 25.72 0.26 0.26

Axis 2 20.42 0.20 0.46

Axis 3 16.58 0.16 0.62

Residuals 38.77 0.38 1

Plots of deviance residuals versus predicted values 
and normal QQ plot for GAMMI model with log 
link function are depicted in Fig 1. Plotting of errors 
residuals versus predicted values shows that there is 
no anomaly. Plotting of Normal Q-Q plot indicates 

Fig. 1. Error plot for cobs count data: Residuals vs predicted values plot 
and Normal Q-Q plot for GAMMI model
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improperness of link function, if the plot is non linear.  
The influence of error was minor, as can be seen in the 
Normal QQ plot and it is almost near to a straight line 
so, GAMMI model with Poisson distribution and log-
link function fits our data well.

The relative contribution of genotype and 
environment to the interaction is shown through 
GAMMI Biplot in Fig. 2 with the first and second axis 
explaining 26.12 and 20.43% of the interaction sum of 
squares. It describes the variability associated with the 
first two axes.

Most of the genotypes showed higher specific 
adaptability for environments BHU, BHUB, DHOL, 
RANC, SABOU, LUDH, PANT and KARN. 
AH3254, AH8622 showed no specific adaptability 
to any environment. Genotype fac1.UDAI is adapted 
to environment UDAI, it indicates a high mean 
productivity of genotype in selected environment. As 
regards the environments, poor contributions were 
presented by the environments GODH, CHIND and 
IARI (Fig. 2).

Fig. 2. GAMMI Biplot for cobs count data with logarithm link function

Fitting of AMMI model to G×E data
Next, we analyzed the same data with a classical 

AMMI model. Interaction was again determined by 
three multiplicative axes which are called as Interaction 
principal component analysis axes in AMMI.

The AMMI ANOVA (Table 5) indicates that 
maximum contribution towards variation (71.65%) 
was made by environment effect followed by G×E 
interaction (19.86%) and genotypic variation (8.48%). 
The GEI was partitioned into three interaction principal 
components analysis axes (IPCA). All the three axes 
IPCA1, IPCA2 and IPCA3 were found significant using 
the Gollob’s F-test. IPCA1, IPCA2 and IPCA3 of the 
AMMI model captured 22.65%, 17.98% and 15.56% 
of the GEI sum of squares (SS), respectively.

Table 5. Analysis of variance for AMMI model fitted to maize 
(number of cobs) data

Source D.F Sum of 
squares

Mean 
square Fcal Sum of 

squares %

Genotype 31 1276.12 41.16 5.12 8.48

Environment 12 10777.04 898.08 111.84 71.65

G×E interaction 372 2987.89 8.03 1.55 19.86

IPCA1 42 676.96 16.12 3.11 22.65

IPCA2 40 537.33 13.43 2.59 17.98

IPCA3 38 465.10 12.23 2.36 15.56

Residual 252 1308.49 5.19

Total 415 15041.04

The relative contribution of genotype and 
environment to the interaction is shown through AMMI 
Biplot in Fig.3 with the first and second axis explaining 
22.65 and 17.98% of the interaction sum of squares.

Here, most of the genotypes showed higher specific 
adaptability for environments BHU, BHUB, RANC 
and KARN. AH3254, AH8622 showed no specific 
adaptability to any environment. Genotype JH 32385 is 
adapted to environment AMBI, it indicates a high mean 
productivity of genotype in selected environment. As 
regards the environments, poor contributions were 
presented by the environments GODH, CHIND, AMBI 
and IARI (Fig. 3).

Fitting of AMMI model to the transformed G×E 
data

Data was first transformed with the help of square 
root transformation and then analyzed by an AMMI 
model. The AMMI ANOVA (Table 6) indicates that 
maximum contribution towards variation (69.85%) 
was made by environment effect followed by G×E 
interaction (21.26%) and genotypic variation (8.85%). 
In this case also all the three axes IPCA1, IPCA2 and 
IPCA3 were found significant using the Gollob’s F-test. 
These axes accounted for (25.29%), (20.19%) and 
(14.01%) of the GEI sum of squares (SS), respectively.
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Fig. 3. AMMI Biplot for cobs count data

Table 6. Analysis of variance for AMMI model fitted to square 
root transformed maize (number   of cobs) data

Source D.F Sum of 
squares

Mean 
square

Fcal Sum of 
squares %

Genotype 31 10.43 0.34 4.85 8.85

Environment 12 82.39 6.86 98 69.89

G×E 
interaction

372 25.06 0.07 1.75 21.26

PCA1 42 6.34 0.15 3.75 25.29

PCA2 40 5.06 0.13 3.25 20.19

PCA3 38 3.51 0.09 2.25 14.01

Residual 252 10.15 0.04

Total 415 117.87

The relative contribution of genotype and 
environment to the interaction is shown through AMMI 
Biplot in Fig.4 with the first and second axis explaining 
25.29 and 20.19% of the interaction sum of squares. 
From Fig.  4, it is evident that most of the genotypes 
showed higher specific adaptability for environments 
BHU, BHUB, RANC, DHOL, LUDH, PANT and 
KARN. In these locations, most of the genotypes can 
be grown. AH3254, AH8622 and JH 32385 showed no 
specific adaptability to any environment. As regards the 
environments, poor contributions were presented by 
the environments GODH, CHIND and IARI. These can 
be considered examples of unfavorable environments.

Fig. 4. AMMI Biplot for transformed data

Comparison of models
Table 7 shows the comparison among the three 

models applied to G×E data of number of cobs in maize 
in terms of variability explained by the first three axes. 
From the table it is evident that maximum variability 
(63.13%)  explained by the axes is in GAMMI model 
followed by AMMI model applied to square root 
transformed data (59.49%) and the least variability 
(56.19%) was explained in the case of classical AMMI 
model. Therefore, a GAMMI model fitted with Poisson 
distribution with log link is most appropriate for the 
count data as in our case.
Table 7. Comparison of models in terms of explained variation by 

their first three axis

Models Axes Variability 
explained (%)

Cumulative 
Variability 

explained (%)

GAMMI Axis 1 26.12 26.12

Axis 2 20.43 46.55

Axis 3 16.58 63.13

AMMI IPCA 1 22.65 22.65

IPCA 2 17.98 40.63

IPCA 3 15.56 56.19

AMMI with 
transformed data

IPCA 1 25.29 25.29

IPCA 2 20.19 45.48

IPCA 3 14.01 59.49
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4.	 CONCLUSION
AMMI analysis is of great importance in agricultural 

data; but in case of non-normally distributed data, the 
appropriateness of AMMI model is being doubtful. 
In such cases, data can be handled by introducing 
multiplicative terms for interaction in wider class of 
modeling, Generalized Linear Models which is called 
as Generalized AMMI model. The present study used 
GAMMI model with Poisson distribution and log link 
function for studying G×E interaction data for number 
of cobs in maize during Kharif season. Biplot of 
Poisson GAMMI model with link function logarithm 
gives additional information about G×E interaction. 
Further the results of GAMMI model were compared 
with classical AMMI model and AMMI model applied 
to transformed (square-root) data. The criterion used for 
comparison was explained variability in terms of axes 
which was highest (63.13%) in case of GAMMI models 
as compared to other two models. It was observed that 
GAMMI with Poisson distribution and log link function 
can be applied to count data when the assumption of 
normality is violated. Biplot interpretation also showed 
that highest adaptability of genotypes in most of the 
environments was in case of GAMMI-Biplot. Hence, 
GAMMI model would help the researchers to study 
G×E interaction data well if the data is not normally 
distributed.
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