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SUMMARY
Supersaturated designs (SSDs) are very useful for screening experiments with many factors using only a few runs or design points. The widely 
accepted criteria for optimality of two level SSD is the E(s2) measure, where the design matrix Xd has the restriction that either each column sum 
will be zero for balanced supersaturated designs or each column sum will be ±1 for nearly balanced designs (Gupta, 2010). Several researchers have 
constructed many two level balanced and nearly balanced SSDs for different combinations of m and n (m stands for number of factors and n number 
of runs; m ≥ n). The solutions of almost all the available balanced and nearly balanced SSDs are presented in ‘Design Resource Server’ of IASRI 
website. Some new methods are developed for construction of new balanced and nearly balanced SSDs. In the first part of the article, some new 
methods of construction of balanced and nearly balanced supersaturated designs have been presented. The methods yield some new balanced and 
nearly balanced optimum supersaturated designs which are not yet reported in the available literature. Many available supersaturated designs can 
also be constructed from these methods; in the sense these methods are more general. The developed designs are examined by sharper lower bounds 
of E(s2) measures (Suen and Das, 2010). The design points or solutions of some designs are given in Appendix I. In the second part, new methods 
for construction of two level balanced and nearly balanced supersaturated designs (master SSDs) involving maximum possible number (mmax) of 
factors for any particular number of runs (n), are presented. A series of new SSDs are constructed from those master SSDs after deleting the similar 
columns of available SSDs.
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1.	 INTRODUCTION
 In a multi-factor experiment with m two level 

factors, we require at least n runs for the estimation 
of all main effects and the general mean where (n > 
m+1). But in a supersaturated designs, n is always 
less than m+1(n < m+1). Such designs are useful 
for factor screening experiments which can provide 
considerable cost reduction involving a few runs for 
a bigger number of factors. Under the assumption of 
effect sparsity that among the total factors only a small 
number of factors are active. Identification of those 
active factors is one of the most important objectives 
of supersaturated designs. In addition, the estimation 
of maximum number of active factors is also very 
important for supersaturated designs. Cost reduction 
is another beneficial role of such designs as they 
require a lesser number of runs for a large number of 

factors. The concept of supersaturated designs was 
initiated by Satterthwaite (1959) as random balanced 
designs. Booth and Cox (1962) suggested a systematic 
method for construction of supersaturated designs as 
multifactor experiments, where the number of runs (n) 
(or combination of different levels of different factors) 
is less than the number of factors (m). Later, several 
authors have developed many methods for constructions 
of supersaturated designs. Interested readers may go 
through the review article on supersaturated designs by 
Georgiou (2014). 

2.	 USEFUL DEFINITIONS, MODEL AND 
PRELIMINARIES
Definition 2.1: A supersaturated Design (SSD) 

is essentially a fractional factorial design in which 
the degrees of freedom for all its main effects and 
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the intercept term exceed the total number of distinct 
factor level combinations of the design. Alternatively, 
SSDs are also fractional factorial designs of which the 
numbers of columns for allocating factors are greater 
than those for ordinary orthogonal designs.

Definition 2.2: A design is said to be balanced if the 
number of times each level appears in a column or in 
a factor of a supersaturated Design is equal. Therefore, 
in a two level supersaturated design the number of run 
will be an even number. Otherwise the design is called 
unbalanced. 

Definition 2.3: Gupta (2010) defined nearly 
balanced supersaturated designs for odd number of runs. 
A supersaturated design is said to be nearly balanced if 
the frequencies of occurrences of level +1 and -1 differ 
in a column of the design matrix (Xd) at most by one 

in such a way that in each of the first 
m[ ]
2  columns of 

Xd, the frequencies of the occurrence of levels +1 and 

-1, in each column, are 
n[ ]
2  and n-

n[ ]
2 , respectively. 

Similarly, in each of the remaining m- m[ ]
2

 columns 
of Xd, the frequency of occurrence of levels +1 and -1 

are n- n[ ]
2

 and 
n[ ]
2 , respectively, where [.] denotes the 

greatest integer function. 
Definition 2.4: A supersaturated design is said to 

be optimal if λst is a constant, where λst is the number 
of coincidences between the sth and tth row of a two 
level Supersaturated designs D(n,m) with n rows and m 
columns. The value of λst can be estimated by making 
the sum of elements of Kronecker product of sth and tth 
row of D(n,m) after substituting the product value -1 by 
0. The lower bound of a supersaturated designs will be 
attained only when λst will be constant, where s ≠ t = 1, 
2, …, n

2.1	 Model
Let us consider a supersaturated design d with m 

two level factors and n number of runs. Let Xd be the 
design matrix of d of order n x m (2 < n < m+1) with 
elements +1 or -1. 

For the design d, the linear main effects model will 
be:

y = [1n: Xd ]β + e; e ~ Nn (0n, σ2In),�  2.1
where y be n x1 response vector and β = (β0, β1, 

β2,…, βm)΄ is the parameter vector representing the 

general mean effect and the m main effects. Here, 
Yd  =  [1n: Xd ] is the n x m+1 model matrix. Here, 
Xd = (xij) be an n x m design matrix for the above model 
of a factorial experiment in m factors in n runs. Thus, 
xij = +1 or -1. Suppose u = [u1, u2, …, un]΄and v = [v1, 
v2, …, vn]΄ be two different columns of Xd. Then, i) u 
≠ ±v and ii) u ≠ v ≠ 1n. Thus the design matrix Xd has 
m distinct columns.

The design matrix Xd will be called orthogonal or 
saturated if Xd΄Xd is a diagonal matrix. But in a two 
level supersaturated designs the inner product of any 
two distinct columns of Xd does not always zero (as n 
< m+1) i.e. the matrix Xd ΄Xd will never be a diagonal 
matrix. 

Booth and Cox (1962) proposed the idea of E(s2) 
criterion for choice of such designs. Their criterion for 
selection of design was minimization of E(s2), where,

2 2
ij

1 i j m

m
E(s ) = s  / C

2≤ ≤ ≤
∑ ,� 2.2

where sij be the element of the matrix Xd ΄Xd. 
Actually E(s2) is the measure of non- orthogonality 
between two columns of Xd. 

Nguyen (1996) obtained a lower bound of E(s2) as: 
2

2 n (m-n+1)E(s ) 
(m-1)(n-1)

≥ � 2.3

After that many authors improved the lower 
bounds (sharper lower bounds) considering different 
values of m and n, for construction of optimal two 
level supersaturated designs, e.g. Bulutoglu and Cheng 
(2004), Das et al. (2008), Suen and Das (2010), etc. 

Given m and n, all supersaturated designs Xd has 
the restriction that the sum of each column is either zero 
(balanced) for even number of runs (n) or ±1 (nearly 
balanced) for odd number of runs (n). Such designs 
constitute a restricted class of supersaturated designs 
and is denoted by DR(n, m). Again, the supersaturated 
designs without the above restrictions constitute an 
unrestricted class and is denoted by DU (n, m).

A supersaturated design d* is said to be E(s2) 
optimal if Ed*(s2) ≤ Ed(s2) for any d  DR(n, m). 

Literature survey reveals that several researchers 
developed two level optimal supersaturated designs for 
different parameters (n, m). List of two level optimal 
supersaturated designs are also presented by many 
authors. The solutions of most of the SSDs with bigger 
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m (number of factors) are generated through computer 
search methods (‘Design Resource Server’ of IASRI 
website). No specific rule has been developed for 
getting the solutions of the listed available designs. 
However, it is an uphill task to prepare a complete 
catalogue of supersaturated optimal designs. The goal 
of the present article is to explore new areas to develop 
new supersaturated designs, new in the sense that the 
designs which are not yet listed in available literature. 

Section three describes some new methods of 
construction of two level optimal balanced and nearly 
balanced supersaturated designs using Hadamard 
matrices Hm (m > 4). In section four, methods to 
construct two level optimal balanced and nearly 
balanced supersaturated designs DR (n, m) for maximum 
m (mmax) for any n, has been described. These designs 
will be used as master designs for developing many 
new designs which ultimately make some additions to 
the available catalogues. Concluding part is presented 
in section five. The solutions of some designs are 
available in Appendix I.

3.	 METHOD OF CONSTRUCTION
 Let us take one Hadamard matrix of order m (≥ 8). 

Hm = (1m, m
*H ), where m

*H  of order m x (m-1) with all 
elements either +1 or -1 and 1m is a column vector with 
all entries +1. Let us now construct an array B of order 
m x (2m-1) as: m m m m

* ** *B = (1 : H H ) (1 B )=  , where m
**H  

of order m x (m-1) is constructed from m
*H by reshuffling 

(m-1) rows except the first row (with all elements one) 
of m

*H . Then, we calculate the correlation matrix of 
*B  . If any cell of the correlation matrix shows +1, then 

we may proceed for new reshuffling of (m-1) rows of 

m
**H . If the values +1 or -1 in the correlation matrix of 
*B  are not removed completely by repeated reshuffling 

of (m-1) rows of m
*H , we construct a new array C by 

deleting the any column of the pair of columns which 
are responsible for the correlation values +1 or -1 from 

m
**H . Thus the array C of order m x (2m-p-1); (where 

p = number of deleted columns) has been constructed 
and p ≥ 1. Then, 

     m m (m-p) m
* *** *C = (1 :H :H ) = (1 :C )

If we add s (≥ 1) sets of (m-1) columns from 
different reshuffling schemes of m

*H  either in B or in C 

we get arrays of elements +1 and -1 of order either m 
x {(s+1)m-s-1} or m x {(s+1)m-s-p-1} , respectively. 

Remark 3.1: Hadamard matrix of order 4 i.e. H4 
cannot be used for the construction of array B or array 
C, because reshuffling of 3 rows (except the first row) 
of *

4H  can yield same array, i.e. *
4H and **

4H  are similar.

3.1	 Construction of balanced optimal SSD
Theorem 3.1: If there exists a Hadamard matrix 

of order m (≥ 8), then there exists a balanced optimal 
SSD with k (= 2m-q-1) factors and n (= m) runs, where 
q is a positive integer and (q ≥1) or a balanced SSD 
with k (=2m-q-p-1) factors and n (= m) runs where p 
and q both are positive integers and p ≥1; q ≥1.

Proof (by construction): Firstly, we construct 
the matrix B of order m x (2m-1) from *

mH  of order 
m x (m - 1). Next, the correlation matrix of B* will be 
prepared. If any cell of the correlation matrix shows +1, 
then we may proceed for new reshuffling of (m-1) rows 
of m

**H . Now, the resulting B* from reshuffled m
**H  will 

be a balanced optimum SSD with order m x (2m - 2) 
where q = 1 with minimum E(s2) value (Das et al.). 

Again, if we delete one column of B* and consider 
the new matrix as B** of order m x (2m-3) where q = 2. 
Then B** will also give another balanced optimum 
SSD with (2m-3) factors and n(=m) run. The operation 
of deletion of one more column from B** again may be 
repeated to construct separate balanced optimum SSD 
of order m x (2m-4) where q = 3. This operation of 
deletion can be repeated q times on developed SSD 
till it gives the minimum E(s2) (Das et. al.). 

If the values +1 or -1 in the correlation matrix of 
*B  are not removed completely by reshuffling of (m-1) 

rows of m
**H , we construct a new array C by deleting 

the any column from each of the p pairs of columns 
which are responsible for the correlation values +1 or 
-1 from m

**H . The new array C with deleted columns be 
denoted as 

m m (m-p) m
* *** *C = (1 :H :H ) = (1 :C )

Here several SSDs will come with order 
m x (2m - q - p - 1), where p is the number of deleted 
columns and q as defined earlier.

Example 3.1: Let us start with H16. We get the 
following balanced optimum SSDs in Table 3.1. Here, 
the designs are developed from the matrix B. The 
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design points of serial number 1 in table 3.1 are given 
in Appendix I.

Example 3.2: Let us start with H8. We get the 
following balanced optimum SSDs in Table 3.2. Here, 
the correlation value of 7th and 12th column of B matrix 
has shown +1. Therefore, we delete 12th column from 
B and call the new matrix as C. The design points of 
serial number 1 of Table 3.2 are given in Appendix I.

3.2	 Construction of nearly balanced optimal SSD
Theorem 3.2: If there exists a Hadamard matrix 

of order m (≥ 8), then there exists a nearly balanced 
optimal SSD with (m-1) runs and either (2m-q-1) 
factors, where q is a positive integer and (q ≥1) or 

(2m-q-p-1) factors where p and q both are positive 
integers and p ≥1; q ≥1.

Proof (by construction): Firstly, delete the last row 
of the Hadamard matrix and then the constructional 
procedure is same as Theorem 3.1.

Example 3.3: Let us start with H16. We get the 
following balanced optimum SSDs in Table 3.3. Here, 
the designs are developed from the matrix B. The 
design points of serial number 1 in Table 3.3 are given 
in Appendix I.

Example 3.4: Let us start with H8. We get the 
following balanced optimum SSDs in Table 3.2. Here, 
the correlation value of 7th and 12th column of B matrix 

Table 3.1. Balanced optimum supersaturated design for 16 runs developed from Theorem 3.1

Sl. No. Number of Runs Number of Factors q Deleted column E(s2) as calculated E(s2) Das et al. ׀rmax׀ fmax Efficiency

1* 16 30 1 - 8.828 8.828 0.8 5 1.000

2* 16 29 2 30th 8.828 8.828 0.8 4 1.000

3* 16 28 3 29th 8.804 8.804 0.8 4 1.000

4* 16 27 4 28th 8.752 8.752 0.8 4 1.000

(*) New designs

Table 3.2. Balanced optimum supersaturated design for 8 runs developed from Theorem 3.1

Sl. No. Number of 
Runs p Number of 

Factors
Deleted 
column q E(s2) as 

calculated
E(s2) Das 

et al. ׀rmax׀ fmax
׀rmax*׀

(IASRI)
*fmax

(IASRI) Efficiency

1 8 1 13 - 1 4.923 4.923 0.5 24 0.5 24 1.000

2 8 1 12 13th 2 4.848 4.848 0.5 20 0.5 20 1.000

3 8 1 11 12th 3 4.655 4.655 0.5 16 0.5 16 1.000

4 8 1 10 11th 4 4.267 4.267 0.5 12 0.5 12 1.000

(*) Parameters of available designs in Design resource server prepared by IASRI, New Delhi.

Table 3.3. Nearly Balanced optimum supersaturated design for 15 runs developed from Theorem 3.2

Sl. No. Number of Runs Number of Factors Deleted column q E(s2) as calculated E(s2) Suen and Das ׀rmax׀ fmax Efficiency

1* 15 30 - 1 8.724 8.724 0.86 2 1.000

2* 15 29 30th 2 8.724 8.724 0.86 2 1.000

3* 15 28 29th 3 8.703 8.703 0.86 2 1.000

(*) New designs

Table 3.4. Nearly Balanced optimum supersaturated design for 7 runs developed from Theorem 3.2

Sl. No. Number of 
Runs p Number of 

Factors
Deleted 
column q E(s2) as 

calculated

E(s2) 
Das 
et al.

׀rmax׀ fmax
׀rmax**׀
(IASRI)

**fmax
(IASRI) Efficiency

1 7 1 13 - 1 4.69 4.69 0.75 6 0.75 6 1.00

2 7 1 12 13th 2 4.64 4.64 0.75 5 0.75 5 1.00

3 7 1 11 12th 3 4.49 4.49 0.75 4 0.75 4 1.00

4* 7 1 10 11th 4 4.2 4.2 0.75 3 1.00

5 7 1 9 10th 5 3.667 3.677 0.75 2 0.75 2 1.00

(*) New Design; (**) Parameters of available designs in Design resource server prepared by IASRI, New Delhi.
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has shown +1. Therefore, we delete 12th column from 
B and call the new matrix as C. The design points of 
serial number 1 in Table 3.4 are given in Appendix I.

Corollary 3.1: If there exists a Hadamard matrix 
of order m (≥ 8) and then we add s (≥ 1) sets of (m‑1) 
columns from different reshuffling schemes of m

*H  
either in B or in C we get balanced optimum SSD for m 
runs with {(s+1)m-s –p-q-1}number of factors.

Proof: The proof is similar to proof of theorem 3.1.
Example 3.5: Let us start with H8. We get the 

following balanced optimum SSDs in Table 3.5. Here, 
the correlation value of 7th and 12th column of B matrix 
has shown +1. Therefore, we delete 12th column from 
B and call the new matrix as C. Then repeat for two 
times with different reshuffling of rows of each 8

*H  to 
get a balanced SSD. Again the correlation values of 3rd 
vs. 17th column of C matrix and 12th vs. 15th column 
of C matrix have shown +1. Therefore, we delete 17th 
and 15th columns from C. Thus we get a balanced SSD 
with 8 runs and 18 factors where (s = 2, p = 3 and q =1). 
Ultimately, we get the following balanced optimum 
SSDs in Table 3.5.

4.	 CONSTRUCTION OF TWO 
LEVEL BALANCED OPTIMAL 
SUPERSATURATED DESIGNS D(N, M) 
WITH MAXIMUM M

4.1	 Case 1 (n is an even number)
Let us consider an array A1 = [aij1] of order n* x 

m1 where aij1 will be numerical numbers from 1 to n 
arranged in n-2

[(n-2)/2]C  ways. Let us consider another 
array [aij1] A2 = [aij2]of order (n*-1)x m2 where aij2 will 
be numerical numbers from 1 to n arranged in n-2

[(n-2)/2]-1C  
ways. In A1, n* = [(n-2)/2] and m1 = ‌n-2

[(n-2)/2]C . In A2, 
n* = [(n-2)/2]-1 and m2 = ‌n-2

[(n-2)/2]-1C .

Theorem 4.1: If there exist the above mentioned 
arrays A1 and A2 with elements as numerical numbers 
from 1 to n, then there exists an optimal supersaturated 
design D(n, mmax) with a constant λst = n-2

[(n-2)/2]-1C  , s ≠ t 
= 1, 2, …, n where mmax = n-2

[(n-2)/2]C  + n-2
[(n-2)/2]-1C  = 

(1/2) ( n-2
(n/2)C ).

Proof: Let us arrange n numerical numbers 
following the formula of combination of basic algebra. 
As n is even, and the design is balanced, there are 
equal number of +1s and -1s in each column of D. If 
we impose the restriction that the last row of D will 
comprise only +1 and the first element of the column 
of D started with -1 then the remaining n-2 elements 
of any column should have (n-2)/2 number +1 and 
(n‑2)/2 number -1. Thus the number of such columns 
will be n-2

[(n-2)/2]C . Then we convert the numbers present 
in A1 in each arrangement as -1 and numbers absent 
to +1. Then we place n-2

[(n-2)/2]C  columns of converted 
A1 in D between first and last rows as defined. Thus 
n-2

[(n-2)/2]C  columns are prepared in D with n rows. For 
the remaining columns we impose the restriction that 
the last row comprises only +1 and the first element 
as also +1. Again we convert the numerical figures 
of A2 as -1 and +1 for numbers absent and present, 
respectively. Now we place the n-2

[(n-2)/2]-1C  columns of 
converted A2 in remaining columns of D between first 
and last rows having all elements +1. Thus the Design 
D is constructed with n-2

[(n-2)/2]C  + n-2
[(n-2)/2]-1C  = (1/2)

(‌n-2
(n/2)C ) columns and n rows. These columns are the 

maximum possible columns for a particular number of 
n (even) rows of a balanced design. Thus a two level 
balanced optimal supersaturated design D(n, mmax) has 
been constructed with a constant λst (=

n-2
[(n-2)/2]-1C  , s ≠ t 

= 1, 2, …, n) which attains the lower bound of E(s2). 
For easy understanding, readers may go through the 
Example 4.1.

Table 3.5. Balanced optimum supersaturated design for developed from corollary 3.1

Sl. 
No.

Number of 
Runs p Number of 

Factors
Deleted 
column

E(s2) as 
calculated

E(s2) Das 
et al. ׀rmax׀ fmax

׀rmax*׀
(IASRI)

*fmax
(IASRI) Efficiency

1 8 3 18 - 6.274 6.274 0.5 60 0.5 60 1.00

2 8 3 17 14th 6.118 6.118 0.5 52 0.5 52 1.00

(*) Parameters of available designs in Design resource server prepared by IASRI, New Delhi.
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Example 4.1: Let n = 8 and mmax =35.
A1=

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 4

2 2 2 2 3 3 3 4 4 5 3 3 3 4 4 5 4 4 5 5

3 4 5 6 4 5 6 5 6 6 4 5 6 5 6 6 5 6 6 6

A2= 

 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5

 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

D(8, 35) = 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1

-1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1

-1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1

1 -1 1 1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 -1 1 -1

1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1

1 1 1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1 -1 -1

-1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1 1 1 -1

-1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1

-1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

λst = 15 and E(s2) = 7.53, rmax = 0.5, fmax = 280.
Remark 4.1: If the restrictions of design D(n, mmax) 

are not imposed, the design can be constructed from 
(1/2) x nCn/2 combinations. 

Example 4.2: Solution of D(8,35) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1

-1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1

-1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1

1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 1 1 1 -1

1 1 -1 1 1 1 -1 1 1 -1 1 1 -1 -1 1 1 -1 1 1 -1

1 1 1 -1 1 1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 1

1 1 1 1 -1 1 1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1

-1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1

1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 -1 1 -1

-1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1

1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1

λst = 15 and E(s2) = 7.53, , rmax=0.5, fmax=280.

4.2	 Case 2 (n is an odd number)
Let us consider an array A = [aij] of order n* x 

m where aij will be numerical numbers from 1 to n 
arranged in nC[(n-1)/2] ways. In A, n* = [(n-1)/2] and m 
= nC[(n-1)/2]

Theorem 4.2: If there exist the above mentioned 
array A with elements as numerical numbers from 1 
to n, then there exists an optimal supersaturated design 
D(n, mmax) with a constant

 λst = n-2C[(n-1)/2] + n-2C[(n+1)/2], s ≠ t = 1, 2, …, n 
where mmax = nC(n-1)/2.

Proof: Let us arrange n numerical numbers 
following the formula of combination of basic algebra. 
As n is odd, and the design can be nearly balanced, 
there are unequal number of +1s and -1s in each column 
of D. Here, the frequencies of occurrences of level +1 
and -1 differ in a column of the design matrix (Xd) 
at most by one in such a way that in each of the first 

m[ ]
2 columns of Xd, the frequencies of the occurrence 

of levels +1 and -1 in each column, will be 
n[ ]
2  and 

n‑‌
n[ ]
2 , respectively. Similarly, in each of the remaining 

m-
m[ ]
2  columns of Xd, the frequency of occurrence of 

levels +1 and -1 are n- 
n[ ]
2  and 

n[ ]
2 , respectively, 

where [.] denotes the greatest integer function. 

Then we convert the numbers present in first 
m[ ]
2  

columns of A in each arrangement as -1 and numbers 
absent to +1. Again we convert the numerical figures 

of remaining m-
m[ ]
2  columns of A as +1 and -1 for 

numbers present and absent, respectively. Now, we 
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consider all the converted m columns as columns 
of design D. Thus the design D is constructed with 
nC[(n-1)/2] columns and n rows. These columns are the 
maximum possible columns for a particular number 
of n odd rows. Thus a two level supersaturated design 
D(n, mmax) has been constructed with a constant 
λst (= n-2C[(n-1)/2] + n-2C[(n+1)/2], s ≠ t = 1, 2, …, n) which 
attains the lower bound of E(s2). For easy understanding, 
readers may go through the Example 4.3.

Example 4.3: Let n = 7 and mmax =35.
A=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

2 2 2 2 2 3 3 3 3 4 4 4 5 5 6 3 3 3

3 4 5 6 7 4 5 6 7 5 6 7 6 7 7 4 5 6

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 5

3 4 4 4 5 5 6 4 4 4 5 5 6 5 5 6 6

7 5 6 7 6 7 7 5 6 7 6 7 7 6 7 7 7

D(7,35)=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1

-1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1

-1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1

1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 1 1

1 1 -1 1 1 1 -1 1 1 -1 1 1 -1 -1 1 1 -1 1

1 1 1 -1 1 1 1 -1 1 1 -1 1 1 1 -1 1 1 -1

1 1 1 1 -1 1 1 1 -1 1 1 -1 1 -1 -1 1 1 1

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1

-1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1 -1

-1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1

-1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1

1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 1

λst = 15 and E(s2) = 6.647 rmax =0.75, fmax = 70, 
Efficiency= 1.00. 

4.3	 Construction of two level optimal Supersaturated 
designs as sub designs of D(n, mmax)
Theorem 4.3: Under the realization of theorem 

4.1 and 4.2 and existence of two level optimal 

supersaturated designs D(n, m), their exist some two 
level optimal supersaturated designs D*(n*, m*), 
where n* = n and m* = mmax – m. 

Proof: These designs can be constructed either 
from theorem 4.1 or theorem 4.2, the designs with 
maximum possible factors or mmax. All available 
two level optimal supersaturated designs D(n, m) are 
actually sub-designs of D(n, mmax) developed from 
either theorem 4.1 or 4.2. Let us select any available 
two level optimal supersaturated design from available 
catalogue of IASRI design resource server for any 
particular n. The solution of the design will also be 
collected from the above source. Next, the elements 
of the columns present in the listed design will be 
converted to numerical digits as is done in case of the 
theorems 4.1 or 4.2. Then the columns of the listed 
design are removed from the columns of D(n, mmax). 
The residual design D* with remaining columns of D(n, 
mmax) will be a new two level supersaturated design as 
D*(n*=n, m*= mmax - m).

Example 4.4: From example 4.2, D(8, 35), the 
columns numbered 22, 3, 13, 25, 27, 9, 2, 17, 33 and 
15 are removed. As these columns are used in D(8, 10). 
Residual columns of D(8, 35) will produce a two level 
optimal supersaturated design D*(8, 25). Solution of 
D(8, 25) after deletion of the columns numbered 22, 3, 
13, 25, 27, 9, 2, 17, 33 and 15 is given below:

D(8, 25) =

1 4 5 6 7 8 10 11 12 14 16 18 19 20 21 23 24

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1

-1 -1 -1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

-1 1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 1 1 1

1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1 -1 -1 1 1

1 1 1 1 -1 1 -1 1 1 -1 1 1 1 -1 1 -1 -1

1 -1 1 1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 1

1 1 -1 1 1 1 1 1 -1 -1 1 1 -1 1 1 1 -1

26 28 29 30 31 32 34 35

-1 -1 -1 -1 -1 -1 -1 -1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

-1 -1 -1 -1 -1 1 1 1

-1 -1 1 1 1 -1 -1 1

-1 1 -1 -1 1 -1 1 -1

1 1 -1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 -1
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E(s2) = 7.04, Efficiency 1.00, rmax = 0.5, fmax = 132.
Remark 4.2: The designs developed from 

theorems 4.1 and 4.2 are the optimal designs with 
maximum possible factors (mmax). More designs can be 
constructed from the developed designs by successive 
deletion of columns from them. The residual designs 
may or may not be optimal. Optimality can be achieved 
by searching methods for which the E(s2) values will 
attain the lower bound. A list of developed two level 
optimal designs from theorem 4.3 is given below.

5.	 CONCLUSION
The problem of construction of SSD has some 

special importance because of its beneficial role of 
incorporating a large number of factors but with a 
lesser number of runs which ultimately reduce the 
cost involvement. The methods stated above can yield 
many bigger designs. Popular computer search method 
has the demerit of developing a series of SSDs as the 

procedure has no specific rule. The theorems, 3.1, 3.2, 
4.1, 4.2 and 4.3 will be helpful to develop a suitable 
computer algorithm for construction of different 
series of balanced or nearly balanced optimal two 
level supersaturated designs as they are constructed 
by following the above methods or theorems. These 
methods are more general construction methods in the 
sense that they include many available optimum SSDs 
even if the designs are developed by computer search 
methods. The article is enriched with useful examples 
for easy understanding of the methods. Some developed 
SSDs are given in Appendix I.
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Table 4.1. List of two level optimal supersaturated designs (n ≤ 10)

Sl. No. No. of Runs No. of Factors D(n, mmax) – D(n, m) either from IASRI 
catalogue or from designs in the article

Number of aliased columns to be deducted from 
D(n. mmax)

1 7 26 D(7, 35) – D(7,9) 9

2 7 25 D(7, 35) – D(7,10) 10

3 7 24 *D(7, 34) – D(7,10) 10

4 7 21 *D(7, 34) – D(7,13) 13

5 7 18 *D(7, 34) – D(7, 16) 16

6 7 17 D(7, 35) – D(7, 18) 18

7 7 14 D(7, 35) – D(7, 21) 21

8 8 28 D(8, 35) – **D(8, 7) 7

9 9 113 D(9, 126) – D(9, 13) 13

10 9 112 D(9, 126) – D(9, 14) 14

11 9 111 D(9, 126) – D(9, 15) 15

12 9 110 D(9, 126) – D(9, 16) 16

13 9 109 *D(9, 125) – D(9, 16) 16

14 9 108 D(9, 126) – D(9, 18) 18

15 9 107 D(9, 126) – D(9, 19) 19

16 9 105 *D(9, 125) – D(9, 20) 20

17 9 104 *D(9, 125) – D(9, 21) 21

18 9 103 D(9, 126) – D(9, 23) 23

19 9 102 D(9, 126) – D(9, 24) 24

20 9 101 D(9, 126) – D(9, 25) 25

21 9 100 *D(9, 125) – D(9, 25) 25

22 9 21 D(9, 126) – D(9, 105) 105

23 9 22 D(9, 126) – D(9, 104) 104

24 10 113 D(10, 126) – D(10, 13) 13

25 10 107 D(10, 126) – D(10, 19) 19
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Table 4.1. List of two level optimal supersaturated designs (n ≤ 10) (Contd.)

Sl. No. No. of Runs No. of Factors D(n, mmax) – D(n, m) either from IASRI 
catalogue or from designs in the article

Number of aliased columns to be deducted from 
D(n. mmax)

26 10 106 D(10, 126) – D(10, 20) 20

27 10 105 D(10, 126) – D(10, 21) 21

28 10 104 D(10, 126) – D(10, 22) 22

29 10 103  D(10, 126) – D(10, 23) 23

30 10 102 D(10, 126) – D(10, 24) 24

31 10 101 D(10, 126) – D(10, 25) 25

32 10 100 D(10, 126) – D(10, 26) 26

33 10 99 D(10, 126) – D(10, 27) 27

34 10 98 D(10, 126) – D(10, 28) 28

35 10 97 D(10, 126) – D(10, 29) 29

36 10 96 D(10, 126) – D(10, 30) 30

37 10 95 D(10, 126) – D(10, 31) 31

38 10 94 D(10, 126) – D(10, 32) 32

39 10 93 D(10, 126) – D(10, 33) 33

40 10 92 D(10, 126) – D(10, 34) 34

41 10 91 D(10, 126) – D(10, 35) 35

42 10 112 D(10, 126) – D(10, 14) 14

43 10 111 D(10, 126) – D(10, 15) 15

44 10 109 D(10, 126) – D(10, 17) 17

45 10 108 D(10, 126) – D(10, 18) 18

46 10 107 D(10, 126) – D(10, 19) 19

47 10 106 D(10, 126) – D(10, 20) 20

48 10 105 D(10, 126) – D(10, 21) 21

49 10 104 D(10, 126) – D(10, 22) 22

* design from remark 4.2., ** Orthogonal Columns are taken from H8
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APPENDIX I
1.	 SSD with 30 factors in 16 runs:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1

1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

-1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

-1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1

-1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

-1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1

1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

-1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

-1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

2.	 SSD with 13 factors in 8 runs:

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 -1 -1 -1 -1 1 -1 -1 -1 1 1

-1 1 -1 -1 1 -1 1 -1 -1 1 1 1 -1

1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 -1

-1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 -1

-1 1 -1 1 -1 1 -1 -1 -1 1 -1 -1 1

1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 -1

-1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1

SSD with 11 factors in 8 runs:

1 1 1 1 1 1 1 1 1 1 1

1 1 1 -1 -1 -1 -1 1 -1 -1 -1

-1 1 -1 -1 1 -1 1 -1 -1 1 1

1 -1 -1 -1 -1 1 1 -1 1 -1 -1

-1 -1 1 -1 1 1 -1 1 -1 -1 1

-1 1 -1 1 -1 1 -1 -1 -1 1 -1

1 -1 -1 1 1 -1 -1 1 1 1 -1

-1 -1 1 1 -1 -1 1 -1 1 -1 1
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3.	 SSD with 30 factors in 15 runs:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1

1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

-1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

-1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1

-1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

-1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1

1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

-1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

4.	 SSD with 18 factors in 8 runs:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1 1 -1 -1 1

-1 1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1

1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

-1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 1 1

-1 1 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1 1 1 -1

1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 -1 1 1 -1 1 -1

-1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1


