
1.	 INTRODUCTION
When heterogeneity in the experimental material 

is due to two cross-classified sources, then two-
dimensional blocking or double blocking of the 
experimental units is recommended for control or 
reduction of experimental error. For example, in an 
agronomic or forestry trial it is not uncommon to 
compare a large number of hybrid varieties, which leads 
to a large experimental area, and it may be important to 
account for or eliminate the effects of fertility trends 
in the land in two perpendicular directions. The two 
blocking systems are referred to generally as row 
blocking and column blocking, and the resulting designs 
are referred to as designs under two-dimensional 
blocking or designs for two-way elimination of 
heterogeneity or simply, row-column designs (RCDs). 
These designs are also suitable for animal experiments, 
greenhouse experiments, irrigation trials, laboratory 
trials, etc. wherever two blocking systems are present.

If an experimenter wants to study the effect of two 
or more factors simultaneously, adopting an appropriate 

factorial RCD is statistically more informative and 
efficient than running separate experiments for each 
factor. Such situations arise commonly in agricultural, 
horticultural and forestry field trials. 

When v treatment combinations in a factorial 
experiment are set out in a RCD with v rows and v 
columns, all treatment comparisons (main effects and 
interactions) are estimated independently of row and 
column parameters. However, such fully orthogonal 
designs are impractical with large v. Thus, RCDs with 
incomplete rows and columns is required by totally or 
partially confounding certain higher order interactions 
with rows as well as columns. 

The earliest type of row-column designs for 
factorial experiments were the Quasi-Latin or Lattice 
squares introduced by Yates (1937). Rao (1946) gave 
a method for constructing partially confounded square 
RCDs. In a square row–column design, the number of 
rows is equal to the number of columns. Cochran and 
Cox (1957) listed some RCDs for factorial experiments. 
John and Lewis (1983) obtained factorial RCDs 
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using a generalized cyclic method of construction by 
amalgamating row and column component designs and 
gave some guidelines for choosing the row and column 
component designs appropriately. Williams and John 
(1996) defined a new objective function that gives 
varying degrees of emphasis to the main effects in the 
factorial situation. A computer program was used to 
generate such designs.

Bailey and Patterson (1991) showed that two-
replicate resolvable RCDs are combinatorially 
equivalent to a single replicate RCD for two factors. 
They showed that useful designs for variety trials 
with two replicates, each arranged in a compact array 
of plots, can be derived from existing RCDs for two 
non-interacting sets of treatments. RCDs with the 
column component design resolvable in 2 replicates 
were constructed by Jarrett et al. (1997) and used it for 
factorial set up. Wright et al. (2005) extended the result 
given by Bailey and Patterson (1991) for resolvable 
RCDs with more than two replications. Choi and Gupta 
(2008) considered confounded RCDs for symmetric 
factorial experiments and gave some methods to 
construct these designs by confounding appropriate 
interactions over rows and columns.

Bose and Dey (2009) have shown the 
correspondence of a crossover design balanced for first 
residuals to a v2 factorial experiment arranged in a RCD 
assuming that the first has only the main effects of one 
factor and there are no interactions in the first row. The 
direct effects of treatments are considered as levels of 
the first factor and the residual effects are considered as 
the levels of the second factor. 

Dash et  al. (2013) developed a method of 
construction of RCDs for estimation of main effects 
and two factor interaction effects in 2n factorial 
2-colour microarray experiments. RCDs with unequal 
replications of different treatment combinations were 
also presented. Subsequently, Godolphin (2018) 
suggested some single replicate constructions that 
enable estimation of all main effects and maximize the 
number of estimable two-factor interactions.

The objective of the present study is to obtain a 
general method for constructing symmetric factorial 
RCDs with incomplete rows and columns. The 
construction method has been made more easily 
understandable using an appropriate example. 

2.	 SYMMETRIC FACTORIAL RCDS 
A factorial RCD with 3 factors (A, B and C) each 

at v (v > 2) levels (denoted as 1, 2, 3,…,v) arranged in 
3v rows and v2 columns can be obtained using the four 
steps given below:

Step 1: Consider an array of size 3 × v of the 
following form:

1, u+v-1, 
u+v-1

2, u, 
u+v-1

… v-1, u+v-3, 
u+v-1

v, u+v-2, 
u+v-1

u, 1, u+v-1 u, 2, u … u, v-1, u+v-3 u, v, u+v-2

u, u, 1 u+1, u, 2 … u+v-2, u, v-1 u+v-1, u, v

Step 2: Obtain v arrays of size 3 × v each by 
developing the above array for u = 1,2,…,v.

Step 3: Juxtapose the v arrays obtained in Step 2, 
horizontally one after another, to yield an initial array 
(A) of size 3 × v2. 

Step 4: Generate each row of the initial array A by 
adding 1,2,…,v-1 successively (mod v) resulting in 3 
sets each of v rows and v2 columns. 

The final arrangement obtained after Step 4 results 
in a v3 factorial arranged in 3v rows and v2 columns. 
Each set constitutes a complete replication.

It can be seen that the RCD so obtained is a v3 
factorial in v2 units per row partially confounding one 
effect in each set. It is interesting to note that the highest 
order interaction is confounded in all three sets. In Set 
I, the effect confounded is ABv-1C ≡ Av-1BCv-1. In Sets 
II and III, the effect confounded is ABCv-1 ≡ Av-1Bv-1C 
and Av-1BC ≡ ABv-1Cv-1, respectively. Within each set, 
considering columns, the design is a v3 factorial with 
v units per column totally confounding (v + 1) effects, 
with two independent effects viz., ABCv-2 (or ABv-2C or 
Av-2BC) and ACv-1 (or ABv-1 or Av-1B or Av-1C or BCv-1 or 
Bv-1C) and remaining as generalized effects. 

Example 2.1: For v = 3, a 3 × 9 initial array A is 
obtained by taking u = 1, 2, 3 and juxtaposing the 3 
arrays each of size 3× 3 side by side (following steps 
1-3) as follows:

u = 1 u = 2 u = 3

1,3,3 2,1,3 3,2,3 1,1,1 2,2,1 3,3,1 1,2,2 2,3,2 3,1,2

1,1,3 1,2,1 1,3,2 2,1,1 2,2,2 2,3,3 3,1,2 3,2,3 3,3,1

1,1,1 2,1,2 3,1,3 2,2,1 3,2,2 1,2,3 3,3,1 1,3,2 2,3,3
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Now, first row of above array is developed 
cyclically by adding 1 and 2 successively to it (mod 3) 
to yield Set I of size 3 × 9 given below. 
Set I

133 213 323 111 221 331 122 232 312

211 321 131 222 332 112 233 313 123

322 132 212 333 113 223 311 121 231

Similarly, two more sets each of dimension 3 × 9 
(Sets II and III) can be obtained by developing second 
and third rows respectively of A.
Set II

113 121 132 211 222 233 312 323 331

221 232 213 322 333 311 123 131 112

332 313 321 133 111 122 231 212 223

Set III

111 212 313 221 322 123 331 132 233

222 323 121 332 133 231 112 213 311

333 131 232 113 211 312 223 321 122

Appending the three sets one below the other 
results in a 33 RCD in 9 rows and 9 columns as follows:

Rows
Columns

i ii iii iv v vi vii viii ix

I i 133 213 323 111 221 331 122 232 312

ii 211 321 131 222 332 112 233 313 123

iii 322 132 212 333 113 223 311 121 231

II iv 113 121 132 211 222 233 312 323 331

v 221 232 213 322 333 311 123 131 112

vi 332 313 321 133 111 122 231 212 223

III vii 111 212 313 221 322 123 331 132 233

viii 222 323 121 332 133 231 112 213 311

ix 333 131 232 113 211 312 223 321 122

The above RCD is a 33 factorial in 32 units per row with 
three replications or sets partially confounding one effect 
in each set. Considering set I, the effect confounded is 
AB2C ≡ A2BC2. In sets II and III, the effect confounded 
is ABC2 ≡ A2B2C and A2BC ≡ AB2C2respectively. 
Within each set, considering columns the design is a 
33 factorial in 3 units per column with ABC and AC2 

getting confounded in all the three sets. 
The average variance of estimated elementary 

contrasts pertaining to various treatment comparisons 
(considering factorial combinations as treatments) 

have been computed using a code (given in Appendix) 
written in PROC IML of SAS software. For this 
design, the elementary contrasts pertaining to treatment 
combinations are estimated with an average variance, 
V  = 0.692σ2 (A snapshot of the SAS output indicating 
the same is also given in Appendix). 

3.	 CONCLUDING REMARKS 
A general method of constructing symmetric RCDs 

with incomplete rows and columns has been developed 
for three factors confounding highest order effects in 
rows and columns. The added advantage is that when 
considered row-wise, the design is resolvable in 3 sets.
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APPENDIX
SAS code for computing information matrix and average 
variance of estimated elementary contrasts pertaining 
to various treatment comparisons (considering factorial 
combinations as treatments) of factorial RCDs
proc iml;
/*
a_original={
133	 213	 323	 111	 221	 331	 122	 232	 312,
211	 321	 131	 222	 332	 112	 233	 313	 123,
322	 132	 212	 333	 113	 223	 311	 121	 231,
113	 121	 132	 211	 222	 233	 312	 323	 331,
221	 232	 213	 322	 333	 311	 123	 131	 112,
332	 313	 321	 133	 111	 122	 231	 212	 223,
111	 212	 313	 221	 322	 123	 331	 132	 233,
222	 323	 121	 332	 133	 231	 112	 213	 311,
333	 131	 232	 113	 211	 312	 223	 321	 122};
actual treatment combinations in the row-column set 
up*/

a={
9	 12	 24	 1	 13	 25	 5	 17	 20,
10	 22	 7	 14	 26	 2	 18	 21	 6,
23	 8	 11	 27	 3	 15	 19	 4	 16,
3	 4	 8	 10	 14	 18	 20	 24	 25,
13	 17	 12	 23	 27	 19	 6	 7	 2,
26	 21	 22	 9	 1	 5	 16	 11	 15,
1	 11	 21	 13	 23	 6	 25	 8	 18,
14	 24	 4	 26	 9	 16	 2	 12	 19,
27	 7	 17	 3	 10	 20	 15	 22	 5};
/* Renumbered treatment combinations 
111,112,…,332,333 in a_original array as 1, 2,…,26, 
27 */

m=j(nrow(a)*ncol(a),1,1);/*mean vector*/
/*print m;*/

trt=j(nrow(a)*ncol(a),max(a),0);/*design matrix - 
observation VS treatment*/
k=1;

do i=1 to nrow(a);
do j=1 to ncol(a);
if a[i,j]>0 
then trt[k,a[i,j]]=1;
k=k+1;
end;
end;
/*print trt;*/

r=j(nrow(a)*ncol(a),nrow(a),0);/*design matrix - 
observation VS row*/
k=1;
do i=1 to nrow(a);
do j=1 to ncol(a);
if a[i,j]>0 
then r[k,i]=1;
k=k+1;
end;
end;
/*print r;*/

c=j(nrow(a)*ncol(a),ncol(a),0);/*design matrix - 
observation VS column*/
k=1;
do i=1 to nrow(a);
do j=1 to ncol(a);
if a[i,j]>0 
then c[k,j]=1;
k=k+1;
end;
end;
/*print c;*/

x=m||trt||r||c;/*combined design matrix*/
/*print x[format=3.0];*/
x1=trt;
x2=m||r||c;
c_mat=(x1`*x1)-(x1`*x2*(ginv(x2`*x2))*x2`*x1)/*In
formation (C) matrix*/;
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print c_mat ;

/*Elementary contrasts matrix*/
b1=comb(max(a),2); 
co=j(b1,max(a),0);
k=1;
do i=1 to max(a);
do j=i+1 to max(a);
co[k,i]=1; 
co[k,j]=-1;
k=k+1;
end;
end;
/*print co;*/

cov=co*ginv(c_mat)*co`;/*variance-covariance 
matrix*/
var1=diag(cov);
one=j(b1,1,1);
var2=var1*one;
av_var=sum(var2)/nrow(var2); /*average variance*/
print av_var;

quit;

Screenshot (two pages merged together) of the 
output consisting of information matrix (C) and average 
variance of estimated elementary contrasts pertaining 
to various treatment comparisons (considering factorial 
combinations as treatments) obtained from SAS is 
given below:
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