
1.	 INTRODUCTION
Computer experiments are being widely conducted 

in those situations where the physical experiments 
and the process underlying it are too expensive, 
time-consuming or sometimes not even possible to 
observe. While designing computer experiments, Latin 
Hypercube designs are popularly used. These designs 
were introduced by McKay et  al. (1979) and said to 
have the one-dimensional space-filling property.

A Latin hypercube design ( )denoted as    ,LHD n m  
is an   n m×  matrix whose columns are permutations of 
the column vector ( )1  2   ', , ..., .n  For example, an LHD 
with 5 runs and 3 columns (or factors) is given below 
where columns are permutations of levels {1,2,3,4,5}.

1 2 5

3 4 2

4 1 3

5 3 1

2 5 4

Whenever polynomial models are considered, 
orthogonality will be an important criterion to evaluate 
LHDs. For any ( )1 , , mLHD l l= … , where il  is the thi  

factor or column of the LHD, i jl lρ  is defined as the 
correlation coefficient between il  and jl  and is given 

as 1 2' ' ' // ( )
i jl l i j i i j jl l l l l lρ = . If the correlation coefficient 

between any two factors is zero then LHD is orthogonal 
LHD (OLHD) i.e. ( ) 0ij LHDρ =  for all i j≠  and if 

( )ij LHDρ  is near zero then the LHD is nearly 
orthogonal LHD. An example of an OLHD with 7 runs 
and 3 factors is given below.

1 7 6

2 4 1

3 2 3

4 1 5

5 3 7

6 5 2

7 6 4

It may be checked that correlation between any two 
factors in the above design is zero.

Ye (1998) provided a real example of using OLHD 
to simulate the cooling system of an injection molding 
process in which there were six input variables (factors). 
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He used a 17 x 6 OLHD in the computer experiment 
through which he built two regression models for two 
reponse variables, one of them measuring quality and 
another measuring productivity of the system.

An OLHD with n runs and m factors is denoted as 
( ),OLHD n m  and each factor includes n uniformly 

spaced levels presented in its centered form i.e., levels 
of factors are given as

1 3 2 1 3 1
2 2 2 2 2

,  ,  , , , ,  n n n i n n− − − + − − − − … − … 
 

. A 

1st order OLHD is an LHD with mutually orthogonal 
columns that ensures independent estimation of linear 
effects when 1st order model is considered. Similarly, 
an LHD is said to be a 2nd order OLHD if any two 
columns are orthogonal and any column is orthogonal 
to element wise product of any other two columns, and 
these designs ensure independence of estimates of main 
effects and any quadratic or two factor interaction 
effects. An example of OLHD (8,4) is given below 
where levels are represented in centered form.

1 3 5 7 1 3 5 7
3 1 7 5 3 1 7 5

1 2
5 7 1 3 5 7 1 3
7 5 3 1 7 5 3 1

'

         
 /  

         
D

− − − − 
 − − − − =
 − − − −
 

− − − − 

Different methods of construction are available in 
the literature. Tang (1993) proposed orthogonal arrays-
based space filling Latin hypercube designs which have 
better space filling properties than randomly selected 
Latin hypercube designs and Tang (1994) proposed 
method of construction of maximin Latin Hypercube 
designs. Such designs were based on maximization of 
minimum distances between the pairs of design points. 
Ye (1998) provided the method of construction of 
OLHD for given 2kn =  or 12kn +=  and 22km −=  for 
any integer k > 1. Steinberg and Lin (2006) provided 
construction methods for obtaining OLHD for particular 

22
k

 run sizes for any integer k. Cioppa and Lucas 
(2007) proposed an algorithmic approach to obtain 
OLHD, given a fixed sample size in more dimensions. 
Lin et al. (2009) coupled an orthogonal array of index 
1 with a small orthogonal or nearly orthogonal Latin 
hypercube to obtain orthogonal or nearly orthogonal 
Latin hypercube. Sun et al. (2009) proposed a method 
for constructing OLHDs in which all the linear terms 
are orthogonal not only to each other, but also to the 

quadratic terms. Sun et al. (2010) presented an approach 
for obtaining OLHDs with 12  cn r +=  or 12 1cr + +  runs 
and for 2ck =  columns/factors where, r is a positive 
integer. Lin et al. (2010) proved that no OLHD exists 
for 4 2   r +  runs, where r is any positive integer and also 
developed a more flexible method for constructing 
orthogonal or nearly orthogonal Latin hypercube 
designs. Dey and Sarkar (2014) extended result of Lin 
et al. (2009) and used orthogonal array of strength 2 to 
obtain several 1st  order OLHD (n, m). Efthimiou et al. 
(2015) proposed methods for constructing nearly 
orthogonal Latin hypercube designs with 2,4,8,12,16,20 
factors having flexible run sizes. Parui et  al. (2015) 
proposed construction methods for obtaining OLHDs 
for all permissible number of runs for 2 and 3 factors. 
Mandal et  al. (2016) proposed method for obtaining 
OLHDs with special reference to four factors.

One can see that the available methods OLHD 
construction usually have restrictions either in terms of 
runs or factors. Among others, Bingham et al. (2009), 
Lin et al. (2009, 2010), Sun et al. (2010), Gu and Yang 
(2013), Wang et  al. (2015) also obtained methods to 
construct nearly OLHDs. In this paper we propose a 
method to construct nearly OLHDs. The method of 
construction developed provides nearly OLHDs with 
flexible number of runs and factors.

This paper is organized as follows. Section 2 
contains the methodology to obtain nearly OLHDs. 
In Section 3, a comparison is made on the designs 
available in the literature and the designs obtained from 
proposed method. In Section 4 discussion is made on 
obtaining nearly OLHDs.

2.	 METHODOLOGY
Pang et al. (2022) developed construction method 

to obtain nearly OLHD 1 12 2 2( , )c c c+ −+  based on the 
construction method available in Sun et al. (2009) and 
Algorithm 1 in Wang et  al. (2015) and focused on 
maximin L2 distance criterion to show asymptotic 
optimality of the design. In this section, we present 
construction method to obtain nearly OLHD 

1 12 2 2( , )c c cr + −+  based on the method given in Sun 
et al. (2010) and Algorithm 1 of Wang et al. (2015). 
Consider the following steps to first obtain OLHD 

12 2( , )c cr + , followed by steps to obtain nearly OLHD 
1 12 2 2( , )c c cr + −+  from resulted OLHD.

Step 1. Let c be any positive integer. Then for 1c =
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1

1 1
1 1

   
S  
=  − 

 and 1

1 2
2 1

  
T  
=  − 

Step 2. For  c≥  2, define cS  and cT  as follow

1 1

1 1

*

*
c c

c
c c

S S
S

S S
− −

− −

 −
=  
 

 , 

1
1 1 1

1
1 1 1

2
2

* *

*

( )c
c c c

c c
c c c

T T S
T

T S T

−
− − −
−

− − −

 − +
=  

+ 

where, * operator on an even rowed matrix results 
into top half of the rows multiplied by –1 and others 
rows left without any change.

Step 3. Let 
2

c
c c

SH T = − 
 

. For any positive 

integer and   c r  and ( ) ( ) ( )( )1 2
2 2

'

. *
, ', , ' 'c c

r
c c cr

B H H H= …  , 

where i
cH  is calculated as ( )1 2 ( . )i c

c c cH H i S= + − , 
where 1 2, .i r= …

Step 4. Then OLHD 12 2( , )c cr +  is given as

D 2 21

2 2

2 2 *

*

   
( , )

c c

c c

rc c

r

B
r

B
+

 
=   − 

 and denote it by L .

Step 5. Let OLHD 12 2( , )c cr −  be denoted as 0L , 
then 1E  and 1F  is given as, 1 02 2/E L J= − , 

1 02 2/F L J= + , where J is a unit matrix of imension (
12 2( * )c cr − .

Step 6. Let, ( )1 1  ' ', 'K E F= . Then nearly OLHD say 
P of dimensions 1 12 2 2( , )c c cr + −+  is given as P  

( )1 12 2 2( , ) , .c c cr L K+ −+ =

Example 1. For r = 3 and c = 2, consider obtaining 
a nearly OLHD (24,6).

Firstly, we obtain 2T  from 1S  and 1T . 

2

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

            
   

       
  

      
    

    

T

 
 − − =
 − −
 

− − 

Then, 2
2 2

0 5 1 5 2 5 3 5
1 5 0 5 3 5 2 5
2 5 3 5 0 5 1 52
3 5 2 5 1 5 0 5

. . . .
   

. . . .
. . . .

   
. . . .

SH T

 
 − −   = − =   − − 
 

− − 

.

Now for 2 r =  and 2c = , ( ) ( )( )2 2
1 2
2 22 2 2

'

. *
, ' 'B H H=  

is obtained.

( )1 2
2 2 21 1 2 ( . )H H S= + −  ( )for 1  .i =  Therefore, 

1
2

0 5 1 5 2 5 3 5
1 5 0 5 3 5 2 5
2 5 3 5 0 5 1 5
3 5 2 5 1 5 0 5

. . . .
   

. . . .
. . . .

   
. . . .

H

 
 − − =
 − −
 

− − 
.

Similarly, 2
2

4 5 5 5 6 5 7 5
5 5 4 5 7 5 6 5

6 5 7 5 4 5 5 5
7 5 6 5 5 5 4 5

. . . .
   

. . . .
. . . .

   
. . . .

H

 
 − − =
 − −
 

− − 

 and 

3
2

8 5 9 5 10 5 11 5
9 5 8 5 11 5 10 5

10 5 11 5 8 5 9 5
11 5 10 5 9 5 8 5

. . . .
   

. . . .
. . . .

   
. . . .

H

 
 − − =
 − −
 

− − 

 is obtained. Now 

OLHD 2 1 22 2 2( . , )+  is given as OLHD 

( )
2 2

2 2

3 2 2

3 2 2

16 4 . ,

. ,

,
B

B

 
 = =
 − 

'

12 4

0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 5 11 5
1 5 0 5 3 5 2 5 5 5 4 5 7 5 6 5 9 5 8 5 11 5 10 5
2 5 3 5 0 5 1 5 6 5 7 5 4 5 5 5 10 5 11 5 8 5 9 5
3 5 2 5 1 5 0 5 7 5 6 5 5 5 4 5 11 5 10 5 9 5 8 5

,

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

B

 
 − − − − − − − =
 − − − − − −
 

− − − − − − 

.

Therefore, OLHD ( ) 12 4

12 4

24 4 ,

,

,
B
B

 
= = − 

Runs 1 X    2X    3 X 4 X Runs 1 X    2X    3 X 4 X

1 0.5 1.5 2.5 3.5 13 -0.5 -1.5 -2.5 -3.5

2 1.5 -0.5 3.5 -2.5 14 -1.5 0.5 -3.5 2.5

3 2.5 -3.5 -0.5 1.5 15 -2.5 3.5 0.5 -1.5

4 3.5 2.5 -1.5 -0.5 16 -3.5 -2.5 1.5 0.5

5 4.5 5.5 6.5 7.5 17 -4.5 -5.5 -6.5 -7.5

6 5.5 -4.5 7.5 -6.5 18 -5.5 4.5 -7.5 6.5

7 6.5 -7.5 -4.5 5.5 19 -6.5 7.5 4.5 -5.5

8 7.5 6.5 -5.5 -4.5 20 -7.5 -6.5 5.5 4.5

9 8.5 9.5 10.5 11.5 21 -8.5 -9.5 -10.5 -11.5

10 9.5 -8.5 11.5 -10.5 22 -9.5 8.5 -11.5 10.5

11 10.5 -11.5 -8.5 9.5 23 -10.5 11.5 8.5 -9.5

12 11.5 10.5 -9.5 -8.5 24 -11.5 -10.5 9.5 8.5
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Now, let OLHD 12 2( * ) c cr − i.e., OLHD (12,2)
0 5 1 5 2 5 3 5 4 5 5 5 0 5 1 5 2 5 3 5 4 5 5 5
1 5 0 5 3 5 2 5 5 5 4 5 1 5 0 5 3 5 2 5 5 5 4 5

. . . . . . . . . . . .
               '

. . . . . . . . . . . .
− − − − − − 

=  − − − − − −   
be considered as 0L . Then, 1E  and 1F  are obtained,

1

1 5 3 5 5 5 7 5 9 5 11 5 0 5 2 5 4 5 6 5 8 5 10 5
3 5 0 5 7 5 4 5 11 5 8 5 2 5 1 5 6 5 5 5 10 5 9 5
. . . . . . . . . . . .

               ' 
. . . . . . . . . . . .

E
− − − − − − 

=  − − − − − −   
and

1

0 5 2 5 4 5 6 5 8 5 10 5 1 5 3 5 5 5 7 5 9 5 11 5
2 5 1 5 6 5 5 5 10 5 9 5 3 5 0 5 7 5 4 5 11 5 8 5
. . . . . . . . . . . .

               '
. . . . . . . . . . . .

F
− − − − − − 

=  − − − − − −   
and K is given as,

( )1 1
' ', 'K E F= . Therefore, nearly OLHD 

1 12 2 2( . , )c c cr + −+  is given as P = ( , )'L K′ ′ .
The above obtained design P is a nearly orthogonal 

Latin hypercube design of dimension 
( )1 12 2 2 24 6( . , ) . . ,c c cr i e+ −+ . The correlation 

coefficient found between the column pairs (1,5), (1,6), 
(3,5), (3,6), (4,5), (4,6) and (5,6) is 0.06206, 0.06206, 
0.010435, 0.010435, -0.005217, 0.005217 and 
0.005217, respectively. For other column pairs, the 
correlation coefficient is zero. The maximum absolute 
correlation is 0.06206 found between column/factor 
pairs (1,5) and (1,6).

3.	 COMPARISON WITH DESIGNS 
AVAILABLE IN LITERATURE
Table 1 presents some nearly orthogonal LHDs 

constructed using proposed methodology and its 
comparison with some of the existing methods of 
constructing nearly OLHDs. In the first column, run 
sizes of the designs has been given and corresponding 
maximum number of factors under existing methods 
and proposed method has been given in other columns. 

Table 1. Comparison of maximum number of factors of nearly 
orthogonal Latin hypercube designs for some given run sizes  

(< 200)

Run 
size LMT GY GE WYLL PWY Proposed 

method

8 - 6 - - 6 6

16 - 12 - 15 12 12

24 - - - 23 - 6

32 - 24 - 31 24 24

40 - - - - - 6

48 - - - 47 - 12

56 - - - 24 - 6

64 48 48 - 63 48 48

72 - - - - - 6

80 - - - - - 12

88 - - - - - 6

96 - - 24 71 - 24

104 - - - - - 6

112 - - - - - 12

120 - - - - 6

128 - 96 - 96 96 96

136 - - - - - 6

144 - - - - - 12

152 - - - - - 6

160 - - - 36 - 24

168 - - - - - 6

176 - - - - - 6

184 - - - - - 6

192 - - - 72 - 48

200 - - - 48 - 6

Note: LMT = Lin, Mukerjee and Tang (2009); GY = Gu and Yang (2012): 
GE = Georgiou and Efthimiou (2015); WYLL = Wang, Yang, Lin and Liu 
(2015); PWY = Pang, Wang and Yang (2022).

n 1 X    2X    3 X 4 X 5 X 6 X n 1 X    2X    3 X 4 X 5 X 6 X

1 0.5 1.5 2.5 3.5 1.5 3.5 13 -0.5 -1.5 -2.5 -3.5 0.5 2.5

2 1.5 -0.5 3.5 -2.5 3.5 -0.5 14 -1.5 0.5 -3.5 2.5 2.5 -1.5

3 2.5 -3.5 -0.5 1.5 5.5 7.5 15 -2.5 3.5 0.5 -1.5 4.5 6.5

4 3.5 2.5 -1.5 -0.5 7.5 -4.5 16 -3.5 -2.5 1.5 0.5 6.5 -5.5

5 4.5 5.5 6.5 7.5 9.5 11.5 17 -4.5 -5.5 -6.5 -7.5 8.5 10.5

6 5.5 -4.5 7.5 -6.5 11.5 -8.5 18 -5.5 4.5 -7.5 6.5 10.5 -9.5

7 6.5 -7.5 -4.5 5.5 -0.5 -2.5 19 -6.5 7.5 4.5 -5.5 -1.5 -3.5

8 7.5 6.5 -5.5 -4.5 -2.5 1.5 20 -7.5 -6.5 5.5 4.5 -3.5 0.5

9 8.5 9.5 10.5 11.5 -4.5 -6.5 21 -8.5 -9.5 -10.5 -11.5 -5.5 -7.5

10 9.5 -8.5 11.5 -10.5 -6.5 5.5 22 -9.5 8.5 -11.5 10.5 -7.5 4.5

11 10.5 -11.5 -8.5 9.5 -8.5 -10.5 23 -10.5 11.5 8.5 -9.5 -9.5 -11.5

12 11.5 10.5 -9.5 -8.5 -10.5 9.5 24 -11.5 -10.5 9.5 8.5 -11.5 8.5
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It can be seen that proposed method can construct 
nearly OLHDs for many more number of runs than the 
existing methods for given number of columns.

4.	 DISCUSSION
LHDs are widely used in designing computer 

experiments. LHD with its orthogonal factors help in 
independent estimation of effect of individual factors 
on the output of the model. In this regard, construction 
of methods to obtain an orthogonal LHDs is gaining 
importance and because of difficulties in developing 
methods to obtain OLHDs, methods are developed for 
obtaining nearly OLHDs. In this paper a method to obtain 
nearly OLHD is developed based on the construction 
methods in Sun et al. (2010) and Wang et al. (2015). 
One restriction of the proposed method is that the run 
sizes can only be multiples of two. Therefore, future 
scope of the research would be to develop methods 
for other run size and/or factor combination. One can 
also study L2 distance efficiency of the designs and see 
whether design is asymptotically optimal or not under 
maximin L2 distance criterion and can extend results 
of Wang et al. (2018) to show any connection between 
maximin distance designs and orthogonal designs.
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