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SUMMARY
Detection of outliers in time series data is a key component of data analysis. As the presence of outlier have a serious effect on model identification 
statistics, therefore conclusions drawn through analyzing the data series contaminated with outliers may be erroneous. It is, therefore, important to 
identify the time points where outliers are present and then remove the effect of the outliers from the corresponding series. The present paper considers 
the detection of outliers in time series data. An iterative method based on the procedure proposed by Chang and Tiao (1983) along with use of robust 
estimate of error variance is discussed. The power of this iterative procedure in detecting outliers is also investigated. The methodology is illustrated 
using rice yield data for all India during 1950-2013. The result of the study clearly indicates outlier detection technique using the robust estimate of 
error variance can successfully detect all the outliers present in the data series.
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1.	 INTRODUCTION
Most of the time series are observational in 

nature. Besides the possible gross error, time series 
data are frequently subject to the influence of some 
non-repetitive errors, for example, major changes in 
economic policies or political scenario, implementation 
of new regulation, occurrence of natural disaster etc. 
Consequently, occurrence of outliers or discordant 
observations is very common in time series data. The 
basic objective behind designing of time series model 
is to grasp the homogeneous memory pattern of the 
series. But the presence of outliers raises the question 
of efficiency and adequacy in fitting a general auto-
regressive moving average (ARMA) model. 

Fox (1972) seemed to be the first person to deal 
with outliers in time series. He defined two types of 
outliers in time series namely: Additive outliers (AO) 
and Innovative Outliers (IO). The study of Chang 
(1982) showed that even if the order of the time series 
is known, the existence of outliers may cause serious 
bias in estimation of the autoregressive (AR) and 

moving average (MA) parameters. If we know the time 
points where the outliers are occurring, then the biases 
in estimation of model parameters can be reduced 
by using the intervention technique of Box and Tiao 
(1975). But in practical situation, we hardly have any 
knowledge regarding the timing and type of outliers 
present in a given data series. For detecting outliers 
in time series, several scientists proposed different 
approaches. Among them Chang and Tiao (1983) used 
an iterative procedure for outlier detection. 

This study’s main goal is to identify the time points 
at which outliers are occurring for any given data series. 
We use the iterative procedure as described by Chang 
and Tiao (1983) but in place of using the usual estimate 
of error variance, we try to use some robust statistics. 
The reason behind it is that the presence of outliers 
makes the usual estimate of error variance unstable 
and it will be highly biased, which ultimately affect the 
value of the test statistics used to detect the outliers. 
But if we use the robust estimate of error variance then 
it will be least affected by the presence of outliers and it 
will consistent also. Besides outlier detection, we will 
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try to obtain an adjusted residual series after removing 
effects of all the detected outliers.

The paper is divided as follows. Section 1 deals 
with the introduction, the models and the test statistics 
for detecting outliers are discussed in section 2. Then, 
the outlier detection criteria is given in section 3. In 
section 4, illustrations are given for the discussed 
outlier detection procedure. Finally, in section 5, the 
conclusions are provided.

2.	 MATERIALS AND METHODS

2.1	 Description of Models
Consider an outlier-free time series, the series is 

assumed to follow an autoregressive integrated moving 
average [ARIMA (p, d, q)] model,

(B) (B) = (B)t tx aφ α θ � (2.1)

where, 1(B) 1 B ... Bp
pφ φ φ= − − −  and 

1(B) =1 B ... Bq
qθ θ θ− − −  are the ‘autoregressive’ and 

‘moving average’ polynomials in B of order p and 
q respectively. B is defined as a backshift operator, 
i.e., 1B  = t tx x − . { }ta  is the white noise which is 
independently and identically normally distributed 
with zero mean and constant variance 2

aσ . For seasonal 
data considering period s (for monthly data s=12), one 
can assume 1 2d ds

1 2(B)=(1-B) (1-B ) ;d = d +sdα  which is 
helpful to allow seasonal non-centrality. 

Under the above notations and considering that 
all the assumptions hold good, one can easily estimate 
the parameters using ‘Box-Jenkins’ methodology. But 
the presence of outliers or exogenous observations in 
the model lead to introduction of serious bias during 
estimation of model parameters. The impact of 
exogenous intervention occurring in the time series can 
be represented by the dynamic model due to Box and 
Tiao (1975):

( )(B)= +
(B)

T
t t tZ xω

ζ
β

� (2.2)

where, 
( )T
tζ  represents the impulse variable which takes 

value 1 at t = T and otherwise 0, i.e., 

1T
tξ =  for t = T 

0T
tξ =  otherwise.

T signifies the time point at which occurrence of 
intervention (Outlier) takes place. (B) (B)ω β  describes 
the dynamic response of the outlier. 

2.2	 Detection of Outliers 
In the time series process as described in (2.1), 

two possible conditions may arise. Firstly, the ARMA 
parameters and the error variance are known and 
secondly, they are unknown. The first criteria is seldom 
arise in practical situation. In the second situation we 
cannot go directly for estimation of impact as we need 
to estimate the model parameter first. 

2.2.1 Estimation of impact of IO and AO
To estimate the effect of outliers, the impact of AO 

and IO needs to be estimated. The least square estimate 
of impact of additive and inovative outliers can be 
represented as the following way (Chang and Tiao, 
1983),

I teω =   ... (IO)� (2.3)

2 2
1 2

ˆ ˆ= (F)
ˆ= (1 F F ... F )n T

n T T

ω ρ π

ρ − π − π − − π  … (AO)�(2.4)

where 2 2 2 2 1
1 2=(1 ... )n T

−
−ρ + π + π + + π  and F is a 

forward shift operator like 1F =T Te e + . is the residual at 
time point T, 2

1 2(B) (B) (B) (B) 1 B B ...φ θπ = α = − π − π −  
is the polynomial in B and are the value of coefficients 
of different lags of residuals.

Next, we need to find the variance of estimated 
impact for both models and the variances for the 
estimators are as follows:

2
I avar( )=σω  … (IO)� (2.5)

2 2
A avar( )= σω ρ  … (AO)� (2.6)

2.2.2 When ARMA Parameters and Error Variances 
are Unknown
In most of the practical situations, both the ARMA 

parameters and error variance ( 2
aσ ) are unknown. There 

we need to find the estimates of model parameters along 
with the estimates for the impact, i.e., for both IO and 
AO. The estimates of the model parameters is obtained 
by MLE technique.

To compute the test statistics for detection of 
outliers, the unknown error variance ( 2

aσ̂ ) is also 
estimated. The value of test statistics or in other words 
efficiency of multiple outlier detection is very sensitive 
to this estimate. As it is obvious that the presence of 
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outliers makes the residuals contaminated and using 
the simple variance of residuals as an MLE estimate of 
error variance is not at all a robust one. We know that 
median is the robust estimate in presence of outliers. 
Therefore, here we consider a robust estimate of error 
variance, i.e., Median Absolute Deviation (MAD).

The test statistics for testing the presence of outliers 
(Chang and Tiao, 1983) are as follows:

Test Statistic1: 0 1 1, I a
ˆ ˆ ˆH vs H : /t σλ = ω

Test Statistic2: 0 2 2, A a
ˆ ˆ ˆ ˆH vs H : /t σλ = ω ρ ,� (2.7)

The MAD estimate of error standard deviation can 
be defined by:

{ }aˆ ˆ=1.483×median te eσ − 
,� (2.8)

where e  represents the median of the residuals.
After estimating the model parameters and the 

error standard deviation, one can estimate the impact 
of outliers using the equations (2.3) for IO and (2.4) for 
AO respectively. 

3.	 OUTLIER DETECTION CRITERIA
For detecting the presence of AO or IO at different 

unknown positions, we first need to go through the 
sequence of 2, , 1, 2,...,t t nλ =



 or 1, , 1, 2,...,t t nλ =


. 
On other way, the chances of occurrence of an AO in a 
series or an IO in a series can be examined by searching 
for the maximum values of both the statistics. If the 
maximum value of the statistics exceeds the cut-off 
value (Fox, 1972) then we can say an outlier is present 
at that corresponding time point (say, T).

IO 1.=1, 2,..., n
(IO)   = max ( )tt

η λ


  Or 

AO 2.t =1, 2, ..., n
(AO)    = max ( )tη λ





� (3.1)

As the time of occurrence of outliers remains 
unknown, using likelihood ratio criteria described in 
(3.1) one can easily find time points where IO or AO is 
present. But if for a particular time point both the test 
criteria for AO and IO are significant, then it is difficult 
to say which one type of outlier is present in that point. 
To address this problem, a simple rule is considered as 
mentioned by Fox (1972) for distinguishing between 
IO and AO. The rule if at any particular point T (say), 
the possible outlier is called an IO if 1. 2.T Tλ > λ

 

 and 
classified as an AO if 1. 2.T Tλ ≤ λ

 

.

4.	 ILLUSTRATION
Data Set
We illustrate the above described procedure of 

multiple outlier detection by considering the time series 
data of rice yield (kg/ha) from the period of 1950-51 
to 2017-18. The data is collected from Agricultural 
Statistics at a Glance 2018, published by Ministry 
of Agriculture and Farmers Welfare, Department 
of Agriculture and Cooperation and Directorate of 
Economics and Statistics, Government of India. The 
data series contains 68 observations which are collected 
yearly basis. The time plot of the above dataset is 
presented in Fig. 1.

Fig. 1. Time plot of the Rice Yield Data

The flow of analysis is as follows:
(i)	 The descriptive analysis is done on the time series 

data to get an evidence of possibility of outlier in 
the series.

(ii)	 If there are no sufficient evidence of presence 
of outliers, the data is fitted as per the usual 
methodology.

(iii)	If there is sufficient evidence of presence of  
outliers from descriptive analysis of the dataset 
(which is reflected in our data), at initial stage data 
is fitted assuming there is no outlier in the dataset. 
This is done only to obtain the coefficient values 
of the model which will be used to estimate the 
impact of the outliers and also to identify the time-
points at which outliers are present.

(iv)	After obtaining the model coefficients, the robust 
estimate of error variance (as given in 2.7) is 
computed. Then the test statistics (mentioned in 
2.8) are computed to check whether the impact of 
the outliers are significant or not.
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(v)	 Further, the iteration procedure (as described in 
section 3) is carried out to obtain the list of potential 
outliers in the dataset.

(vi)	As we identify the list of outliers in the dataset, 
further analysis can be done based on the new 
residual series which have been adjusted after 
removing the effects of potential outliers.
Descriptive Statistics
The descriptive statistics of the dataset is reported 

in Table 1. A perusal of table 1 reveals that the difference 
between the maximum value (2578.00) and minimum 
value (668.00) is very large which indicates that there 
may be some chance of presence of outliers in the 
dataset. From the time plot also, we can visualize that 
there is possibility of presence of outliers.

Table 1. Descriptive Statistics of Rice Yield Data

Statistics Value Statistics Value

Mean 1513.82 Kurtosis -1.22

Standard Error 66.33 Skewness 0.29

Median 1437.00 Range 1910.00

Mode 1308.00 Minimum 668.00

Standard Deviation 546.95 Maximum 2578.00

Coefficient of Variation (%) 36.13

Testing Stationarity and Model Fitting
The stationarity of the series is tested by 

Augmented-Dickey-Fuller test (ADF) (Dickey and 
Fuller, 1979) and Phillips-Perron (PP) (Phillips and 
Perron, 1988) test. The results of both the tests indicate 
that the series is stationary. 

Now we fit the ARIMA model in the data series and 
it is found that the ARIMA (1, 0, 0) is the best fit for this 
data with the AIC value 854.32. The model parameter 
estimates along with their standard errors are given in 
Table 2. The estimated error variance is 14935.

Table 2. Parameter Estimate of ARIMA Model

Parameters Value Standard Error

Intercept 1593.6599 683.6545

AR 1 0.9887 0.0140

After fitting the ARIMA model in the series, the 
set of residuals are obtained from the fitted model. This 
series of residual is plotted in the Fig. 2. From this 
figure it is clear that there are some residuals whose 
absolute value is very large than the rest of the residuals 
and hence they might be due to outliers. 

Fig. 2. Residual Series for the Fitted Model

Outlier Detection
As both the descriptive statistics and residual series 

give indication of presence of outliers in the dataset, we 
therefore apply the methodology of outlier detection 
as described in section 3. Here we have used a robust 
estimate of error variance which appeared in the test 
statistics. This error variance is robustly estimated 
in each of the iteration. Finally, we find that there is 
a presence of total 4 outliers. Among them there are 
two additive outliers appeared at time point 53, 30 and 
27 respectively, and one are innovative outlier which 
appeared at time point 54. The list of the outliers 
detected through the iterative procedure using the 
robust variance is given in the Table 3. 

Table 3. List of Detected Outliers

S. No. Year Time Point Type of Outlier Value

1 2002-03 53 AO 1744

2 1979-80 30 AO 1074

3 2003-04 54 IO 2079

4 1976-77 27 AO 1089

The detected outlier points are depicted in the 
original time series in Fig. 3. Besides outlier detection, 
we also have a new residual series after adjusting the 
effect of the detected outliers. The adjusted residual 
series is computed by removing the effect of the 
detected outliers. The adjustment is done only for those 
time points in the residual series where a particular 
outlier is being detected. The comparison between the 
original residual series (series 1) and the residual series 
after adjusting the effect of outliers (series 2) is given 
in the Fig. 4.
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from 2004-05 onwards. Similarly, the observations at 
time point 27 is detected as an AO because the value of 
the observation at time point 27 is decreased suddenly 
as compared to its neighboring observations. From the 
Fig.  4, we can clearly visualize that all the residuals 
having relatively large absolute values than the rest are 
adjusted. Therefore, we can conclude that the iterative 
detection technique is very efficiently handle the 
outliers and also remove their effects from the original 
series.

The practical reason of considering these time 
points as outlier is:
•	 The year 2002-03 was the first year of tenth five-

year plan (2002-07) and in this plan the major 
target set up by the commission was to revamp 
the agriculture sector as during ninth five-year 
plan (1997-2002) the average annual growth rate 
of value added in agriculture, including allied 
sectors, declined from 4.7 per cent to 2.1 percent. 
But, 2002 witness a severe drought and the growth 
in agricultural sector is declined by -7.0 percent 
which is mostly attributed by the major drop in rice 
production (-16% growth in rice yield). Therefore, in 
our analysis this particular time point is considered 
as AO. (https://economictimes.indiatimes.com/
news/economy/policy/agriculture-production-and-
growth-monsoon-04/articleshow/1032957.cms)

•	 The effect of tenth five-year starts reflecting from 
2003-04, where in 2003-04 favorable monsoon 
facilitated an impressive growth rate of 9.6 per cent 
in agriculture and allied sector gross value addition 
whereas in rice production there is a straight jump of 
19% as compared to last year. Also, during the last 
4 years of tenth five-year plan, the average growth 
in rice production is around 5.5%. Therefore, the 
timepoint 2003-04 came out as IO in our analysis.

•	 Besides, there was a widespread failure of monsoon 
during 1976-77 and 1979-80. This leads to welting 
of crops in major producing states including 
Kerala and Karnataka. (https://indianexpress.com/
article/opinion/editorials/july-8-1976-forty-years-
ago-2900148/) 

5.	 CONCLUSION
The interpretations drawn from analyzing any data 

series having outliers is misleading and erroneous. 
Therefore, detection of outliers in time series dataset 
is very important. In the above illustrations we detect 

Fig. 3. Outliers Detected in Rice Yield Data

Fig. 4. Comparison between Original Residual (dotted) and  
Adjusted Residual (line)

From Table 3, we can see that the first outlier 
detected is an AO at time point 53. From the above 
Fig.  3, we can see the value of observation at time 
point 53 is 1744 whereas the value of its two adjacent 
observations are 2079 (at time point 52) and 2079 (at 
time point 53) which are relatively higher as compared 
to 1744.Therefore, there is a sudden decrease in the 
value of the observation at time point 53 which can 
be considered as an AO. The same instances occurred 
at time point 30 (1979-80), the value is 1074 whereas 
neighboring observation values 1328 (for year 1978‑79) 
and 1336 (for 1980-81) are relatively higher.

Then, we can visualize that after the time point 
(T) 54 (value 2079) there is a continuous increase in 
the values of observations for at least 5 to 6 years. 
Therefore, we can say that there is an IO at time point 
54 which affects the rest of the series and due to which 
there is a continuous increase in the observation values 
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outliers of both types. Using the iterative method, we 
can detect multiple outliers (if present) from any time 
series dataset. After detecting the outliers, we also 
find the final residual series which is adjusted for the 
effect of detected outliers. This final residual series can 
now be used for further analysis which will be more 
informative and accurate. R codes are developed for 
identification of outliers and the same is given in the 
appendix. Using that code, we can easily check the 
presence of outliers in any time series dataset. The 
example discussed also suggests that the outlier having 
largest effect is detected at the first step of the iteration 
procedure and subsequently the other outliers are 
detected based on their magnitude or effect.
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APPENDIX:
R code:

#Required library function in R#
library(“forecast”)

#Reading the dataset#
yt<-Rices[“Production”]

#Transforming to time series#
yt_ts<-ts(yt)

#Fitting of the original dataset#
fit_yt<-auto.arima(x=yt_ts, d=NA, D=NA, max.p=5, 
max.q=5,stationary=TRUE, 
seasonal=FALSE,ic=c(“aic”), allowdrift=TRUE, 
allowmean=TRUE,stepwise = TRUE)
fit_yt
et<-residuals(fit_yt)
plot(et)
write.csv(et, file = “D:\\Personal\\Paper I\\original_res.
csv”)

#Obtaining the length of the dataset#
nobs<-length(yt_ts)
nobs

#Putting the value for pai-1 after calculating 
manually from the estimated values#
p1<-0.9887

#Computing rho^2 with the help of pai-1#
rho<-(1/(1+p1^2))
rho_s<-sqrt(rho)

#Computing the effect of Outlier#
outlier = 1;OutlierSummary <- NULL
while(outlier == 1){
omega<-0
for(i in 1:nobs)
omega[i]=rho*(et[i]-p1*et[i+1])

#Median of residuals: Required to compute the test 
statistics#
medet<-median(et)

#Deviation of observation from median: Required 
to compute the test statistics #
dev<-0
for(i in 1:nobs)
dev[i]=(et[i]-medet)
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a_dev<-abs(dev)
md<-median(a_dev)
#Robust estimate of standard deviation needed for 
computing test statistics value#
sigma1_s<-1.483*md

#Test statistics for AO#
lamda2<-omega/(sigma1_s*rho_s)

#Computing the maximum absolute value of test 
statistics of AO#
a_lamda2<-abs(lamda2) 
max_lamda2<-max(a_lamda2,na.rm=TRUE)

#Computing the time point at which maximum 
value of test statistics of AO: Identification of time 
points at which Additive Outlier is occurring#
time_ao<-which.max(a_lamda2)

#Computing the test statistics for IO#
lambda1<-et/(sigma1_s)

#Computing the maximum absolute value of test 
statistics of IO#
a_lambda1<-abs(lambda1)
max_lambda1<-max(a_lambda1)

#Computing the time point at which maximum 
value of test statistics of IO: identification of time 
points at which Innovative Outlier is occurring#
time_io<-which.max(a_lambda1)

#Computing the series of IO and AO at max values: 
Required to identify the time points at which both 
types of outliers are occurring#
nt<-0
for(i in 1:(nobs-1))
nt[i]=max(a_lamda2[i],a_lambda1[i])
max_nt=max(nt)
outlier <- ifelse(max_nt>3.0,1,0)
T1<-which.max(nt)
nt[T1]=max(a_lamda2[T1],a_lambda1[T1])
if (T1==time_io)

{
outlierType <- “IO IS present”
temp <- data.frame(T1,outlierType)
}else{
outlierType <- “AO IS present”
temp <- data.frame(T1,outlierType)
}
if (T1==time_ao)
{
pib<-0
zi <- c(rep(0,T1-1),rep(1,(nrow(yt_ts)-1-T1)))
for(i in T1:(nobs-1))
# pib[i]=(1-(p1))
pib[i]=(1-p1*zi[i-1])
et1<-0
for(l in T1:(nobs-1))
et1[l]=et[l]-(pib[l]*omega[l])
et2=et[1:(T1-1)]
zt<-et1[T1:(nobs-1)]
n_et1=c(et2,zt)
}else {
et[T1]
n_et1<-replace(et,et==et[T1],0)
}
n_et1[nobs] <- et[nobs]
et <- n_et1
OutlierSummary <- rbind(OutlierSummary,temp)
}
n_et1
max_nt

# Generating list of Time Points where Outliers are 
present #
Outlier Summary

#Obtaining the adjusted residuals after removing 
the effect of outliers#
write.csv(n_et1, file = “D:\\Personal\\Paper I\\adj_res.
csv”)


