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SUMMARY
The ratio in finite population is one of the most common statistics used in official statistics, demographic studies, agriculture and allied field of 
agriculture. In this paper, estimators of the ratio/proportion in finite population are developed by incorporating known auxiliary information under 
the calibration approach. The variance and the estimate of variance for these estimators are obtained. A simulation study is carried out to evaluate the 
performance of proposed estimators comparing them with a simple estimator of the Population ratio that does not incorporate auxiliary information.  
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1.	 INTRODUCTION
The ratio in a finite population, R Y X= , where Y 

and X are random variables, is one of the most common 
statistics used in official statistics, agriculture and allied 
fields of agriculture. It has wide applications like age or 
sex ratio of animals in wildlife population, the number 
of bullocks per acre of holding, the unemployment rate 
in agriculture or other sectors, average salary etc. For 
the real life example we can consider the study taken by 
Smith et al. (1995) for assessing the sampling for species 
of waterfowl. Their evolution was based on a simulation 
experiment, and the samples collected from a count of 
ring-necked ducks (Aythyacollaris), blue-winged teals 
(Anasdiscors), and green-winged teals (Anascrecca) 
in a 5,000 km2 area of central Florida. Ring-necked 
Ducks prefer shallow, freshwater wetlands with stable 
water levels and abundant emergent and submerged or 
floating plants. The Blue-winged Teal inhabits seasonal 
wetlands and wet meadows as well as shallow semi-
permanent marshes (BNA). Green-winged Teal prefers 
shallow ponds with lots of emergent vegetation. On the 
basis of this, they defined available habit as open water 

and wetlands with herbaceous emergent vegetation. In 
environmental and ecological studies, such as the work 
by Smith et  al. (1995), researchers often go beyond 
studying the total number or density of a particular bird 
or animal species in a given area. They also investigate 
the ratio of major bird species as an important measure 
to assess resource availability in different habitats. 
This approach aids in the effective management and 
conservation of bird species. In this scenario, the ratio 
of bird species serves as the parameter of interest, 
with the number of individuals for each species. Here 
number of ring-necked ducks and blue-winged tealscan 
be considered as variables X and Y, respectively. The 
habitat in which these birds reside plays a crucial role 
in determining their population numbers. Therefore, 
the corresponding habitat areas can be selected as 
auxiliary information for estimating the ratio of these 
bird species. For variable X, the auxiliary information 
can be the areas of open water, while for variable Y, the 
areas of wetlands can be used as auxiliary information. 
Each of Y and X are assumed to be estimated from the 
sample i.e. r y x= . Commonly y and x are both simple 
totals in the sample of the “y” and “x” variate. When 
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a survey is conducted for the estimation of population 
parameters, survey experts are always concerned about 
the improvement of the precision of estimators. For 
this, the auxiliary information is the most important 
tool in sample surveys to improve the precision of 
estimators when measuring population parameters 
like mean, total, ratio etc. Using auxiliary information 
Deville and Särndal (1992) developed the calibration 
method which is used for increasing the precision of 
estimators and is now widely used to develop estimates 
of important population parameters. 

Kish et  al. (1962) discussed the ratio mean and 
ratio bias of two random variables in surveys. Chang 
and Huang (2013) proposed an improved estimator of 
the ratio of the population mean in the survey sampling 
when some observations are missing.

The problem of estimating the population ratio of 
two totals using the calibration method was attempted 
by Plikusas (2001) and Krapavickaite and Plikusas 
(2005). The theory for estimating the population ratio 
of two totals under a stratified random sampling design 
was developed by Barktus and Pumputis (2010) using 
the calibration approach. Sadikul (2019) et al. developed 
a calibration approach for the estimation of population 
ratio under double sampling when the availability of 
aggregate level population information for auxiliary 
variables is available. The calibration approach has 
been widely applied to estimate complex parameters 
such as population ratio, product, or variance. (Kim 
and Park (2010), Sud et al. (2014), Basak et al. (2017) 
and ozgul (2021)).

The aim of this paper is, to develop a calibration 
estimator of finite population ratio depending on the 
extent of availability of auxiliary information. By 
considering the different weights systems, variance 
and estimate of variance for the various calibration 
estimators of population ratio are obtained. A simulation 
study is used to compare the various estimators 
empirically.

2.	 THEORETICAL DEVELOPMENTS
Let a finite population U  consisting of N 

distinguishable units ( )1,2,..., N  labelled units. Let Yi 
the value of Y and Xi the value of X are two variables 
defined understudy for ith unit in the population 
and are unknown but observable in population U 
and take values 1 2, ,... , Ny y y  and 1 2, ,... , xNx x  , 

where  and  .y i x i
i U i U

t y t x
∈ ∈

= =∑ ∑  The objective is to 

estimate the population ratio denoted by y xR t t=  . 
Suppose, from population U of size N a sample 

( )s s U⊂  of size n, be drawn with any design. Let 
the first and second-order inclusion probabilities 
are ( )i p i sπ = ∈  and ( and )ij p i j sπ = ∈  with the 
assumption that ( )i p i sπ = ∈  and ( and )ij p i j sπ = ∈  
strictly positive and known which is common in the 
literature. For the elements ,i s∈  observe ( , )i iy x . 
Horvitz Thompson estimator of the total is defined as
ˆ ˆ ˆ ˆ,   and    and .i i i i
y x a b

i s i s i s i si i i i

y x a b
t t t tπ π π ππ π π π∈ ∈ ∈ ∈

= = = =∑ ∑ ∑ ∑

2.1	 Simple estimator of population ratio 
Consider a finite population {1,2,..., },U N=

consisting of N units. Let Y and X be two variables 
defined on the population U and take values 1 2, ,... , Ny y y  
and 1 2, ,... , xNx x  such that  and     y i x i

i U i U
t y t x

∈ ∈

= =∑ ∑ are 

unknown. We are interested in the estimation of the 
ratio of the two totals .y xR t t=

An estimator of the ratio R which does not 
incorporate the auxiliary information is given by

  ˆ
ˆ

ˆ
  

i

y i s i

ix

i s i

y
t

R
xt

π

π

π

π

∈

∈

= =
∑

∑
� (2.1.1)

Since ratio between two unknown totals is not a 
simple structure as population total, estimation of a 
population ratio can be obtained by Taylor linearization 
technique (see Särndal et al. (1992), page 177-179) 

ˆ
ˆ ˆ ˆ( , )ˆ

y
y x

x

t
R f t t

t
π

π π
π

= =

The first-order Taylor expansion of the function R̂
is given by ˆ( )R l

( ) 1 1ˆ ˆ ˆ ˆ ˆ .y y x x y x
x x x

RR l R t t t t R t Rt
t t t

    ≅ + − − − ≅ + −    

The variance ( )R̂ l  in the first order of approximation 
is given by ˆ( ( ))AVar R l

( ) 0 2

1ˆ ˆ ˆ ˆ( ) ( ( ) y x
x

AVar R l v R l Var t Rt
t

 = = − 

or, 0 2

1ˆ( ( ) .ji
ij

U U i jx

vv
v R l

t π π
= ∆∑∑ � (2.1.2)
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where 
; .i i i ij ij i jv y Rx π π π= − ∆ = −

An estimator of variance R̂  is given by

( ) 2

ˆˆ1ˆˆ( ) ,ˆ
ij ji

l
s s ij i jx

vv
v R

t π π π
∆

= ∑∑ � (2.1.3)

where 
ˆ

î i iv y Rx= −  and the quantity 21 xt  is estimated by 
2ˆ1 xt .

2.2	 Calibrated Estimators of the Population Ratio 
under different weights system
Situation-I: Same weight system for numerator 

and denominator 
Suppose variable b is known and serves as an 

auxiliary variable for the variable Y and similarly 
a is known and serves as an auxiliary variable for 
the variable X, their values are 1 2, ,... , bNb b  and 

1 2, ,... , Na a a  respectively. 
Suppose population totals of the auxiliary variables 

are known i.e.  and  B =    a i b i
i U i U

A t a t b
∈ ∈

= = =∑ ∑  are 
known.

If iw ’s are calibrated weights then the proposed 
estimator is

1

1

ˆ

n

i i
i

I n

i i
i

w y
R

w x

=

=

=
∑

∑

where the iw ’s are obtained by minimizing the 

distance between the design weights 1 ; 1,2,...,i
i

d i n
π

= =  

and the calibrated weights ; 1, 2,...,iw i n=  subject to 

the constraints 
1

   
n

i i
i

w a A
=

=∑  and 
1

n

i i
i

w b B
=

=∑  (Deville 

& Särndal (1992)). Specifically, we minimize the Chi-

square distance function 
2

1

( )
 

n
i i

i i i

w d
d q

φ
=

−
= ∑  subject to 

the constraints 
1

 
n

i i
i

w a A
=

=∑  and 
1

. 
n

i i
i

w b B
=

=∑  Here, the 

qi’s are known positive individual’s weight unrelated 
to di and used to generalize the distance function 
and the nature of estimator depends upon. For, the 
simplification we have taken 1iq =  which is most 
common in application (Jaiswal et al.(2023).

We use the Lagrange multiplier technique for 
minimization. Thus, we consider the function 

2

1
1 1

( )1 -
2

n n
i i

i i
i ii

w d
w a A

d
ψ λ

= =

−  = +  
 

∑ ∑ 2
1

-
n

i i
i

w b Bλ
=

 +  
 
∑ .

Differentiation of function ψ  w.r.to iw  and 
equating the resultant expression to zero gives

1 2  i i i i i iw d a d b dλ λ= − − � (2.2.1)
Multiplying the expression (2.2.1) with ia  and 

summing over the sample values give 

2
i i i i 2 i

1 1 1 1
= - -        

n n n n

i i i i i
i i i i

w a a d a d a b dλ λ
= = = =
∑ ∑ ∑ ∑

Multiplying the expression (2.2.1) with ib  and 
summing over the sample values give

2
i i i i 2 i

1 1 1 1
= - - .   

n n n n

i i i i i
i i i i

w b b d a b d b dλ λ
= = = =
∑ ∑ ∑ ∑

Solving the above equations gives

2

1 1 1 1
1 2

2 2

1 1 1

( ) ( )
n n n n

i i i i i i i i i
i i i i

n n n

i i i i i i i
i i i

a b d B b d d b A a d

a d b d a b d
λ = = = =

= = =

 − + − 
 =

    −    
    

∑ ∑ ∑ ∑

∑ ∑ ∑

2
1

1 1 1
2 2

2 2

1 1 1

( ) ( )
.

n n n
n

i i i i i i i i ii
i i i

n n n

i i i i i i i
i i i

a b d A a d d a B b d

a d b d a b d
λ

=
= = =

= = =

 − + − 
 =

    −    
    

∑ ∑ ∑ ∑

∑ ∑ ∑

Putting the value of 1  λ  and 2λ  in equation (2.2.1) 
and after simplification we get

2
1

1 1 1
2

2 2

1 1 1

( ) ( )
n n n

n
i i i i i i i i i i ii

i i i
i i n n n

i i i i i i i
i i i

a d d a B b d a b d A a d
w d

a d b d a b d

=
= = =

= = =

 − − − 
 = +

    −    
    

∑ ∑ ∑ ∑

∑ ∑ ∑

2

1 1 1 1
2

2 2

1 1 1

( ) ( )
.

n n n n

i i i i i i i i i i i
i i i i

n n n

i i i i i i i
i i i

b d d b A a d a b d B b d

a d b d a b d

= = = =

= = =

 − − − 
 +

    −    
    

∑ ∑ ∑ ∑

∑ ∑ ∑

Thus the proposed calibrated estimator of the 
population ratio is 

1

1

ˆ

n

i i
i

I n

i i
i

w y
R

w x

=

=

=
∑

∑
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1 2
1 1 1

3 4
1 1 1

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

n n n

i i i i i i
i i i
n n n

i i i i i i
i i i

d y B b d L A a d L

d x B b d L A a d L

= = =

= = =

+ − + −
=

+ − + −

∑ ∑ ∑

∑ ∑ ∑

1 2

3 4

ˆ ˆˆ ˆ ˆ( ) ( )
ˆ ˆˆ ˆ ˆ( ) ( )

y b b a a

x b b a a

t t t L t t L
t t t L t t L

+ − + −
=

+ − + −
� (2.2.2)

where

2

1 1 1 1
1 2

2 2

1 1 1

2

1 1 1 1
2 2

2 2

1 1 1

ˆ L

ˆ L

n n n n

i i i i i i i i i i i
i i i i

n n n

i i i i i i i
i i i

n n n n

i i i i i i i i i i i
i i i i

n n n

i i i i i i i
i i i

a d y d a b d y a b d

a d b d a b d

b d y d b a d y a b d

a d b d a b d

= = = =

= = =

= = = =

= = =

−
=

    −    
    

−
=

    −    
    

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

2

1 1 1 1
3 2

2 2

1 1 1

2

1 1 1 1
4 2

2 2

1 1 1

L̂

L̂

n n n n

i i i i i i i i i i i
i i i i

n n n

i i i i i i i
i i i

n n n n

i i i i i i i i i i i
i i i i

n n n

i i i i i i i
i i i

a d x d a b d x a b d

a d b d a b d

b d x d b a d x a b d

a d b d a b d

= = = =

= = =

= = = =

= = =

−
=

    −    
    

−
=

    −    
    

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

Following Särndal et al. (1992), using the Taylor 
Linearization technique, we obtained the first-order 
Taylor expansion of the ˆ

IR

( )

( )

3 1

4 2

1ˆ ˆ ˆ ˆ

ˆ ,

I y y x x b b
x x x

a a
x

L R LRR l R t t t t t t
t t t

L R L t t
t

−
     ≅ + − − − + − +    

−
−

where quantity L1, L2, L3 and L4 are estimate by 
1 2 3 4

ˆ ˆ ˆ ˆ, , ,L L L L .

The approximate variance of ( )ˆ
IR l  in the first 

order of approximation is obtained by

( ) ( )

( )

3 12

4 2

1ˆ ˆ ˆ ˆ ˆ ( ) ( ( )

ˆ

I y x bÍo
x

a

AVar R l v R l Var t Rt L R L t
t

L R L t

= = − + − +

− 

or, 2

1ˆ( ( ) ,ji
ijÍo

U U i jx

vv
v R l

t π π
= ∆∑∑ � (2.2.3)

where

( ) ( )3 1 4 2 .i i i i iv y Rx L R L b L R L a= − + − + −

An estimator of variance R̂  is given by

2

ˆˆ1ˆˆ( ( )) ,ˆ
ij ji

I
s s ij i jx

vv
v R l

t π π π
∆

= ∑∑

where 

( ) ( )3 1 4 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ .i i i i iv y Rx L R L b L R L a= − + − + −

Situation-II: Different weights system for 
numerator and denominator 

Like situation-I, the totals A and B are known 
individually. We use two systems of calibrated weights 
for the estimation of the population ratio of the two 
totals. If 3iw  and 4iw  (i=1,2,…,n) are the calibrated 
weights then the proposed estimator is

3

4

ˆ .
i i

i s
II

i i
i s

w y
R

w x
∈

∈

=
∑
∑

Where 3iw  and 4iw  are obtained by minimizing 
the distance between the design weights id  and 
calibrated weight 3iw  and 4iw  subject to the constraints 

3
1

  
n

i i
i

w a A
=

=∑  and 4
1

 .
n

i i
i

w b B
=

=∑  Specifically, we 

minimized the loss functions 
2

3
1

1 1

( )n
i i

i i i

w d
L

d q=

−
= ∑  and 

2
4

2
1 2

( )n
i i

i i i

w d
L

d q=

−
= ∑  with 1 1iq =  and 2 1iq =  subject to the 

constraints 3
1

  
n

i i
i

w a A
=

=∑  and 4
1

 .
n

i i
i

w b B
=

=∑
We use the Lagrange multiplier technique for 

minimization. Thus, we consider the function 
2 2

3 4
1 3

1 1 1

2 4
1

( ) ( )1 1 -
2 2

 - .

n n n
i i i i

i i
i i ii i

n

i i
i

w d w d
w a A

d d

w b B

ψ λ

λ

= = =

=

− −  = + + + 
 

 
 
 

∑ ∑ ∑

∑

Differentiation of function, ψ  w.r.to 3iw  and 4iw  
equating to zero gives

3 1 ,         i i i iw d a dλ= − � (2.2.4)

4 2 .         i i i iw d b dλ= − � (2.2.5)
Multiplying 2.2.4 by ia  and summing and similarly 

multiplying (2.2.5) by ib  and summing gives
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3
1

1
2

1

,  

n

i i i i
i

n

i i
i

a d a w

a d
λ =

=

−
=

∑

∑
 and 

4
1

2
2

1

.

n

i i i i
i

n

i i
i

b d b w

b d
λ =

=

−
=

∑

∑

Putting the value 1 2 and λ λ  in equations (2.2.4) and 
(2.2.5) gives

3
2 1

1

,
n

i i
i i i in

i
i i

i

d a
w d A d a

d a =

=

 = + − 
 

∑
∑

4
2 1

1

.
n

i i
i i i in

i
i i

i

d b
w d B d b

d b =

=

 = + − 
 

∑
∑

Hence the proposed calibrated estimator of the 
ratio of two population totals is 

4
1

3
1

ˆ

n

i i
i

II n

i i
i

w y
R

w x

=

=

=
∑

∑

21 1

1

21 1

1

n n
i i

i i i in
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i i
i

n n
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i i i in
i i

i i
i

d bd B d b y
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d ad B d a x
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= =

=

= =

=

 
   + −  

  
  =
 
   + −  

  
  

∑ ∑
∑

∑ ∑
∑

( )
( )

ˆˆ ˆ
,ˆˆ ˆ

y b b y

x a a x

t t t

t t t

β

β

+ −
=

+ − � (2.2.6)

where

1

2

1

ˆ ,

n

i i i
i

x n

i i
i

d b x

d b
β =

=

=
∑

∑

1

2

1

ˆ .

n

i i i
i

y n

i i
i

d b y

d b
β =

=

=
∑

∑

The first-order Taylor expansion of the function 
ˆ

IIR  is given by

( ) ( )1ˆ ˆ ˆ ˆ

ˆ .

x
II y y x x a a

x x x

y
b b

x

RRR l R t t t t t t
t t t

t t
t

β

β

   ≅ + − − − + − −  

 − 

The variance ( )ˆ
IIR l  in the first order of 

approximation is given by

( ) ( )
( )

0 2

1ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ

II II y y x x
x

x a a y b b

AVar R l v R l Var t t R t t
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v R l Var t Rt t Rt
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β β = − − − 

	     33
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1 ,ji
ij

U U i jx

vv
t π π

= ∆∑∑ � (2.2.7)

where 

3 .i i i y i i xv y Rx b Raβ β= − − +

The estimate of the variance ( )ˆ
IIR l  to the first order 

of approximation is given by

( )
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ij

U U i jx

vv
t π π
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where

3 .i i i y i i xv y Rx b Raβ β= − − +

An estimator of variance R̂  is given by

2

ˆˆ1ˆˆ( ( )) ,ˆ
ij ji

II
s s ij i jx

vv
v R l

t π π π
∆

= ∑∑
ˆ ˆˆ ˆˆ .i i i y i i xv y Rx b Raβ β= − − +

Situation-III: The population ratio of auxiliary 
variables is used under calibration.

The population ratio of auxiliary variables is 
available. For example, suppose that we are interested 
in estimation of productivity of a crop and from 
previous year data on fertilizer consumption per hectare 
is available. i.e. population ratio of auxiliary variables 
is known.
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0 i i
i U i U

R b a
∈ ∈

= ∑ ∑  is known.

The proposed estimator using the calibrated 

weights iw  is given by 
1 1

ˆ
n n

III i i i i
i i

R w y w x
= =

= ∑ ∑
where the 2iw ’s are obtained by minimizing 

the distance between the design weights id  
and calibrated weight 2iw  subject to constraints

0 2 2
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.
n n

i i i i
i i

R w b w a
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= ∑ ∑  Specifically, we minimize 

the function 
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−
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i i i i
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We use the Lagrange multiplier technique for 

minimization. Thus we consider the function 
2

2
1 0 2 2

1 1 1
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.
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i i i i
i i ii

w d
R w a w b

d
ψ λ
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Differentiation of function ψ  w.r.to 2iw  and 
equating to zero gives

2 0( ) i i i iw d d b R aλ= − − � (2.2.9)
where 1 2.λ λ=

Multiplying (2.2.9) by ( )i ib Ra−  and summing 
over sample values give
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Putting the value λ  in equation (2.2.9) give
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Hence the proposed calibrated estimator of the 
population ratio is 
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The first-order Taylor expansion of the function 
ˆ

IIR  is given by 
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The variance ( )ˆ
IIIR l  in the first order of 

approximation is given by
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where 

2 0( )i i i i iv y Rx L b R a= − + − .

An estimator of variance R̂  is given by
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ij ji

III
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vv
v R l

t π π π
∆
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where 

2 0
ˆ ˆˆ ( ).i i i i iv y Rx L b R a= − + −

3.	 SIMULATION STUDY
To study the performance of the proposed estimator, 

several multivariate normal populations of size 1000 



231Raju Kumar et al. / Journal of the Indian Society of Agricultural Statistics 77(2) 2023  225–232

were generated for different values of coefficient of 
variation (CV) ,  ,  ,  x y a bc c c c  with different intensity 
levels of correlation among the study and the auxiliary 
variables i.e. low, moderate and high correlation. 
Hence, from each multivariate normal population, 
repeated samples of sizes 20 and 50 were drawn 2000 
times by SRSWOR using the PROC SURVEYSELECT 
procedure in the SAS package. The results of the 
simulation are presented in table 1 for all estimators 

I II III
ˆ ˆ ˆ ˆ( ),  ( ),  ( ).R l R l R lθ =  The average mean square error 

of 2000 samples has been considered for efficiency 
comparison between the developed estimator ˆ( ),jR  j=I, 
II, III and Simple estimator of population ratio 0

ˆ( ).R  
We calculated empirical mean square error and relative 
efficiency using the following formulas

0
1

1

1 ˆ ˆ( )
. .

1 ˆ ˆ( )

K

i
K

j
i

MSE R
KR E

MSE R
K

=

=

=
∑

∑
, ∀ j=I, II, III; k=2000,

where for all estimators estimated bias 
ˆ ˆ( )i i iBias R R R= −



 and estimated mean square errors 

( )2ˆ ˆ ˆ ˆ ˆ( ) var( ) ( )i i iMSE R A R Bias R= +  ∀  i=0, I, II, III.
Three different cases of correlation between the 

study and the auxiliary variables were taken.
Case-I. Uncorrelated variables.
A positive definite covariance matrix with the 

following combination of correlation coefficients was 
taken.

( , ) 0.08x yρ = , ( , ) 0.12y bρ = , ( , ) 0.11x aρ = , 
( , ) 0.1a bρ = , ( , ) 0.13x bρ = , ( , ) 0.1y aρ = .

Case-II. Uncorrelated study variables but 
correlated auxiliary variables

A positive definite covariance matrix with the 
following combination of correlation coefficients was 
taken.

( , ) 0.09x yρ = , ( , ) 0.83y bρ = , ( , ) 0.83x aρ = , 
( , ) 0.04a bρ = , ( , ) 0.03x bρ = , ( , ) 0.04y aρ = .

Case-III Highly correlated study and auxiliary 
variables 

A positive definite covariance matrix with the 
following combination of correlation coefficients was 
taken.

( , ) 0.8x yρ = , ( , ) 0.83y bρ = , ( , ) 0.83x aρ = , 
( , ) 0.5a bρ = , ( , ) 0.5x bρ = , ( , ) 0.5y aρ = .

The relative efficiencies of the proposed estimators 
are worked out by fixing the CV values of the variables 
‘x’, ‘y’, ‘a’ and ‘b’. For fixing the CV, we were taken 
different combination of mean and variance for 
generating population. Considering different CV values 
and correlation between the study and the auxiliary 
variables, Table 1 is prepared through simulation runs.

For all estimators, the relative efficiency decreases 
as population dispersion (in terms of CV) increases, 
and it so happens across all levels of correlation 
between the study and auxiliary variables. ˆ

IIIR  has 
the best performance, particularly when population 
is less diverse (i.e., has low CV), the variables are 
well correlated and the weights involves ratio from 
the auxiliary variables. Furthermore, the efficiency 
increases with correlation increasing, irrespective of 
the population CV.

Table 1. Relative efficiency of different calibrated estimators 

Estimator Sample
Size

R.E.
(cx=cy=ca=cb=10%.)

Low C.V

R.E.
 (cx=cy=ca=cb=25%)

Moderate C.V

R.E.
 (cx=cy=ca=cb=40%)

High C.V

Case
 I

Case
 II

Case
 III

Case
 I

Case
 II

Case
 III

Case
 I

Case 
 II

Case
 III

ˆ
IR 20 1.24 2.09 2.82 1.08 1.30 1.67 1.39 1.69 1.61

50 1.31 3.12 3.32 1.19 2.29 2.57 1.65 1.89 2.25

ˆ
IIR 20 2.10 3.41 3.62 2.05 2.39 2.15 1.45 2.27 2.15

50 3.15 3.53 4.26 2.32 3.14 2.99 1.91 2.74 2.68

ˆ
IIIR 20 2.53 2.73 4.35 2.65 2.67 2.63 1.58 2.54 2.52

50 2.70 3.52 4.53 3.18 3.83 3.47 1.98 2.82 3.40
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4.	 CONCLUSION
In the proposed study we have developed the 

calibrated estimators utilizing auxiliary information. It 
has been observed that with the increase in correlation 
between study and auxiliary variables improves the 
efficiency of calibrated estimators at constant CV. 
At constant correlation, the efficiency of calibrated 
estimators is inversely proportional to the CV. 
Calibrated estimator developed under the situation in 
which population ratio of auxiliary variables is used 
with single weight system under calibration has highest 
relative efficiency. So we concluded that the population 
ratio of auxiliary variables with a single weight system 
is preferred over a different weights systems.
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