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Calibration is a popular approach in sample surveys to produce efficient estimators of population parameter using population aggregates of auxiliary 
variable. However, many a times, such population aggregates of auxiliary variable is not available. Moreover, it may happen that there exists additional 
auxiliary variable which is less closely related to the study variable but having known population aggregates. Under such circumstances, information 
on both the auxiliary variables may be incorporated in the estimation process using two step calibration approach. For two-stage sampling design, 
efficient estimators of population total have been developed using two step calibration approach for the situation of unavailability of population 
aggregates of auxiliary variable for all the primary stage units (psu’s) in the population. The approximate variance and the estimate of variance of the 
proposed calibration estimators have also been developed. Empirical results using both model-based and design-based simulations, with the latter 
based on real data set, show that the proposed calibration estimators illustrate superior performance than the existing estimators. 
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1.	 INTRODUCTION
Multi-stage sampling design is widely used in most 

of the large scale surveys to which two-stage sampling 
is the simplest case and frequently used in many real 
life surveys. For example, two-stage sampling design 
is often used in crop area estimation surveys in many 
developing countries. In this design, sample is selected 
in two stages. At the first stage, psu’s are selected and 
at the second stage, second stage unit (ssu’s) are drawn 
from each of the selected psu’s. Usually, use of auxiliary 
information improves the estimator of population total 
under two-stage design (Sukhatme et al., 1984). Many 
researchers have also used the predictive approach with 
availability of auxiliary information under two-stage 
design, see for example, Srivastava and Garg (2009), 
Sahoo et al. (2011) and references therein. Calibration 
approach proposed by Deville and Sarndal (1992) is 
widely used in sample surveys to produce efficient 
estimators of population parameter by incorporating 
auxiliary information at the estimation stage. Aditya 
et  al. (2016) described regression type estimators of 

the population total for two-stage sampling using the 
calibration approach under the assumption that the 
population level auxiliary information is available at 
psu level. Mourya et al. (2016) developed calibration 
estimator for finite population total under two-stage 
sampling when the auxiliary information is available at 
the element level for the selected first-stage units in the 
random sample. Basak et al. (2017, 2018) developed 
calibration estimator of population regression 
coefficient under two-stage sampling design for 
different cases of availability of auxiliary information 
at psu and ssu level.

Biswas et  al. (2020) developed calibration 
estimators of the finite population total under two stage 
sampling design assuming study variable is inversely 
related to the auxiliary variable and the population level 
auxiliary information is available at the second stage 
of selection. One of the assumptions of calibration 
approach is that population level information such 
as population aggregate is required for the auxiliary 
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variable that is closely related to the study variable. 
In many practical applications, population aggregates 
of such auxiliary variable are often not available for 
all the psu’s under two-stage sampling design. In such 
situations, so far, estimation of population total has 
been limited to the use of double sampling approach, 
see for example, Saini and Bahl (2012), Saini (2013) 
and references therein. Guha and Chandra (2019) 
proposed an improved estimator for the population 
total based on double sampling when auxiliary 
information is available for the first variable and not 
available for the second variable. Many often under 
two-stage design, there is availability of additional 
auxiliary variable which is less closely related to the 
study variable but having population aggregates at the 
psu level. The existing methods of survey estimation 
do not make proper use of such additional auxiliary 
information. Estevao and Särndal (2002) delineated 
the two step calibration approach to the additional 
auxiliary variable for estimating the population total. 
This paper considers the problem of estimating the 
population total under two-stage sampling design 
when population aggregates of auxiliary variables 
are not available and develops efficient estimators of 
population total using the information on additional 
auxiliary variable through two step calibration 
approach. In particular, it is assumed that population 
aggregates of auxiliary variable is unavailable for 
all the psu’s in the population whereas for additional 
auxiliary variable, this information is available for all 
the psu’s. Therefore, two different sampling designs 
are considered to address this situation and these are 
referred as Sampling Design 1 and 2 respectively.

The rest of this paper is organized as follows. 
Next Section describes the general notations used for 
the development of calibration estimators under two-
stage sampling design. Section 3 presents the proposed 
estimators developed using two step calibration 
approach along with its approximate variance and the 
estimate of variance. Section 4 reports the results of the 
simulation studies to assess the empirical performance 
of the developed estimators. Finally, Section 5 provides 
the main concluding remarks.

2.	 PROPOSED ESTIMATORS 

2.1	 Notations
Let us consider a finite population 

U=(1,2,…‌ ,k,…,N) which is grouped into IN  

clusters as 1 2 , ... , , ... , ,
Ii NU U U U  with sizes of the 

clusters as 1 2     , , , ... ,
Ii NN N N N  respectively. Thus, 

1 1
  and  

II NN

i i
i i

U U N N
= =

= = ∑ . These clusters are called 

psu’s and the sampling units within the clusters 
(psu’s) are called ssu’s. At the first stage, a sample of 
psu’s Is  of size In  is selected from the population of 
psu’s IU  of size IN  by using a suitable probability 
sampling scheme. Let, the first and second order 
inclusion probability at the first stage be Iiπ  and Iijπ  
respectively. At the second stage, a sample of units is  
of size in  is drawn from the ith selected psu, Ui of size 
Ni, Ii s∀ ∈  by using any probability sampling scheme. 

Thus, 
1 1

  and   
II nn

i s i
i i

s s n n
= =

= = ∑ , where s is the two-stage 

sample and sn  is the two-stage sample size. Let, the 
first and second order inclusion probability at the 
second stage be /k iπ  and /kl iπ  respectively.

Let y and x be the study and auxiliary variable 
respectively. Here, it is assumed that there is availability 
of additional auxiliary variable z which is less linearly 
related to the study variable y but having population 
aggregates at the psu level. Let, iky , ikx  and ikz , 

Ii s∀ ∈  , ik s∈  be values of the variables corresponding 
to k-th unit of i-th selected psu. The population total 

of y is given by, 
1 1 1

iI INN N

y ik iy
i k i

t y t
= = =

= =∑∑ ∑ , where 
1

iN

iy ik
k

t y
=

= ∑  

is the ith psu total of y. Similarly, population total of 

x is given by 
1 1 1

iI INN N

ik i
i k i

X x X
= = =

= =∑∑ ∑ , where 
1

iN

i ik
k

X x
=

= ∑  

is the ith psu total of x and population total of z is 

1 1 1

iI INN N

ik i
i k i

Z z Z
= = =

= =∑∑ ∑  , where 
1

iN

i ik
k

Z z
=

= ∑  is the i-th psu 

total of z.
With this, our interest is to estimate the population 

total, yt . Following Särndal et al. (1992), the π-estimator 
of population total yt  under two-stage sampling design 
is given by

1 1
/

ˆ
iI nn

y Ii k i ik
i k

t a a yπ
= =

= ∑ ∑ ,� (1)

where, 1 /Ii Iia π=  and 1/ //k i k ia π= .
Here, it is assumed that population aggregates 

of auxiliary variable x are unavailable for all psu’s in 
the population, i.e., iX  is unknown 1,2,..., Ii N∀ =  
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whereas for additional auxiliary variable z, this 
information is available for all the psu’s, i.e. iZ  is 
known 1,2,..., Ii N∀ = .

2.2	 Calibration estimation under Sampling Design 1
In Sampling Design 1, a two-phase sample is 

drawn at the psu level to collect population aggregates 
of auxiliary variable x for the first phase psu. The layout 
is described as below.

( )

( )

( )

 

   
  

   
  

I I

I I

I I

U N

s n

s n

↓
′ ′

↓

At first stage:

First phase:� observe iX

Second phase:

At second stage:

( )

( )

 

   
     observe , ,

i i I

i i ik ik ik

U N i s

s n y x z

∀ ∈

↓

Let, 1Iia  denotes the design weight at the first 
phase at psu level and 2Iia  denotes the conditional 
design weight at the second phase at psu level. 
Thus, 1 1 2 21/  and 1/Ii Ii Ii Iia aπ π= =  where, 1Iiπ  
is the inclusion probability at first phase and 2Iiπ  
is the conditional inclusion probability at second 
phase. Overall design weight for i-th psu is given by 

1 2Ii Ii Iia a a= . Design weight at the second stage is given 
by /k ia , where, / /1/k i k ia π= . Thus, overall design 
weight corresponding to the k-th unit of i-th selected 
psu is given by /ik Ii k ia a a= . Let, 1Iiw  denotes the 
calibrated weight corresponding to the design weight 
at the first phase at psu level, 1Iia  and (1)

ikw  denotes 
the overall calibrated weight corresponding to overall 
design weight, ika .

In the first step calibration, chi-square distance 
function measuring the distance between 1Iiw  and 1Iia

, ( )2
1 1 1 1

1
2/

In

Ii Ii Ii Ii
i

w a a q
′

=

−∑  is minimized subject to the 

calibration constraints 1
1 1

 =  
I In N

Ii i i
i i

w Z Z Z
′

= =

=∑ ∑  and 

1
1

In

Ii I
i

w N
′

=

=∑ . The first step calibrated weights, 1Iiw  are 

obtained by using the Lagrangian multiplier approach. 

Thus, the objective function for minimization is given 
by

( )2

1 1
1 1 2 1

1 1 11 12

I I In n n
Ii Ii

Ii i Ii I
i i iIi Ii

w a
w Z Z w N

a q
φ λ λ

′ ′ ′

= = =

−    
′ ′= − − − −   
   

∑ ∑ ∑ .

The first step calibrated weights, 1Iiw  obtained by 
minimising this objective function subject to the 
calibration constraints are given as

( )1 1 1 1 21Ii Ii Ii iw a q Zλ λ′ ′ = + +  ,
where, 

( ) ( )
1 2

ˆ ˆ ˆ ˆ-
ˆ ˆ ˆ-

q z qz I

q qzz qz

t Z t t N t
t t t

π π π π

π π π

λ
′ ′ ′ ′− −

′ =
′ ′ ′

, ( ) ( )
2 2

ˆ ˆ ˆ ˆ-
ˆ ˆ ˆ-

qzz I qz z

q qzz qz

t N t t Z t
t t t

π π π π

π π π

λ
′ ′ ′ ′− −

′ =
′ ′ ′,

2
1 1

1

ˆ ,
In

qzz Ii Ii i
i

t a q Zπ

′

=

′ = ∑
 

1 1
1

ˆ ,
In

qz Ii Ii i
i

t a q Zπ

′

=

′ = ∑
 

1 1
1

ˆ ,
In

q Ii Ii
i

t a qπ

′

=

′ = ∑
 

1
1

ˆ ,
In

Ii
i

t aπ

′

=

′ = ∑  and 1
1

ˆ
In

z Ii i
i

t a Zπ

′

=

′ = ∑ .

Here, 1Iiq  is an unknown positive constant and we have 
assumed 1 1,Iiq =  as a particular case. The calibrated 
weights, 1Iiw  obtained in the first step calibration 
are multiplied with the population aggregates of 
auxiliary variable (Xi) for the first phase psu to estimate 

the population total of x as *
1

1
=

In

Ii i
i

X w X
′

=
∑  . The 

estimated population total of auxiliary variable, *X  
is subsequently used in second step calibration as a 
constraint.

In the second step calibration, chi-square 
distance function between (1)

ikw  and ika  is given by
(1) 2

1 1

( )
2

iI nn
ik ik

i k ik ik

w a
a q= =

−∑∑  and the calibration constraints are 

1

1 1

( )
iI nn

ik ik
i k

w z Z
= =

=∑∑ , 1

1 1

( ) *
iI nn

ik ik
i k

w x X
= =

=∑∑ , and 
(1)

1 1

iI nn

ik
i k

w N
= =

=∑∑ . 

Thus, the objective function 	
(1) 2

(1)
1

1 1 1 1

(1) * (1)
2 3

1 1 1 1

( )
2

 

i iI I

i iI I

n nn n
ik ik

ik ik
i k i kik ik

n nn n

ik ik ik
i k i k

w a w z Z
a q

w x X w N

φ λ

λ λ

= = = =

= = = =

 −
= − − − 

 
   

− − −   
   

∑∑ ∑∑

∑∑ ∑∑

is minimized by using the Lagrangian multiplier 
approach to obtain the final calibrated weight, (1)

ikw . 
Finally, the calibrated weights are obtained as 
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( )1
1 2 31( )

ik ik ik ik ikw a q z xλ λ λ = + + +  ,
where, 

( )( ) ( )( ) ( )( )* 2

1 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

x qx qz qxz q z qxx q qx qxz qx qxx qz

qxx qzz q qxz qx qz qxx qz qzz qx q qxz

X t t t t t Z t t t t N t t t t t
t t t t t t t t t t t t

λ
− − + − − + − −

=
+ − − −

,

( )( ) ( )( ) ( )( )* 2

2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

x qzz q qz z qx qz qxz q qxz qz qzz qx

qxx qzz q qxz qx qz qxx qz qzz qx q qxz

X t t t t Z t t t t t N t t t t t
t t t t t t t t t t t t

λ
− − + − − + − −

=
+ − − −

 , 

( )( ) ( )( ) ( )( )2

3 2 2 22

* ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
x qxx qz qzz qx z qxz qx qxx qz qzz qxx qxz

qxx qzz q qxz qx qz qxx qz qzz qx q qxz

X t t t t t Z t t t t t N t t t t

t t t t t t t t t t t t
λ

− − + − − + − −
=

+ − − −
.

Here,

2

1 1

ˆ
iI nn

qzz ik ik ik
i k

t a q z
= =

= ∑∑ , 2

1 1

ˆ
iI nn

qxx ik ik ik
i k

t a q x
= =

= ∑∑ , 

1 1

ˆ
iI nn

qxz ik ik ik ik
i k

t a q x z
= =

= ∑∑ , 
1 1

ˆ
iI nn

qx ik ik ik
i k

t a q x
= =

= ∑∑ , 

1 1

ˆ
iI nn

qz ik ik ik
i k

t a q z
= =

= ∑∑ , 
1 1

ˆ
iI nn

q ik ik
i k

t a q
= =

= ∑∑ , 
1 1

ˆ
iI nn

x ik ik
i k

t a x
= =

= ∑∑ , 

1 1

ˆ
iI nn

z ik ik
i k

t a z
= =

= ∑∑  and 
1 1

ˆ
iI nn

ik
i k

t a
= =

= ∑∑ .

In this case, ikq  is an unknown positive constant 
and we have taken 1,ikq =  as a particular choice. Thus, 
the calibrated estimator of population total of y, (1)ˆc

yt π  is 
given by

1 1

1 1

( ) ( )ˆ
iI nn

c
y ik ik

i k
t w yπ

= =

= ∑∑ .� (2)

Under this design, the usual double sampling ratio 
and regression estimator of population total is given by

(1)
ˆ

ˆ ˆ
ˆ
yr

y x
x

t
t t

t
π

π π
π

′= ,� (3)

( )(1)ˆ ˆ ˆ ˆreg
y y x xt t b t tπ π π π′= + − ,� (4)

where, 

1 1

ˆ
iI nn

y ik ik
i k

t a yπ
= =

= ∑∑ , 
1 1

ˆ
iI nn

x ik ik
i k

t a xπ
= =

= ∑∑ , 1
1

ˆ
In

x Ii i
i

t a Xπ

′

=

′ = ∑  

and

( )( )

( )
1 1

2

1 1

/

/

ˆ ˆ/ /

ˆ /

iI

iI

nn

Ii k i ik x ik y
i k

nn

Ii k i ik x
i k

a a x t N y t N
b

a a x t N

π π

π

= =

= =

− −
=

−

∑ ∑

∑ ∑
.

The proposed calibrated estimator of population 
total have non-linear form. Therefore, Taylor series 
linearization approach is used to derive an approximate 
variance of the estimator. Following Taylor series 
linearization methodology the approximate variance of 

the developed calibrated estimator of population total 
of y, (1)ˆc

yt π  is given by

1

1 1 1 1 1

1 1 1 1 1

1

1              

( ) / /
/

/ /

/
/ /

ˆ( )
i iI I I

i iI I I

N NN N N
Ejc Ei k i l i

y Iij kl i
i j i k lIi Ij Ii k i l i

N NN N N
ji k l

Iij kl i
i j i k lIi Ij Ii k i l i

tt E E
V t

XX x x

π π π π π π

π π π π π

= = = = =

= = = = =

= ∆ + ∆ +

 
′∆ + ∆ 

′ ′  

∑∑ ∑ ∑∑

∑∑ ∑ ∑∑

where,

Iij Iij Ii Ijπ π π∆ = − , / / / /kl i kl i k i l iπ π π∆ = − , 

Iij Iij Ii Ijπ π π′ ′ ′ ′∆ = − ,

. .Ei i iyx z i iyz x it Y B X B Z= − − , 
1

iN

i ik
k

Y y
=

= ∑ ,

I I I I

I I I

N N N N
2
i

i=1 i=1 i=1 i=1

2N N N
2 2
i i i i

i=1 i=1 i=1

Z -

X Z - X Z
.

i i i i i i

iyx z

Y X Y Z X Z
B

       
      
       =

      
     
      

∑ ∑ ∑ ∑

∑ ∑ ∑
,

I I I I

I I I

N N N N
2
i

i=1 i=1 i=1 i=1

2N N N
2 2
i i i i

i=1 i=1 i=1

X -

X Z - X Z
.

i i i i i i

iyz x

Y Z Y X X Z
B

       
      
       =

      
     
      

∑ ∑ ∑ ∑

∑ ∑ ∑
,

/ . .k i ik ikyx z ik ikyz x ikE y B x B z= − − ,

i i i i

i i i

N N N N
2

k=1 k=1 k=1 k=1

2N N N
2 2

k=1 i=1 k=1

-

-
. ,

ik ik ik ik ik ik ik

ikyx z

ik ik ik ik

y x z y z x z
B

x z x z

       
      
       =

      
     
      

∑ ∑ ∑ ∑

∑ ∑ ∑

i i i i

i i i

N N N N
2

k=1 k=1 k=1 k=1

2N N N
2 2

k=1 k=1 k=1

-

-
. .

ik ik ik ik ik ik ik

ikyz x

ik ik ik ik

y z x y x x z
B

x z x z

       
      
       =

      
     
      

∑ ∑ ∑ ∑

∑ ∑ ∑

The variance estimator of the calibrated estimator 
(1)ˆc

yt π  is obtained as 

1

1 1 1 1 1

1 1 1 1 1

1

1               

( ) / /
/

/ /

/
/ /

ˆ ˆ ˆˆˆ ˆ( )
i iI I I

i iI I I

n nn n n
Ejc Ei k i l i

y Iij kl i
i j i k lIi Ij Ii k i l i

n nn n n
ji k l

Iij kl i
i j i k lIi Ij Ii k i l i

tt E E
V t

XX x x

π π π π π π

π π π π π

= = = = =

′ ′

= = = = =

= ∆ + ∆ +

 
′∆ + ∆ 

′ ′  

∑∑ ∑ ∑∑

∑∑ ∑ ∑∑

 

 

where, Iij Ii Ij
Iij

Iij

π π π
π
−

∆ =


, / / /
/

/

kl i k i l i
kl i

kl i

π π π
π
−

∆ =


, 
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Iij Ii Ij
Iij

Iij

π π π
π

′ ′ ′−
′∆ =

′


,

. .
ˆ ˆˆ ˆ

Ei iy iyx z i iyz x it t B X B Zπ= − − , 
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2.3	 Calibration estimation under Sampling Design 2
Here, a two-phase sample is drawn at the psu level, 

and at the ssu level, a first phase sample is drawn from 
first phase psu to collect unit level information on 
auxiliary variable x and z, whereas from second phase 
psu, a second phase sample is drawn to collect unit 
level information on study variable y only. The layout 
is described as below.
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Let, 1ika  denotes the design weight corresponding to 
the units in the first phase sample drawn from first phase 
psu’s and 2ika  denotes the design weight corresponding 
to the units in the second phase sample drawn from 
second phase psu’s. Overall design weight, ika  is given 
by 1 2ik ik ika a a= . Let, 1ikw  denotes the calibrated weight 
corresponding to the design weight of the first phase 
units drawn from first phase psu, 1ika  and 2( )

ikw  denotes 
the overall calibrated weight corresponding to the 
overall design weight, ika .

First Step Calibration
In the first step calibration, the chi-square distance 

function measuring the distance between 1ikw  and 1ika  

is given by 
2
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is minimized by using the method of Lagrange 
multiplier to obtain the first step calibrated weight, 1ikw
. The first step calibrated weights are obtained as

( )1 1 1 1 21ik ik ik ik ik ikw a q zλ λ′ ′ = + +  ,

where,  
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Here, 1ikq  is an unknown positive constant and we 
have assumed 1 1ikq = .The weights, 1ikw  obtained in the 
first step calibration are used to estimate the population 

total of auxiliary variable as 1
1 1

=**
iI nn

ik ik
i k

X w x
′′

= =
∑∑  which is 

required as a constraint in the second step calibration.
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3.	 EMPIRICAL EVALUATIONS
This Section summarizes the simulation studies 

conducted to evaluate the empirical performance of 
the developed estimators. Two types of simulation 
studies, namely design based simulation and model 
based simulation are considered. In the case of design 
based simulation, real survey dataset is used as a 
finite population. From this fixed population, repeated 
random samples are drawn with assumed sampling 
design. In the second type of simulation study, a 

Second Step Calibration
From second step calibration, overall calibration 

weight ( 2( )
ikw ) is obtained. Thus, the chi-square 

distance function between 2( )
ikw  and ika  is given by 
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The objective function for minimization is given by
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Finally, the calibrated weights are obtained as
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Thus, the calibrated estimator of population total of y, 
2( )ˆ c

yt π  is given by
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Under this design, the usual double sampling ratio 
and regression estimator of population total is given by
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The approximate variance of the calibrated 
estimator 2( )ˆ c

yt π  using Taylor series linearization method 
is obtained as
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synthetic population is generated and then a sample is 
drawn, and process is repeated several times. In this 
case, at each simulation run population data is first 
generated under the model and then a single sample is 
drawn from this simulated population. 

In the simulation studies, the following estimators 
of population total under two-stage sampling design 
are considered. 

i) π-estimator, ˆ
yt π  (denoted as Est- π),

ii) Double sampling ratio estimator based on design 
1 and 2, 1( )ˆ r

yt π  and 2( )ˆ r
yt π  (denoted as RAT1 and RAT2),

iii) Double sampling regression estimator based on 
design 1 and 2, 1( )ˆ reg

yt π  and 2( )ˆ reg
yt π  (denoted as REG1and 

REG2), and 
iv) Developed calibrated estimator based on design 

1 and 2, 1( )ˆ c
yt π  and 2( )ˆ c

yt π  (denoted as CAL1 and CAL2 
respectively). 

3.1	 Design based simulation
The real survey dataset of 284 municipalities of 

Sweden popularly referred to as ‘MU284 population’ 
is used for design based simulation study. The 284 
municipalities are divided into 50 clusters comprising 
of 5 to 9 municipalities. These 50 clusters are nothing 
but psu’s and municipalities within the clusters are 
referred to as ssu’s. The dataset contains information 
on multiple variables among which three variables 
are selected for the present study. Here, the variable 
revenues from the 1985 Municipal taxation (RMT85, 
measured in millions of kronor, y) is used as study 
variable. The aim is to estimate total revenues from 
the 1985 Municipal taxation using 1985 population 
(P85, in thousands, x) as the auxiliary variable and 
number of seats in the municipal council (S82, z) as the 
additional auxiliary variable. The correlations between 
the variables are presented in Table 1.

Table 1. Correlation between variables in MU284 data

Variables RMT85 (y) P85 (x) S82 (z)

RMT85 (y) 1 0.96 0.58

P85 (x) 0.96 1 0.69

S82 (z) 0.58 0.69 1

From this population, for sampling design  1, in 
the first stage, 30 and 20 psu’s are selected at first and 
second phase respectively. In the second stage, 2 units 
are drawn from each of the 20 selected psu’s. In each 
stages, sample selection is done by simple random 

sampling without replacement (SRSWOR). For 
sampling design 2, in the first stage, 30 and 20 psu’s 
are selected at first and second phase respectively. In 
the second stage, 4 units are selected from each of the 
30 selected psu’s at first phase and 2 units are drawn 
from each of the 20 selected psu’s at second phase 
respectively. Here, 30In′ = , 20In = , 4in′ = , 2in = , and 

40sn = . Then the various estimators of the population 
total are computed using this sample data. The Monte 
Carlo simulation was run M=5000 times. Simulation 
studies are carried out in R software. The performance 
of the estimators are evaluated by percentage absolute 
relative bias (ARB) and percentage relative root mean 
squared error (RRMSE), defined by 

1
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∑ ,

where îT  denotes the estimated value of population 
total at simulation run i, with true value T and M denotes 
the number of simulation run. The values of percentage 
absolute relative bias and percentage relative root 
mean square error of different estimators are reported 
in Table 2. 

Table 2. Percentage absolute relative bias (ARB, %) and 
percentage relative root mean square error (RRMSE, %) of 
different estimators considered in design based simulation

Estimator ARB, % RRMSE, %

Est- π 27.63 33.40

RAT1 13.14 16.14

REG1 12.35 15.41

CAL1 10.62 13.50

RAT2 14.32 17.63

REG2 14.25 17.05

CAL2 11.36 14.59

The results from Table 2 show that the values of 
both percentage absolute relative bias and relative 
root mean square error are higher for π-estimator as 
compared to all other estimators considered in the 
simulation studies. For sampling design 1, the CAL1 
estimator shows the better performance in terms of 
both the criteria followed by the double sampling 
regression and ratio estimator. For sampling design 2, 
the values of percentage absolute relative bias are lower 
for the CAL2 estimator followed by REG2 and RAT2 
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estimators. In the case of percentage relative root mean 
square error, it is highest for RAT2 and least for CAL2. 
Therefore, in terms of both the criteria CAL2 shows the 
better performance for sampling design 2. However, 
if we compare the estimators from both the sampling 
designs, then CAL1 gives the better performance.

3.2	 Model based simulation
In this simulation study, a finite population of size 

N=1000 units is considered. The variable of interest y is 
generated from the model, 0 1 ,i i iy xβ β ε= + +  where 

20~ ( , )i eNε σ , and 0 1 1β β= =  (assumed). The auxiliary 
variable x is generated from, 0 1 ,i i ix zα α δ= + +  
where 0 1~ ( , )i Nδ , and 0 1 1α α= =  (assumed). Here, 
the additional auxiliary variable z  is generated using 
Chi-squared distribution i.e. 2~i pz χ . We have chosen 

2 2eσ =  and 5p =  such that correlation coefficient 
between the variables in the generated population is 
given by

Table 3. Correlation between variables in the generated 
population

Variables y x z 

y 1 0.85 0.60

x 0.85 1 0.70

z 0.60 0.70 1

These N=1000 units are divided into 50 clusters 
comprising of 20 units each. Thus, here 50IN =  
and 20iN = . From this population, three different 
combinations of sample are drawn- i) 40In′ = , 30In =
, 15in′ = , 10in = , 300sn = , ii) 30In′ = , 20In = , 15in′ =
, 10in = , 200sn = , iii) 30In′ = , 20In = , 10in′ = , 5in =
, 100sn = . Sample are drawn by using SRSWOR at 
both the stages. Here also, we considered the same 
set of estimators that were included in the design 
based simulation study. The simulation is repeated to 
a total number of 5000 times. The performance of the 
estimators are evaluated by percentage absolute relative 
bias (ARB) and percentage relative root mean squared 
error (RRMSE), defined by

1

1 100
ˆ

ˆ( ) M i i
i

i

T T
ARB T

M T=

−
= ×∑  and

2

1
1

100
ˆ

ˆ( ) M i i
i

i

T T
RRMSE T M

T
−

=

 −
= ×  

 
∑ ,

where îT  denotes the estimated value of population total 
at simulation run i, with true value iT  and M denotes 

the number of simulation run. The values of percentage 
absolute relative bias and relative root mean square 
error of the estimators for different combinations of 
sample sizes are reported in the following table.

Table 4. Percentage absolute relative bias (ARB, %) and 
percentage relative root mean square error (RRMSE, %) of 

different estimators in model based simulation

Sample size Estimator ARB, % RRMSE, %

40In′ = , 

30In = , 

15in′ = , 

10in = , 

300sn =

Est- π 8.57 10.77

RAT1 7.64 10.09

REG1 6.02 7.18

CAL1 5.20 6.50

RAT2 9.11 11.88

REG2 7.64 8.06

CAL2 5.57 6.76

30In′ = , 

20In = ,

15in′ = ,

10in = ,

200sn =

Est- π 12.68 16.02

RAT1 10.95 13.34

REG1 10.13 12.43

CAL1 8.81 11.55

RAT2 11.22 13.53

REG2 11.15 13.41

CAL2 9.68 12.01

30In′ = ,

20In = ,

10in′ = ,

5in = , 

100sn =

Est- π 16.68 20.62

RAT1 14.95 18.06

REG1 14.13 17.13

CAL1 12.80 16.24

RAT2 15.22 18.23

REG2 15.15 18.11

CAL2 13.68 16.71

The results from the model based simulations 
reported in Table 4 reveal the conclusions identical 
to design based simulation in Table 3. In particular, 
these results in Table 4 indicate two points. First, the 
developed calibrated estimators perform better than 
the existing estimators including double sampling ratio 
and regression estimator for both the sampling designs 
and different combinations of sample sizes in terms of 
percentage absolute relative bias and relative root mean 
square error. Second, among the developed calibrated 
estimators, the CAL1 performs better than the CAL2.

4.	 CONCLUSION
Calibration estimators of the population total have 

been developed under two-stage sampling design based 
on the situation of unavailability of auxiliary information 
at the psu level. Monte Carlo simulations based on 
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both simulated and real dataset show the superiority of 
the proposed calibration estimators of the population 
total in comparison to the existing estimators such as 
Horvitz-Thompson type, double sampling ratio and 
regression estimators. Further, among the developed 
estimators, the calibration estimator based on the 
sampling design 1 performs better than the estimator 
based on sampling design 2. Therefore, the developed 
calibration estimators will produce reliable estimate 
of population parameters from the two-stage survey 
data in the situations of unavailability of auxiliary 
information at the psu level.
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