
1.	 INTRODUCTION
Analysis of Covariance (ANCOVA) is an 

established method for minimizing the error affecting 
the treatment comparisons. ANCOVA models are 
nothing but blending of ‘regression models’ (in the 
absence of treatment parameters) and ‘varietal design 
models’ (in the absence of covariates). But the problem 
of determining the optimum designs for the estimation 
of regression parameters corresponding to controllable 
covariates was not a topic of research for many years. The 
topic was firstly considered by Troya (1982a, 1982b). 
Although her investigations were pioneer in history in 
the topic of Optimum Covariate Designs (OCDs) but 
she was restricted only to Completely Randomized 
Design (CRD) set-up. After a long gap, Das et al. (2003) 
extended the work on OCDs to the block design set-
up, viz., Randomized Complete Block Design (RCBD) 
and some series of Balanced Incomplete Block Design 
(BIBD). They also constructed OCDs for the estimation 
of covariate parameters. Rao et al. (2003) also revisited 
the problem in CRD and RCBD set-ups. They identified 

that the solutions of construction of OCDs by using 
Mixed Orthogonal Arrays (MOAs) and thereby giving 
further insights and some new solutions. Dutta (2004, 
2009) and Dutta et  al. (2007, 2009a, 2009b, 2010a) 
developed OCDs to different design set-ups. Das et al. 
(2015) has published a book, viz., ‘Optimal Covariate 
Designs’ with a detail discussion on the topic. Mostly 
the designs developed by above mentioned authors are 
global optimal and the development of such designs are 
dependent on existence of Hadamard matrix of order v 
or b or k (v be the treatment numbers, b be the number 
of replications/ blocks in CRD/RCBD and k be the 
size of blocks in a variance balanced incomplete block 
design). However, Dutta et  al. (2010b) developed 
some D-optimal covariate designs for estimation of 
regression coefficients in incomplete block design 
set-up, when global optimal designs do not exist. Das 
et  al. (2015) described the D-optimal designs under 
non-regular situations in the case when Hadamard 
matrices and consequently global optimal covariate 
designs do not exist. Furthermore, Das et al. (2020) has 
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reported some new series of universal/global optimal 
covariate designs in CRD and RCBD set-ups without 
the existence of Hadamard matrix of order v or b.

In the present piece of investigation, an effort has 
been made to construct D-optimal covariate designs in 
CRD and RCBD set-ups under non-regular situations 
with b odd number of blocks or replications and v 
number of treatments. In the developed designs, the 
covariates are mutually orthogonal to each other. 
The methods of constructions of D-optimal covariate 
designs are developed by using Special Array (Das 
et al. 2020). The study contains five sections including 
the present introductory section. In section 2, the 
definition and properties of Special Array are presented. 
Section 3 and 4 describe the situations and conditions 
of the D-optimal covariate designs for CRD and RCBD 
set-ups. Construction of a new series of D-optimal 
covariate designs in CRD set-up has been presented in 
section 3. Similarly, construction of two new series of 
D-optimal covariate designs in RCBD set-up has been 
given in section 4. Conclusion of the study has been 
given in section 5.

2.	 SPECIAL ARRAY (SA); DEFINITION, 
PROPERTIES AND APPLICATIONS (DAS 
ET AL., 2020)

2.1	 Definition
A square matrix with elements 1, -1 and 0 of order 

h with r ( ≥ 1) number of rows (and columns) with all 
elements 0, whose all the distinct row or column vectors 
except r rows (or columns) are mutually orthogonal is 
referred to as Special Array (SA) of order h. In SA, 
each row or column sum is zero except the first row or 
column. The simplest examples, one for order 3 and 
two for order 5 are given below: 

1 0  1
0 0  0
1 0 -1

     r = 1

 
 
 
 
  ,

1  0  0  0  1
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
1  0  0  0 -1

      r = 3

 
 
 
 
 
 
 
   and 

1  1  0  1  1
1 -1  0 -1  1
0  0  0  0  0
1  1  0 -1 -1
1 -1  0  1 -1

      r = 1

 
 
 
 
 
 
 
 

2.2	 Properties: 
Let the Special Array (SA) of order h be denoted 

as *
hH , then

1)	 *
hdetH = 0

2)	 * *T *T *
h h h hH H H H=

3)	 Let *
1H  and *

2H  be two SA of order h1 and h2, 
respectively. Then the Kronecker product of *

1H  
and *

2H  is also a SA of order h1h2. For example,
1  1  0  1  1  0  0  0  0  0  1  1  0  1  1
1 -1  0 -1  1  0  0  0  0  0  1 -1  0 -1  1
0  0  0 

1  1  0  1  1
1 0  1 1 -1  0 -1  1
0 0  0  0  0  0  0  0
1 0 -1 1  1  0 -1 -1

1 -1  0  1 -1

 
       ⊗ =    

   
 
 

 0  0  0  0  0  0  0  0  0  0  0  0
1  1  0 -1 -1  0  0  0  0  0  1  1  0 -1 -1
1 -1  0  1 -1  0  0  0  0  0  1 -1  0  1 -1
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
1  1  0  1  1  0  0  0  0  0 -1 -1  0 -1 -1
1 -1  0 -1  1  0  0  0  0  0 -1  1  0  1 -1
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
1  1  0 -1 -1  0  0  0  0  0 -1 -1  0  1  1
1 -1  0  1 -1  0  0  0  0  0 -1  1  0 -1  1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3 Application
In this study, Special Array (constructed from 

Hadamard matrix with r rows and columns with all 
elements zero in the middle) is used to find out the 
number of D-optimal covariates in CRD and RCBD 
set-ups. The detailed discussion on this is given in the 
following sections.

3.	 COVARIATE DESIGNS UNDER 
NON-REGULAR CASES IN A EQUI-
REPLICATED CRD SET-UP
Let there be v treatments and c covariates in a design 

with total n experimental units. In matrix notation the 
model can be represented as 

(Y, Xτ + Zγ, σ2In)� (3.1)
where, for 1 ≤ i ≤ v, 1 ≤ j ≤ni (ni is the number of times 

the ith treatment is replicated; clearly 
v

i
i =1

n∑  = n) and 1 

≤ t ≤ c, Y is an observation vector and X is the design 
matrix corresponding to vector of treatment effects τvx1 
and Znxc= (( (t)

ijz )) is the design matrix corresponding to 
vector of covariate effects γcx1 = (γ1, γ2,…, γc)´. This is 
referred to as one–way model with covariates without 
general mean. In the above, Z is called covariate matrix 
of c covariates z1, z2,…, zc. Here z’s are assumed to be 
controllable non-stochastic covariates. 

The non-regular situations may arise where at 
least any one of the conditions X΄Z = 0 and Z΄Z = nIc 
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is violated. In that case, it is not possible to estimate 
simultaneously ANOVA parameters and γ-parameters 
orthogonally and/or most efficiently. In that case, we 
may consider D-optimality criterion to give an efficient 
allocation of treatments and covariates in CRD set-
up. Dey and Mukerjee (2006) and Dutta et al. (2014) 
had also considered this situation and they had given 
solutions for some D-optimal designs.

Let D* be a CRD with v treatments and the vector 
of parameters be 

θ = (τ1, τ2,…, τv, γ1, γ2,…, γc),
According to Dutta et  al. (2014), construction of 

D-optimal covariate designs in CRD set-up with equal 
replication, maximum value of the determinant of 
information matrix I(θ) of the design D* be denoted 
as det(I(θ)), with respect to the design variables {zij

(t)} 
satisfying ( ) [ 1,  1]; ,  ,  t

ijz i j t∈ − ∀ .
Then, 

' 1 '

1
' 1 '

det( ( )) ( )det( )

               ( )det( )       as    

               det( )det( )

v

i i i i
ii

v
i i i

i

I n Z Z n T T

b Z Z b T T n b i

N C

θ −

=

−

= −

= − = ∀

=

∑∏

∑
�(3.2)

where,
N = Diag(b, b,…,b), Ti = 1b´Zi, Znxc = (Z1´, Z2´,…, 

Zv´)´ and 
(1) (2) ( )
1 1 1
(1) (2) ( )
2 2 2

(1) (2) ( )

 ... 
 ... 

  .     .  ...  .Z
  .     .  ...  .
  .     .  ...  .

 ... 

c
i i i

c
i i i

b c
i

c
ib ib ib

z z z
z z z

z z z

×

 
 
 
 
 =
 
 
 
 
 

Note that 
' 1 '

i iC=Z Z T T
i

b−− ∑ � (3.3)

C is the information matrix for the regression 
coefficients γ1, γ2,…, γc. The maximization of det(I(θ)) 
is done for varying z-values for fixed ni’s. This leads 
to an upper bound for det(I(θ)) obtained through 
completely symmetric C-matrices. 

According to Lemma 2.3.1 (Das et  al. 2015), a 
necessary condition for maximization of det(C) can be 
achieved by taking zij

(t) = ±1 for fixed ni’s. Now we 

can develop the following theorem for construction of 
D-optimal covariate designs in a CRD set-up.

Theorem 3.1: When at least any one of the 
conditions X΄Z = 0 and Z΄Z = nIc is violated and if 
there exists Hv, then a set of c (= v – 1) orthogonal 
covariates will exist which ultimately produces a 
D-optimal covariate design in a CRD set-up with v 
number of treatments for b odd number of replications, 
provided Hb-1 exists. 

Proof (by construction): For construction of 
the D-optimal covariate design in a Completely 
Randomized Design set-up with v number of treatments 
for b odd number of replications, we follow the steps 
given below.

Step 1. Let us consider a Hadamard matrix of order 
v, Hv.

Hv=(1, h1, h2,…, hv-1)
Step 2. Let us construct a Special Array Hb* of 

order b from Hb-1 with one row and column with all 
zero elements in middle, i.e. (1*, h1*, h2*,…, h(b-1)/2-1*, 
0, h(b-1)/2*,…, hb-2*).

*
b

1...  1 0  1...1
........  0 ........
........  0 ........
......... 0 ........
1... -1 0 -1...1

H 0...  0 0  0...0
1...  1 0 -1...-1
........  0 ........
........  0 ........
........  0 ........
1... -1 0  

=

1...-1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Step 3. Using Hb*and Hv, by Kronecker product 
of these two matrices, we get (b-2) set of (v-1) Wij** 
matrices of order bxv (without considering the first 
column and the column with all zeros), where i=1, 2,…, 
(b-2) and j=1, 2,…, (v-1). In each of the Wij** matrix 
there is one row with all elements zero in the middle. 

*
ij i jW ** h h'  ,  denotes the Kronecker product= ⊗ ⊗

Step 4. According to Das et al. (2015), maximization 
of the determinant of information matrix of the design, 
I(θ), can be achieved by replacing the zero elements 
in Wij**either by -1 or +1. In each of (b‑2) sets, let 
us replace the zero elements of Wij** matrix by 
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(j+1) th row of Hv. In that way, we get (b-2) sets of (v-
1) mutually orthogonal Wij* matrices. The matrix of 
orthogonal optimal covariates, Z of order nxc can be 
constructed from the (v-1) Wij (=Wij*ʹ) matrices in any 
one of i sets. It has been verified that any set of c (=v – 1) 
orthogonal covariates ultimately produces a D-optimal 
covariate design with unique maximum determinant 
value of information matrix of the design, I(θ), in a 
CRD set-up. It is also verified that the determinant of 
the information matrix of the above design, I(θ), with 
c covariates has achieved the maximum value with the 
following result, as mentioned in theorem 2.3.1 (Das 
et al., 2015).

{ } -1det( ( )) ( ) ( -1) * ( - *)v cI b a c b a bθ ≤ + � (3.4)

Where ,  *a n bδ ξ δ= − = −

1

1
,  1(0) if  odd(even)

v

i i i i
i

n nδ δ δ−

=

= = =∑

[ ] [ ]
[ ] [ ] [ ]

if both of ,  are odd or even
( , )

1 if odd,  even or even,  odd

n
n

n n

δ δ
ξ ξ δ

δ δ δ

= = 
+ = = = =

[ ]  greatest integer less than equal to δ δ=

Corollary 3.1: The off diagonal elements of the 
information matrix (C) of regression coefficients of the 
designs developed in theorem 3.1, will be zero.

Proof: The proof is straight forward because in 
each ith set, the Wij matrices are mutually orthogonal 
to each other, where, i = 1, 2, …, b-2 and j = 1, 2, …, 
v-1.

For easy understanding of the constructional 
procedure we may see the following example.

Example 3.1: Let us consider a CRD with v = 8 
and b = 5. The Special Array of order 5 is

*
5

1 1 0 1 1
1-1 0 1-1

H 0 0 0 0 0
1 1 0-1-1
1-1 0-1 1

 
 
 
 =
 
 
 
 

The Hadamard matrix of order 8 is

8

1 1 1 1 1 1 1 1
1-1-1 1 1-1-1 1
1 1-1-1 1 1-1-1
1-1 1-1 1-1 1-1

H
1 1 1 1-1-1-1-1
1-1-1 1-1 1 1-1
1 1-1-1-1-1 1 1
1-1 1-1-1 1-1 1

 
 
 
 
 
 =  
 
 
 
  
 

The three sets of 7W** matrices have been 
constructed using H5*and H8, by Kronecker product of 
these two matrices.

First set of 7W** matrices are

11 12

 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1

W **  0 0 0 0 0 0 0 0 , W **  0 0 0 0 0 0 0 0
 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1

   
   
  
  = =
  
  
  
   

13 14

,

 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1

W **  0 0 0 0 0 0 0 0 , W **  0 0 0 0 0 0 0 0
 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1







  
  
  
  = =
 
 
 
  






 
 
 



15 16

 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1

W **  0 0 0 0 0 0 0 0 , W **  0 0 0 0 0 0 0 0
 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1

   
   
  
  = =
  
  
  
   

17

,

 1-1-1 1-1 1 1-1
-1 1 1-1 1-1-1 1

W **  0 0 0 0 0 0 0 0
 1-1-1 1-1 1 1-1
-1 1 1-1 1-1-1 1







 
 
 
 =
 
 
 
 

Second set of 7 W** matrices are 

21 22

 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1
 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1

W **  0 0 0 0 0 0 0 0 , W **  0 0 0 0 0 0 0 0
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1

   
   
  
  = =
  
  
  
   

,





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23 24

 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1
 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1

W **  0 0 0 0 0 0 0 0 , W **  0 0 0 0 0 0 0 0
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1

   
   
  
  = =
  
  
  
   







25 26

 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1
 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1

W **  0 0 0 0 0 0 0 0 , W **  0 0 0 0 0 0 0 0
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1

   
   
  
  = =
  
  
  
   

27

,

 1-1-1 1-1 1 1-1
 1-1-1 1-1 1 1-1

W **  0 0 0 0 0 0 0 0
-1 1 1-1 1-1-1 1
-1 1 1-1 1-1-1 1







 
 
 
 =
 
 
 
 

Third set of 7 W** matrices are

31 32

 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1

W **  0 0 0 0 0 0 0 0 , W **  0 0 0 0 0 0 0 0
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1
 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1

   
   
  
  = =
  
  
  
   

33 34

,

 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1

W **  0 0 0 0 0 0 0 0 , W **  0 0 0 0 0 0 0 0
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1
 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1







  
  
  
  = =
 
 
 
  






 
 
 



35 36

 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1

W **  0 0 0 0 0 0 0 0 , W **  0 0 0 0 0 0 0 0
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1
 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1

   
   
  
  = =
  
  
  
   

37

,

 1-1-1 1-1 1 1-1
-1 1 1-1 1-1-1 1

W **  0 0 0 0 0 0 0 0
-1 1 1-1 1-1-1 1
 1-1-1 1-1 1 1-1







 
 
 
 =
 
 
 
 

For first set, after replacing the row having all 
elements zero of each W** matrix with second to 
eighth row of H8 subsequently and we get,

11 12

 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1

W *  1-1-1 1 1-1-1 1 , W *  1 1-1-1 1 1-1-1
 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1

   
   
   
   = =
  
  
  
   

13 14

,

 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1

W *  1-1 1-1 1-1 1-1 , W *  1 1 1 1-1-1-1-1
 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1





   
  
  
  = =
  
  
  
  









15 16

 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1

W *  1-1-1 1-1 1 1-1 , W *  1 1-1-1-1-1 1 1
 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1

   
   
   
   = =
  
  
  
   

17

,

 1-1-1 1-1 1 1-1
-1 1 1-1 1-1-1 1

W *  1-1 1-1-1 1-1 1
 1-1-1 1-1 1 1-1
-1 1 1-1 1-1-1 1





 
 
 
 =
 
 
 
 

For second set, after replacing the row having all 
elements zero of each W matrix with second to eighth 
row of H8 subsequently and we get,

21 22

 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1
 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1

W *  1-1-1 1 1-1-1 1 , W *  1 1-1-1 1 1-1-1
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1

   
   
   
   = =
  
  
  
   

23 24

,

 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1
 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1

W *  1-1 1-1 1-1 1-1 , W *  1 1 1 1-1-1-1-1
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1





   
  
  
  = =
  
  
  
  









25 26

 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1
 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1

W *  1-1-1 1-1 1 1-1 , W *  1 1-1-1-1-1 1 1
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1

   
   
   
   = =
  
  
  
   

,



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27

 1-1-1 1-1 1 1-1
 1-1-1 1-1 1 1-1

W *  1-1 1-1-1 1-1 1
-1 1 1-1 1-1-1 1
-1 1 1-1 1-1-1 1

 
 
 
 =
 
 
 
 

For third set, after replacing the row having all 
elements zero of each W matrix with second to eighth 
row of H8 subsequently and we get,

31 32

 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1

W *  1-1-1 1 1-1-1 1 , W *  1 1-1-1 1 1-1-1
-1 1-1 1-1 1-1 1 -1-1 1 1-1-1 1 1
 1-1 1-1 1-1 1-1  1 1-1-1 1 1-1-1

   
   
   
   = =
  
  
  
   

33 34

,

 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1

W *  1-1 1-1 1-1 1-1 , W *  1 1 1 1-1-1-1-1
-1 1 1-1-1 1 1-1 -1-1-1-1 1 1 1 1
 1-1-1 1 1-1-1 1  1 1 1 1-1-1-1-1





   
  
  
  = =
  
  
  
  









35 36

 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1

W *  1-1-1 1-1 1 1-1 , W *  1 1-1-1-1-1 1 1
-1 1-1 1 1-1 1-1 -1-1 1 1 1 1-1-1
 1-1 1-1-1 1-1 1  1 1-1-1-1-1 1 1

   
   
   
   = =
  
  
  
   

37

,

 1-1-1 1-1 1 1-1
-1 1 1-1 1-1-1 1

W *  1-1 1-1-1 1-1 1
-1 1 1-1 1-1-1 1
 1-1-1 1-1 1 1-1





 
 
 
 =
 
 
 
 

In each set, the 7 W matrices are mutually 
orthogonal to each other i.e. the grand total of all the 
entries in the Hadamard product of any two distinct 
W-matrices reduces to zero.

From (3.3), we get
38.40  0      0       0          0           0     0
0     38.40   0       0          0           0     0
0         0   38.40   0          0           0     0

C 0         0      0     38.40     0        =    0     0
0         0      0        0      38.40       0     0
0         0      0        0          0      38.40  0
0         0      0        0          0          0  38.40

 
 
 
 
 
 
 
 
 
 
 

 and 

det(C) = (38.40)7 = 1.23×1011

det(I(θ)) = 58×1.23×1011 = 4.81×1016 (from 3.2)
Any one of the three sets of W matrices results 

the same value of det(I(θ)) (= 4.81×1016 ) which is 
the unique upper bound as mentioned in 3.4 for the 
set of seven D-optimal covariates in a CRD having 8 
treatments with 5 replications.

4.	 COVARIATE DESIGNS UNDER NON-
REGULAR CASES IN RCBD SET-UP
For two-way layout, the set-up can be written as
(Y, µ1+X1τ+X2β+Zγ, σ2I)� (4.1)
where µ, as usual, stands for the general effect, τvx1, 

βbx1 represent vectors of treatment and block effects, 
respectively, X1

nxv and X2
nxb are the corresponding 

incidence matrices, respectively. Y and Z as usual, 
represents an observation vector of order nx1 and the 
design matrix of order nxc corresponding to vector of 
covariate effects γcx1, respectively. 

The information matrix for the whole set of 
parameters ( ,  ,  ,  )′ ′ ′ ′η = µ τ β γ  underlying a design d 
with X1d, X2d and Zd as the versions of X1, X2 and Z 
in (4.1):

' ' '
1d 2d d

' ' '
1d 1d 1d 2d 1d d

d ' '
2d 2d 2d d

'
d d

n  1X      1X      1Z

    X X   X X   X Z
I ( )

                 X X   X Z

                               Z Z

 
 
 

η =  
 
 
  � (4.2)

Dutta et al. (2010b) considered D-optimal design 
when n=2 (mod 4) under non-regular cases in block 
design set-up. 

The situations may arise, where the conditions n=0 
(mod 4) with Z΄X1 ≠ 0 and Z΄X2 = 0 will exist. In that 
case, simultaneous estimation of ANOVA parameters 
and γ-parameters are not possible orthogonally and/or 
most efficiently. Here, the D-optimality criterion may be 
considered to give an efficient allocation of treatments 
and covariates in RCBD set-up. A block design for 
given b (odd number) and v (such that Hv exist), the 
reduced normal equation for estimation of γ is given by 
following the section 4.4 of Das et al. (2015): 

(Z΄QZ)γ = Z΄Qy
γ̂  = (Z΄QZ)-1 Z΄Qy
Where, Q = (I – X(X΄X)-X΄), X = (X1, X2)
Hence, the information matrix for γ is given by
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I(γ) = Z΄QZ
or, I(γ) = Z΄(I – X(X΄X)-X΄)Z
or, I(γ) = Z΄Z – ZʹX(X΄X)-X΄Z
or, det(I(γ)) = det(Z΄Z – ZʹX(X΄X)-X΄Z)
Since Q is non-negative definite, it follows that
Z΄QZ ≤ Z΄Z (in Lowener order sense; Pukelsheim 

1993) and equality comes when Z΄X1 = 0 and Z΄X2 = 0.
But in the present situation, i.e., n = 0 (mod 4) with 

Z΄X1≠ 0 and Z΄X2 = 0, it follows that 
Z΄QZ < Z΄Z.
Now, the problem is that of selecting Z-matrix with 

( )t
ijz ≤ 1 satisfying Z΄X1 ≠ 0 and Z΄X2 = 0 such that 

the covariate design will be D-optimal, i.e., det(I(γ)) or 
det(Z΄Z – ZʹX(X΄X)-X΄Z) should be maximum when 
Z∈  Z, Z = {Z: ( ) [ 1,  1]  ,  t

ijz i j∈ − ∀ }. So, the contribution 
from Z΄Z should be maximum and contribution from 
the part of Z΄X(X΄X)-X΄Z should be minimum. 

4.1	 Conditions for D-optimality
We have already observed that when n=0 (mod 4) 

with Z΄X1 ≠ 0 and Z΄X2 = 0, it is impossible to estimate 
γ-components most efficiently in the sense of attaining 
the lower bound σ2/n to the variance of the estimated 
covariate parameters. Thus, in the above case, the first 
problem is that of choosing a matrix Znxc = ( ( )t

ijz ) with 
( ) [ 1,  1]  ,  t
ijz i j∈ − ∀  such that the det(Z΄Z – ZʹX(X΄X)-

X΄Z) is maximum subject to Z΄X1 ≠ 0 and Z΄X2 = 0. 
A necessary condition for maximization of det(Z΄Z) 
where Z∈Z, is that ( ) 1  ,  ,  t

ijz i j t= ± ∀  (Lemma 4.4.1 of 
Das et al., 2015). Based on the necessary condition, we 
can restrict to the class Z* = {Z: ( ) 1  ,  ,  t

ijz i j t= ± ∀ } for 
finding D-optimum design.

Theorem 4.1: A covariate design Z*∈Z* is 
D-optimal in the sense of maximizing det(Z΄Z) subject 
to the condition Z΄X1 ≠ 0 and Z΄X2 = 0, if it satisfies 
Z*΄Z* = nIc and 

1a = ±1, where a be the elements of Z X , 
= 1, 2, ..., c and   = 1, 2, ..., v.
lm lm

l m
′

Proof: Based on the necessary condition, we can 
restrict to the class Z* for maximization of det(Z΄Z). 
For any Z∈Z*, we can write

det(Z΄Z) = det

12 1

12 2

1 2

n   s  . . . s
s  n   . . . s
.      .     .    .
.      .     .    .
.      .     .    .
s   s  . . . n

c

c

c c

 
 
 
 
 
 
 
  
 

where, sttʹ = ( ) ( )t t
ij ij

i j
z z ′∑∑ , t ≠ tʹ = 1, 2, . . . , c. The 

det(Z΄Z) will be maximum whenever it is possible to 
construct Z΄Z = nIc i.e. the covariates are mutually 
orthogonal to each other. So, all off-diagonal elements 
of Z΄Z can be zero. As the elements of Z΄X1 will be 
either +1 or -1 and Z΄X2 = 0, the contribution from 
the part of Z΄X(X΄X)-X΄Z will be minimum. Thus, 
det(Z΄Z – ZʹX(X΄X)-X΄Z) will be maximum and the 
theorem is proved. 

Now, we can represent any column of Z* in the 
form of a matrix U* of order vxb corresponding to the 
incidence matrix of the block design.

With the conditions Z΄X2 = 0 and Z*΄Z* = nIc, in 
addition ZʹX1 is such a matrix with all elements either 
+1 or -1, thus, in terms of U* matrix, the conditions 
reduce to:

C1: Each U* matrix has all column-sums equal to 
zero;

C2: Each U* matrix has all row-sums equal to 
either +1 or -1;

C3: The grand total of all the entries in the 
Hadamard product of any two distinct U* matrices 
reduces to zero.

Theorem 4.2: Under the realization of the 
conditions n = 0 (mod 4) with Z΄X1 ≠ 0 and Z΄X2 = 
0, then a set of c (= v – 1) orthogonal covariates will 
exist which ultimately produces a D-optimal covariate 
design in a RCBD set-up with v number of treatments 
for b odd number of blocks, provided Hv and Hb-1 exist. 

Proof (by construction): For construction of the 
D-optimal covariate design in a Randomized Complete 
Block Design set-up with v number of treatments for b 
odd number of replications, we follow the steps given 
below.

Step 1. Let us consider a Hadamard matrix of order 
v, Hv.

Hv=(1, h1, h2,…, hv-1)
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Step 2. Let us construct a Special Array Hb* of 
order b from Hb-1 with one row and column with all 
zero elements in middle, i.e. (1*, h1*, h2*,…, h(b-1)/2-1*, 
0, h(b-1)/2*,…, hb-2*).

*
b

1...  1 0  1...1
........  0 ........
........  0 ........
......... 0 ........
1... -1 0 -1...1

H 0...  0 0  0...0
1...  1 0 -1...-1
........  0 ........
........  0 ........
........  0 ........
1... -1 0  

=

1...-1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Step 3. Using Hv and Hb*, by Kronecker product 
of these two matrices, we get (b-2) set of (v-1) Uij* 
matrices of order vxb (without consider the first row 
and the row with all zeros), where i=1, 2,…, (v-1) and 
j=1, 2,…, (b-2). In each of the Uij* matrix there is one 
column with all elements zero in the middle. 

* *
ih h  ,  denotes the Kronecker productij jU ′= ⊗ ⊗

Step 4. According to Das et al. (2015), maximization 
of the determinant of Z΄Z, can be achieved by replacing 
the zero elements in Uij* matrix either by -1 or +1. 
In each of (b-2) sets, let us replace the zero elements 
of Uij* matrix by (i+1)th column of Hv. In that way, 
we get (b-2) sets of (v-1) mutually orthogonal Uij* 
matrices. The matrix of orthogonal optimal covariates, 
Z of order nxc can be constructed from the (v-1) Uij* 
matrices in any one of j sets. It has been verified that 
any set of c (= v – 1) orthogonal covariates ultimately 
produces a D-optimal covariate design in a RCBD set-
up satisfying the conditions C1 to C3 simultaneously.

Example 4.1: Let us consider a RCBD with v = 8 
and b = 3. The Special Array of order 3 is

*
3

1  0  1
H 0  0  0

1  0 -1

 
 =  
 
 

The Hadamard matrix of order 8 is

8

1 1 1 1 1 1 1 1
1-1-1 1 1-1-1 1
1 1-1-1 1 1-1-1
1-1 1-1 1-1 1-1

H
1 1 1 1-1-1-1-1
1-1-1 1-1 1 1-1
1 1-1-1-1-1 1 1
1-1 1-1-1 1-1 1

 
 
 
 
 
 =  
 
 
 
  
 

The one set of 7U* matrices have been constructed 
using H8 and H3*, by Kronecker product of these two 
matrices.

The set of 7U* matrices are

* *
11 21

 1  0 -1  1   0 -1
-1  0  1 -1   0  1
 1  0 -1 -1   0  1
-1  0  1  1   0 -1

U , U ,
 1  0 -1  1   0 -1
-1  0  1 -1   0  1
 1  0 -1 -1   0  1
-1  0  1  1   0 -1

   
   
   
   
   
   = =   
   
   
   
      
   

*
31

 1   0 -1
 1   0 -1
-1   0  1
-1   0  1

U ,
 1   0 -1
 1   0 -1
-1   0  1
-1   0  1

 
 
 
 
 
 =  
 
 
 
  
 

* *
41 51

 1   0 -1  1  0  -1
 1   0 -1 -1  0   1
 1   0 -1  1  0  -1
 1   0 -1 -1  0   1

U , U
-1   0  1 -1  0   1
-1   0  1  1  0  -1
-1   0  1 -1  0   1
-1   0  1  1  0  -1

   
   
   
   
   
  = =  
  
  
  
    
   

*
61

 1  0  -1
-1  0   1
-1  0   1
 1  0  -1

, U ,
-1  0   1
 1  0  -1
 1  0  -1
-1  0   1

 
 
 
 
 

  =  
  
  
  
    

 

*
71

 1  0  -1
 1  0  -1
-1  0   1
-1  0   1

U
-1  0   1
-1  0   1
 1  0  -1
 1  0  -1

 
 
 
 
 
 =  
 
 
 
  
 

In this set, after replacing the column having all 
elements zero of each U* matrix with second to eighth 
column of H8 subsequently, we get,
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* *
11 21

 1   1 -1  1   1 -1
-1  -1  1 -1  -1  1
 1   1 -1 -1  -1  1
-1  -1  1  1   1 -1

U , U
 1   1 -1  1   1 -1
-1  -1  1 -1  -1  1
 1   1 -1 -1  -1  1
-1  -1  1  1   1 -1

   
   
   
   
   
  = =  
  
  
  
    
   

*
31

 1   1 -1
 1   1 -1
-1  -1  1
-1  -1  1

, U ,
 1   1 -1
 1   1 -1
-1  -1  1
-1  -1  1

 
 
 
 
 

  =  
  
  
  
    

 

* *
41 51

 1   1 -1  1   1  -1
 1   1 -1 -1  -1   1
 1   1 -1  1   1  -1
 1   1 -1 -1  -1   1

U , U
-1  -1  1 -1  -1   1
-1  -1  1  1   1  -1
-1  -1  1 -1  -1   1
-1  -1  1  1   1  -1

  
  
  
  
  
  = =  
  
  
  
  
  

*
61

 1   1  -1
-1  -1   1
-1  -1   1
 1   1  -1

, U ,
-1  -1   1
 1   1  -1
 1   1  -1
-1  -1   1

  
  
  
  
  
  =  
  
  
  

      
  

*
71

 1   1  -1
 1   1  -1
-1  -1   1
-1  -1   1

U
-1  -1   1
-1  -1   1
 1   1  -1
 1   1  -1

 
 
 
 
 
 =  
 
 
 
  
 

In this set, the 7 U* matrices are mutually 
orthogonal to each other i.e., the grand total of all the 
entries in the Hadamard product of any two distinct U* 
matrices reduces to zero and all column sums equal to 
zero and all row sums equal to either +1 or -1 in each 
U* matrix. These orthogonal covariates ultimately 
produce a D-optimal covariate design in a RCBD set-
up satisfying the conditions C1 to C3 simultaneously.

In this example, we can also verify that Z΄X1≠ 
0, Z΄X2 = 0, ZʹZ = nIc, Z΄QZ< Z΄Z; where 
Q = (I – X(X΄X)-X΄), X = (X1, X2) and det(I(γ)), which 
is unique maximum for the set of seven D-optimal 
covariates. In this case, X1, X2 and Z are the following:

1 0
X

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0

0

=
0 1 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1








2

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0

0

, X

0 1
0 0 1

0 1
0 0 1
0 0 1
0 0

=

1

  
  
  
  

   
   
   
   
   
   
   
   
   
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  

,  


























1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1

Z=

− − − −
− − − −

− − − −
− − − −

− − − −
− − − −

− − − −

− − − −
− − − −

− − − −
− − − −

− − − −
− − − −

− − − −
− − − − − − −

− − −
− − 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−
− − −

− − −
− −



−
− − −

− − −
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Now, we can easily find out Z΄X1, Z΄X2 and ZʹZ. 
These are given below:

1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1

 

1

Z X

1

,
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1 1 1

′

− − − −
− − − −

− − −

−

 
 
 
 
 

=  
 


−

−
− − − −

− − − −
− −

− −



−


−


 
 

2Z X ,  Z Z=

0

0 0 0 24 0 0 0 0 0 0
0 0 0 0 24 0 0 0 0 0
0 0 0 0 0 24 0 0 0 0
0 0 0 0 0 0 24 0 0 0
0 0 0 0 0 0 0 24 0 0
0 0 0 0 0 0 0 0 24 0
0 0 0 0 0 0 0 0 24

   
   
   
   
   ′ ′=    
   
   
   
   
   

So, the information matrix for γ is I(γ) = Z΄QZ = 
Z΄Z – ZʹX(X΄X)-X΄Z =

21.33334 0 0 0 1.1 16 0 0
0 21.33334 0 0 0 1.1 16 0

1.1 16 1.11 16 21.3333 5.6 17 0 0 2 16
1.1 16 1.11 16 5.6 17 21.3333 0 0 5.6 17
1.1 16 0 0 0 21.3333 0 0

0 1.1 16 0 0 0 21.3333 0
0 0 1.7 16 1.7 16 1.1 16 1.1 16 21.333

E
E

E E E E
E E E E
E

E
E E E E

− −
− −

− − − − − − −
− − − − − −
− −

− −
− − − − − − − 3

 
 
 
 
 

≅ 
 
 
 
 
 

21.33 0 0 0 0 0 0
0 21.33 0 0 0 0 0
0 0 21.33 0 0 0 0
0 0 0 21.33 0 0 0
0 0 0 0 21.33 0 0
0 0 0 0 0 21.33 0
0 0 0 0 0 0 21.33

 
 
 
 
 
 
 
 
 
 
 

The determinant value of the information matrix 
for γ i.e., det(I(γ)) = (21.33)7 = 2008796709, which 
is unique maximum for the set of seven D-optimal 
covariates in a RCBD with 8 treatments in 3 blocks. 

Theorem 4.3: Under the realization of the 
conditions n = 0 (mod 4) with Z΄X1 ≠ 0 and Z΄X2 = 
0, then a set of c (= v – 1) orthogonal covariates will 
exist which ultimately produces a D-optimal covariate 
design in a RCBD set-up with v number of treatments 
for b odd number of blocks, provided Hv and Hb-r exists 
such that r(> 1) is an odd number and Hr-1 exists where 
r is the number of rows and columns in the SA with all 
elements zero.

Proof (by construction): For construction of the 
D‑optimal covariate design in a Randomized Complete 
Block Design set-up with v number of treatments for b 
odd number of replications, we follow the steps given 
below.

Step 1. Let us consider a Hadamard matrix of order 
v, Hv.

Hv = (1, h1, h2,…, hv-1)

Step 2. Let us construct a Special Array *
bH  of 

order b from Hb-r with r rows and columns with all 
zero elements in middle, i.e. (1*, h1*, h2*,…, h(b-r)/2-1*, 
0,…, 0, h(b-r)/2*,…, hb-r-1*).

*
b

1  1  0. . . . . . .0  1  1
1 -1 0. . . . . . .0 -1  1
0  0 0. . . . . . .0  0  0
. . . . . . . . . . . . . . . .

H
. . . . . . . . . . . . . . . .
0  0 0. . . . . . .0  0  0
1  1 0. . . . . . .0 -1 -1
1 -

=

1 0. . . . . . .0  1 -1

 
 
 
 
 
 
 
 
 
 
  
 

Step 3. Using Hv and Hb*, by Kronecker product 
of these two matrices, we get (b-r-1) set of (v-1) Uij** 
matrices of order vxb (without consider the first row 
and the r rows with all zeros), where i=1,2,…,(v-1) and 
j=1,2,…,(b-r-1). In each of the Uij** matrix there are r 
columns with all elements zero in the middle. 

** *
ij iU h h  ,  denotes the Kronecker productj

′= ⊗ ⊗

Step 4. As Hv and Hr-1 both are exists, based on the 
Theorem 4.2, a set of c (= v – 1) orthogonal covariates 
will exist which ultimately produces a D-optimal 
covariate design in a RCBD set-up with v number 
of treatments for r odd number of replications. The 
constructed matrix of order vxr is denoted as Uij***, 
where, i=1, 2,…, (v-1) and j=1, 2,…, (r-2).

Step 5. In each set, insert the first U*** matrix 
of order vxr in the U11** matrix, such that all the r 
columns with all elements zero in the middle has been 
replaced by +1 or -1. Let the resulting matrix be U11*. 
Repeat the procedure with other U*** matrices in the 
remaining Uij** matrices in the same set. Thus we get 
(v-1)Uij* matrices of order vxb which are orthogonal 
to each other. Finally, the desired (v-1) U* matrices of 
order vxb ultimately produces a D-optimal covariate 
design in a Randomized Complete Block Design set-
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up with v number of treatments for b odd number of 
replications satisfying the conditions C1, C2 and C3 
simultaneously.

For easy understanding of the above steps, the 
following example will be useful. 

Example 4.2: Let us consider a RCBD with v = 8 
and b = 7. When r=3, the 7U*matrices are given below:

Step 1. Let us consider a Hadamard matrix of order 
8, H8.

8

1 1 1 1 1 1 1 1
1-1-1 1 1-1-1 1
1 1-1-1 1 1-1-1
1-1 1-1 1-1 1-1

H
1 1 1 1-1-1-1-1
1-1-1 1-1 1 1-1
1 1-1-1-1-1 1 1
1-1 1-1-1 1-1 1

 
 
 
 
 
 =  
 
 
 
  
 

Step 2. Let us construct a Special Array of order 
7 from H4 with 3 rows and columns with all zero 
elements in the middle, *

7H  i.e. (1*, *
1h , 0, 0, 0, *

2h , *
3h ).

( )*
7 1 2 3

1  1  0  0  0  1  1
1 -1  0  0  0 -1  1
0  0  0  0  0  0  0

H 1*,h *,0,0,0,h *,h * 0  0  0  0  0  0  0
0  0  0  0  0  0  0
1  1  0  0  0 -1 -1
1 -1  0  0  0  1 -1

 
 
 
 
 

= =  
 
 
 
 
 

Step 3. By using H8 and *
7H , by Kronecker product 

of these two matrices, we get 3 set of 7 *
ijU  matrices 

of order 8x7 where i=1,2,…,7 and j=1,2,3. In each of 
the **

ijU  matrix there are 3 columns with all elements 
zero in the middle. First matrix of first set **

11U  is the 
following. 

( )**
11 1 1

 1  1 -1  0  0  0 -1  1
-1 -1  1  0  0  0  1 -1
 1  1 -1  0  0  0 -1  1
-1 -1  1  0  0  0  1 -1

U h h* 1 -1  0  0  0 -1  1
 1  1 -1  0  0  0 -1  1
-1 -1  1  0  0  0  1 -1
 1  1 
-1

 
 
 
 
 
 ′= ⊗ = ⊗ = 
 
 
 
  
 

-1  0  0  0 -1  1
-1  1  0  0  0  1 -1

 
 
 
 
 
 
 
 
 
 
  
 

Similarly, we can easily construct the others.

Step 4. As H8 and H2 exists, based on the Theorem 
4.2, a set of c (= 7) orthogonal covariates will exist 
which ultimately produces a D-optimal covariate design 
in a Randomized Complete Block Design set-up with 8 
number of treatments for 3 odd number of replications. 
The constructed matrix of order 8x3 is denoted as ***

ijU  , 
where, i=1, 2,…, 7 and j=1.

*** ***
11 21

 1   1 -1  1   1 -1
-1  -1  1 -1  -1  1
 1   1 -1 -1  -1  1
-1  -1  1  1   1 -1

U , U
 1   1 -1  1   1 -1
-1  -1  1 -1  -1  1
 1   1 -1 -1  -1  1
-1  -1  1  1   1 -1

   
  
  
  
  
  = =  
  
  
  
    
   

***
31

 1   1 -1
 1   1 -1
-1  -1  1
-1  -1  1

, U ,
 1   1 -1
 1   1 -1
-1  -1  1
-1  -1  1

 
  
  
  
  
  =  
  
  
  
    

 

*** ***
41 51

 1   1 -1  1   1  -1
 1   1 -1 -1  -1   1
 1   1 -1  1   1  -1
 1   1 -1 -1  -1   1

U , U
-1  -1  1 -1  -1   1
-1  -1  1  1   1  -1
-1  -1  1 -1  -1   1
-1  -1  1  1   1  -1

  
  
  
  
  
  = = 
 
 
 
  
  

***
61

 1   1  -1
-1  -1   1
-1  -1   1
 1   1  -1

, U ,
-1  -1   1
 1   1  -1
 1   1  -1
-1  -1   1

  
  
  
  
  
  =   

   
   
   
      

  

***
71

 1   1  -1
 1   1  -1
-1  -1   1
-1  -1   1

U
-1  -1   1
-1  -1   1
 1   1  -1
 1   1  -1

 
 
 
 
 
 =  
 
 
 
  
 

Step 5. In each set, insert the first ***
11U  matrix of 

order 8x3 in the **
11U  matrix, such that all the 3 columns 

with all elements zero in the middle has been replaced 
by either +1 or -1. Let the resulting matrix be **

11U . 
Repeat the procedure with other U*** matrices in the 
remaining **

ijU  matrices in the same set. Thus we get 
7‌ *

ijU  matrices of order 8x7 which are orthogonal to 
each other. Here, ***

11U  matrix is inserted in **
11U  matrix 

and we get the following matrix *
11U . 
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*
11

 1 -1  1  1 -1 -1  1
-1  1 -1 -1  1  1 -1
 1 -1  1  1 -1 -1  1
-1  1 -1 -1  1  1 -1

U
 1 -1  1  1 -1 -1  1
-1  1 -1 -1  1  1 -1
 1 -1  1  1 -1 -1  1
-1  1 -1 -1  1  1 -1

 
 
 
 
 
 =  
 
 
 
  
 

Similarly, we can find out the others. Here, from 
each set, finally, the desired 7U* matrices of order 8x7 
ultimately produces a D-optimal covariate design in 
a Randomized Complete Block Design set-up with 8 
number of treatments for 7 odd number of replications 
satisfying the conditions C1, C2 and C3 simultaneously.

For this RCBD with v=8 and b=7, the other possible 
alternative is for 7 D-optimum covariates, use SA of 
order 7 with r=5.

Corollary 4.1: The D-optimal covariate design in 
RCBD developed by theorem 4.3 is true for CRD with 
similar v and b (number of replications).

Proof: Straight forward from the definition of 
CRD.

5.	 CONCLUSION
New D-optimal covariate designs in CRD and 

RCBD set ups have been presented in section 3 and 4. 
In Theorem 3.1 and Theorem 4.2, if Hv and Hb-1 exist, 
then c=(v – 1) D-optimal covariates will exist in a CRD 
and RCBD set ups with v number of treatments for b 
odd number of replications (or blocks). In Theorem 
4.3, if Hv and Hb-r exists, then c=(v – 1) D-optimal 
covariates will exist in a RCBD set up with v number 
of treatments for b odd number of blocks provided r 
(> 1) is a odd number and Hr-1 exist. The developed 
D-optimal covariate designs under the above three 
Theorems are not available in the present day literature. 
The designs with optimal covariates can be applied in 
practical situation under ANCOVA model. Interested 
readers may follow Sinha (2009) and Das et al. (2015) 
for the purpose of practical application. 
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