
1.	 INTRODUCTION
In survey sampling, many highly efficient popular 

estimation methods needs quality dataset of auxiliary 
variables. For example, calibration estimator of 
Deville and Särndal (1992) requires population total of 
auxiliary information, Wu and Luan (2003).Calibration 
method achieved gain in efficiency through replacing 
survey weight by a modified weight (calibration 
weight) using a set of calibration equations related 
to auxiliary variables, see Särndal et  al. (1992). 
Calibration methods are now applied on almost all 
surveys in official statistics, Devaud and Tille (2019). 
But, in the beginning of calibration, its application 
limited mostly to the situation when auxiliary variables 
were available at population level. In practice, this 
assumption was very rarely holds or sometimes even if 

hold the auxiliary variables were outdated and this type 
of situation is very common in most of the developing 
nations of the world where data collection methods are 
not done in regular timely manner. When population 
level information is not known, in that case two-phase 
sampling design have considerable attention where it 
is very expensive to collect data on the variables of 
interest but, it is relatively inexpensive to collect data 
on auxiliary variables, correlated to variable of interest, 
Legg and Fuller (2009). Two-phase sampling have 
achieved considerable attraction due to two reason, one 
is efficiency and another, it provides simple mechanism 
to handle non-response problem, Estavao and Särndal 
(2002). Hence, to maintain the popularity of calibration 
approach, there is urgent need to develop calibration 
estimators under two-phase sampling.
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Few authors has already explored few applications 
of calibration under two phase sampling. For example, 
Estevao and Särndal (2002) proposed two step 
calibration when auxiliary information is available at 
two levels (two-phase). Singh (2004) improved the two-
phase calibration method discussed by Hidiroglou and 
Särndal (1998). Estavao and Särndal (2006) proposed 
ten cases of auxiliary information for calibration in 
two-phase sampling. It has been observed that these 
authors were mostly restricted their focus on linear 
population parameters (For example, population total 
or mean etc.). Recently, it is found that everybody has 
interest for in-depth analysis of data,utilizing available 
high computational facilities, hence cannot be restricted 
applicability of calibration approach within linear point 
estimators but need to extend it for the popular non-
linear complex estimators too. For example, finite 
population ratio is a popular non linear parameter 
which is consists of ratio of population total or mean 
of two variables and due to practical advantages many 
times, it is preferred over mean or total estimator, see 
for example, if the variable of interest is ‘number of 
bullocks per acre of holding’ in the population is a 
ratio of number of bullocks in a holding to area in acre 
holding (agricultural science), ‘per capita monthly 
income’ is ratio of sum of monthly income of house 
hold to the size of house hold. Similarly ‘unemployment 
rate’ is the ratio of number of unemployed individual 
to the number of individuals in the labour force in 
the country, see Islam et  al. (2019).Few authors has 
discussed calibration approach for different non-
linear population parameters under complex sampling 
design (except two-phase sampling) see, for example, 
Plikusas and Pumputis (2007, 2010), Farrel and Singh 
(2005), Kim and Park (2010), Sud et al. (2014), Basak 
et al. (2017). Islam et al. (2019) proposed calibration 
estimator of population ratio under two-phase 
sampling utilizing known ratio of auxiliary variables 
totals at first phase sample only and the optimization 
is done through using single calibration equation 
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make it less flexible to capture variation of both y and 
z variable, simultaneously. In this article,we elaborate 
two calibration approach of finite population ratio 
under two-phase sampling design using more than one 
calibration equation.

The rest of the article is organized as follows. 
In Section 2, we first introduced revised calibration 

ratio estimator under two-phase sampling under the 
situation when auxiliary variables are available at 
first-phase sample only. The variance and estimator of 
variance of proposed estimator, in addition optimum 
sample sizes of first and second sample for minimum 
variance were discussed in Sub-section 2.2. The 
empirical performances of different estimators were 
compared in Section 3, using model-based method with 
hypothetical population and design-based method with 
real population data. Finally, concluding remarks were 
set out in Section 4.

2.	 CALIBRATION RATIO ESTIMATION 
UNDER TWO-PHASE SAMPLING
Let Ω  be a population of size N where, individual 

units are indexed by subscript 1,2...k N= . Further, 
the population has two study variables y and z and 
its population ratio (denoted as R) y to z is our 
parameter of interest. The formula of population ratio 
is ,y zR t t= where y kk

t y
∈Ω

= ∑  be the population total 
of y and z kk

t z
∈Ω

= ∑  be the population total z. Further, 
consider that ( )yx  and ( )zx  be the two auxiliary variable 
correlated to y  and z, respectively. It is assumed that 
the sampling frame for all the population units are 
known and per unit data collection cost of ( )yx  and ( )zx  
is much cheaper compare to the y and z. Here, adopted 
data collection method was two-phase with a specified 
probability sampling design. The details of auxiliary 
variables at different level are as follows:
•	 At the Population level: No auxiliary data available
•	 At the first-phase sampling level: ( )y kx  and ( )z kx are 

known for all (1)k s∈

•	 At the second-phase sampling level: ( )y kx  and ( )z kx
are known for all (2) (2) (1),k s s s ∈ ⊂ 
Here, (1)s  denotes first-phase sample of size (1)n  

observing the auxiliary variables [ ( )yx  and ( )zx ] only. 
Further, (2)s  denotes a sub-sample of (1)s  of size 

(2) (2) (1),n n n <   and observed the study variables (y 
and z) along with auxiliary variables ( )yx  and ( )zx . The 
survey weight for unit k in the first-phase sample (1)s

is denoted as 1
(1) (1)k kd π −= , where (1) (1)Prk k sπ  = ∈ 

( )1i 1ð Pr i s= ∈  is the known the first-phase inclusion 
probability for unit k. Similarly, the survey weight 
for unit k in the second-phase sample (2)s  is denoted 
as 

(1)

1
(2) |k k sd π −= , where (1)| (2) (1)Pr |k s k s sπ  = ∈   is the 

known second-phase conditional inclusion probability 
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for unit k. Hence, the overall survey weight (or design 
weight) for unit k can be expressed as (1) (2)k k kd d d= . In 
addition, (1)klπ  denotes the joint inclusion probability of 
kth and lth unit of (1)s ; (1)|kl sπ  denoted joint conditional 
inclusion probability of kth and lth unit of (2)s . Following 
the notation of Särndal et al.(1992) and Arnab (2017), 

( 2)
ˆ

sR  be the conventional estimator of population ratio 
R under two-phase sampling design can be defined as 
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and the approximate variance expression of 
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where

 (1)
ˆ ,k k s ku y R z= −  ,k k kv y Rz= −

(1) (1) (1)| |
ˆ ˆ ˆ

s y s z sR t t=  and 
1,2k l N= = … . Here, though 

( 2)
ˆ

sR  is ratio of two linear 
unbiased estimator but it is biased as well as non-linear 
in nature, see Särndal et al. (1992). Further, Islam et al. 
(2019) described calibration estimator of population 
ratio under two-phase sampling utilizing known ratio 
of auxiliary variables totals at first phase sample only 
(denoted by ˆ

CR ) as 
( 2)
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= ∑ ∑ . This calibration estimator 
was developed through usual approach of distance 
function minimization using single calibration equation
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= ∑ ∑ . In this 
article, keeping in view to improve the performance 
in estimation two revised calibration estimator of 
population ratio were discussed under two phase 
sampling when auxiliary variables are available for 
first phase sample only.

2.1	 Calibration ratio estimator: Ratio of two 
calibration total estimator
Following Deville and Särndal (1992) the 

developed calibration ratio estimator (denoted as 1
ˆ

RCR )
under two-phase sampling given as

1

ˆ
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ˆ
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y
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z
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R
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Here, ˆ
calyt  and ˆ

calzt  are the calibration estimator 
of population total of y and z under two-phase 
sampling, with the formula, 
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= ∑  , respectively where, ( )y kw  and ( )z kw  are 
calibrated weights associated to y and z, respectively. 
The calibration weight, ( )y kw  and ( )z kw  were obtained 
by minimizing the distance between the design 
weights kd  and calibrated weights ( )y kw  and ( )z kw

subject to the constraints 
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differentiating the function ‘Φ ’ partially with respect 
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to ( )y kw  and ( )z kw  independently and equating it to zero, 
get two function as

( ) 1 ( )1y k k y kw d xλ = −   and� (3)

( ) 2 ( )[1 ]z k k z kw d xλ= − � (4) 
Multiplying equation (3) and (4) by 

( )y kx  and ( )z kx , respectively and summing 
it over whole range of (2)[ 1, 2,..., ]k k n=

gives 
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value to equation (3) and (4), respectively and get the 
two individual calibration weight for y and z as
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Hence, putting the value of (5) and (6) to (2) get the 
revised calibration estimator 1

ˆ
RCR  as
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Further, the 1
ˆ

RCR of the equation (7) re-expressed in 
simplified form as:
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The advantages of this estimator was, based on two 
separate calibration weight, but instead has the problem 
of calculating calibration weights without considering 
the correlation value between y and z variable.

2.2	 Proposed revised calibration weight-based ratio 
estimator
In this subsection, we proposed combined 

calibration weight-based ratio estimator which is 
consists of single common calibration weight for both 
numerator (y) and denominator (z) associated to ratio 
estimator. Following Deville and Särndal (1992) the 
proposed calibration estimator (denoted as 2

ˆ
RCR ) of 

finite population ratio is defined as
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where, kw  is the common calibrated weight of 
y and z. Here, kw  is determined by minimizing the 
distance between the original weights dk and the revised 

weights wk, considering the loss function 
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with respect to ‘ kw ’ and equating to zero, get the 
equation
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Further, multiplying (10) by ( )y kx  and ( )z kx

separately and summing it over (2)[ 1, 2,..., ]k k n= , get 
the equations
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2

( ) ( ) 1 ( ) ( ) 2 ( )
1 1 1 1

n n n n

k z k k z k k y k z k k z k
k k k k

w x d x d x x d xφ φ
= = = =

= − −∑ ∑ ∑ ∑
� (12)

By solving the equation (11) and (12), get the 
solutions as:
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Putting the value of ϕ1 and ϕ2 in equation (10), get 
the final calibration weight as:
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Substituating the value of (13) to (9) get the 

expression of calibration estimator as	
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Again, 2
ˆ

RCR  (14) can also be re-expressed in 
simplified form as 
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2.2.1 Variance estimation of the proposed 2
ˆ

RCR  
estimator
In this sub-subsection, expression of variance and 

estimator of variance of 2
ˆ

RCR  was discussed. Following, 
Sӓrndal et  al. (1992) the expression of approximate 
variance of 2

ˆ
RCR  given as,

( )

(1) (1)

(1)

(1) (1)

2 1 2 2 1 2 2

(1)
2

1 1 (1) (1)

1 |(1) 2
1 1 (1) | (1) |

ˆ ˆ ˆ ,

1

1 ,
( )

RC RC RC

N N
k l

kl
k l k lz

n n
k l

kl s
k l k k s l l sz

V R V E R E V R

u u
t

v v
E

t

π π

π π π π

= =

= =

   +   
 

∆ + 
  
  
  ∆

    

∑∑

∑∑





� (16)
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Here, 1E  and 2E  define the expected value over 
all possible first phase sample (1)s  and all possible 
second phase sample given first phase sample (1)s  , 
respectively. 1V  and 2V  define the variance over all 
possible first phase sample and all possible second 
phase sample given first phase sample, respectively. 
Again, following Sӓrndal et al. (1992), the approximate 
estimator of variance of 2

ˆ
RCR  is given as 
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In particular, under simple random sampling 
(SRS) design, the inclusion probabilities of first and 
second phase sample were considered as (1) (1)k lπ π=
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 and 

(1) (1)| |k s l sπ π= = (2) (1)n n . Hence, the approximate 
estimator of variance of 2

ˆ
RCR  under SRS design was 

given as
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2ˆ
yS  and 2ˆ

zS  denote the sample mean square of y and z 
under SRS and ρ̂  is estimate of correlation coefficient 
between y and z.

2.2.2 Determination of optimum sample size under 
fixed cost scenario
Again, the efforts were further given to find out the 

optimum sample size for first phase and second phase 
sampling under a fixed overall cost (denoted as fixC  ) 
that minimizes the approximate variance (18). The 
expression of objective function used to minimize (18) 
as:
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Here, per unit cost of data collection for first-phase 
and second-phase sample was denoted by notation (1)C  
and (2)C , respectively. First order differentiation of 
the function δ  were done with respect to (1)n  and (2)n
,separately and equating it to zero and we got optimum 
value of (1)n  and (2)n  that minimizes the variance 
estimator (18) for fixed cost fixC  as
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Putting the value of (19) and (20) to (18), achieved 
minimum variance expression of the proposed estimator 

2
ˆ

RCR  for a fixed cost under SRS.
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y and z [denoted as ( , )y zρ ] are 0.1 and 0.5 within 
correlation value between y and z with associated 
auxiliary variables ( )  and ( )zx  [denoted as ( )( , )yy xρ
and ( )( , )zz xρ , respectively] as 0.5 and 0.7, respectively. 

Further, for each correlation value four sample 
size combination of first phase sample and second 
phase sample were used as (1) (2)( , )n n =  (250, 25), 
(250, 50), (300, 25) and (300, 50). Here, population 
size N assumed to be 1000. The number of simulation 
performed H =5000.

The values of ARB and RRMSE of different 
estimators under model based simulations for different 
correlation between y, z, x(y) and x(z)under different 
sample size combinations were summarized in Table 1. 
For (1) 250, (2)n = 50, ( ) ( )( ) ( ), ,y zy x z xρ ρ= = 0.5 and 
( ),y zρ = 0.1 the 2

ˆ
RCR  has minimum ARB and RRMSE 

value followed by 1
ˆ

RCR  then ˆ
CR  and lastly 

( 2)
ˆ

sR . Further, 
fixing the value of (1)n = 250, (2)n = 50 and ( )( ), yy xρ =

( )( ), zz xρ = 0.5, with increase in ( ),y zρ  value from 0.1 
to 0.5, decreases the ARB and RRMSE value of all the 
estimators but still 2

ˆ
RCR  is out performer followed by 

1
ˆ

RCR  over ˆ
CR  and ( 2)

ˆ
sR . 

Similarly, for (1)n = 250, (2)n = 50, 
( ) ( )( ) ( ), ,y zy x z xρ ρ= = 0.7 and ( ),y zρ = 0.1, it was 

observed that the 2
ˆ

RCR  has minimum ARB and RRMSE 
value followed by 1

ˆ
RCR  over ˆ

CR  and 
( 2)

ˆ
sR  and further 

increase in ( ),y zρ  value from 0.1 to 0.5 decreases the 
ARB and RRMSE value for all the estimators but still 

2
ˆ

RCR  was out performer followed by 1
ˆ

RCR . Further, for 
a fixed first phase sample value (1) 250n =  with decrease 
in second phase sample size from 50 to 25, the ARB 
and RRMSE value of 

( 2)
ˆ

sR  was increasing in a faster 
rate than ˆ

CR  and 1
ˆ

RCR  followed by 2
ˆ

RCR  for all the 
correlation coefficient combination. Again, for a fixed 
value of second phase sample size either at (2) 25n =  or 
50, increase in sample size of first phase sample from 

(1)n = 250 to 300 for all correlation combinations, it 
was observed that ARB and RRMSE of .., 2

ˆ
RCR  and 

ˆ
CR  were decreased further but ( 2)

ˆ
sR  maintain the same 

vale, but still 2
ˆ

RCR  was outperformer over 1
ˆ

RCR . Hence, 
Table1 overall results show that 2

ˆ
RCR  has minimum 

ARB and RRMSE value followed by 1
ˆ

RCR  over ˆ
CR  and 

( 2)
ˆ

sR  for all the sample size combination over different 
correlation coefficient value.

3.	 EMPIRICAL EVALUATION
In this section, performance evaluation of the 

developed estimators was done through two types of 
simulation studies, one was model-based and another 
was design-based. In model-based simulation studies 
the population data used were generated through 
hypothetical population model, in contrary design-
based simulation studies based on real population 
data. Here, we used four estimators for performance 
comparison are given below:

•	 Simple ratio estimator 
( 2)

ˆ
sR  discussed in equation (1) 

•	 ˆ
CR  of Islam et al. (2019), discussed in equation (2)

•	 Calibration estimator 1
ˆ

RCR  described in equation (8)

•	 Calibration estimator 2
ˆ

RCR  discussed in 
equation (15)
Two performance evaluation criteria used for 

comparison were percentage absolute relative bias 
(ARB) and percentage relative root mean squared error 
(RRMSE), defined by

1

2

1

1

ˆ1ˆ( ) 100 and

ˆ
ˆ( ) 100.

H
h

h

H
h

h

R R
ARB R

H R

R R
RRMSE R H

R

=

−

=

−
= ×

 −
= ×  

 

∑

∑

Here ˆ
hR  denotes the estimated value of the 

population ratio for the hth simulation, R denotes true 
population ratio value and H denotes the total number 
of simulation. 

3.1	 Model-based simulation
In model based simulation, population data were 

generated through multivariate normal distribution 
with mean vector, ( )( ) ( )

, , ,
y zy z x xµ µ µ µ=ì =(25,5,40,20) 

and covariance matrix was

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

y z

y z

y y y y y z

z z z y z z

yy yz yx yx

zy zz zx zx

x y x z x x x x

x y x z x x x x

σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

 
 
 

=  
 
 
  

Ó

. Here, elements 
of Ó  represented covariance between the variables and 
values were taken in such a way that it will provide 
different correlation value among the variables y, z, 

( )y kx  and ( )z kx . Here, four set of covariance matrix 
Ó  value were considered so that correlation between 
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3.2	 Design-based simulation
Here, design-based simulation study was 

performed to support the validity of the findings of 
model based simulation. Design-based simulation was 
performed using real population data MU284 (Särndal 
et al., 1992). MU284 population has284 municipalities 
of Sweden. For analysis purpose we considered only 
four variables of MU284, where 1985 population (P85, 
in thousands) and revenues from the 1985 Municipal 
taxation (RMT85, measured in millions of kronor) 
were assumed to be study variable and 1975 population 
(P75, in thousands) as the auxiliary variable to P85 and 
the variable number of municipal employees in 1984 
(ME84) as the auxiliary variable to RMT85. Here, our 
aim was to estimate population ratio of P85 to RMT85. 
The correlations between the four variables are 
depicted in Table 2. From the MU284 population data 
a first phase sample of size (1) =100 was taken using 
SRS and further second phase sample of three different 
size (2)n =25, 50and 75were selected from the first-
phase sample using SRS. Further, (2)n = 25, 50 and 75 
were selected within (1)n =125 and 150, independently, 
following same the sampling method. The results of 
design based simulations were depicted in Table 3.

In Table3 for (1)n = 100 and (2)n =75 results found 
that  has minimum ARB and RRMSE value followed 
by 1

ˆ
RCR  over  and ( 2)

ˆ
sR . Again for a fixed value of (1)n =

100, with decreasing in second-phase sample size (2)n  
from 75 to 50 and further reduction to 25, highlighted 
that ARB and RRMSE value of ( 2)

ˆ
sR  estimator, increase 

drastically compare to the ˆ
CR  and 1

ˆ
RCR . Furter, 2

ˆ
RCR  

maintained its lower ARB and RRMSE value over the 
ˆ

CR  and 1
ˆ

RCR . Again, for a fixed second phase sample 
size to 25 and 50, increases in first phase sample size 
from 100 to 125 and further 150, we observed that both 
the calibration estimator ˆ

CR  , 1
ˆ

RCR  and 2
ˆ

RCR  gain in 
efficiency with diminishing the ARB as well as RRMSE 
value, though 2

ˆ
RCR  maintain its lowest value over ˆ

CR  
and 1

ˆ
RCR . Hence, Table3 results showed that 2

ˆ
RCR  has 

lowest ARB as well as RRMSE value followed by 

1
ˆ

RCR  over ˆ
CR  and ( 2)

ˆ
sR . Hence, we can conclude that 

design-based simulation results of Table3 supportedthe 
findings of model-based simulation. Hence, 2

ˆ
RCR  was 

considered as the best performing estimator.

4.	 CONCLUDING REMARKS
This research article has proposed the revised 

calibration weight based estimator of finite population 
ratio under two-phase sampling when auxiliary variables 
are available at unit level for first-phase sample and its 
theoretical approximate variance expression as well 
as variance estimator were also developed. Optimum 
sample sizes at first and second-phase sample of the 
proposed calibration estimator 2

ˆ
RCR  was also achieved 

that will provide us a minimum variance for a fixed total 
cost. Finally, our theoretical findings were validated 
through empirical evaluation studies that confirms that 

2
ˆ

RCR  is best performing ratio estimator.
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Table 1. Values of percentage absolute relative biases (ARB) and percentage relative root mean squared errors (RRMSE) of the three 
estimators under (2) 25n =  and (2) 50n =  within (1) 250n =  and (1) 300n = , respectively. Each sample size pair contains ( ), 0.1y zρ =  and 

0.5 under ( ) ( )( ) ( ), , 0.5y zy x z xρ ρ= =  and 0.7. Here, ρ  denotes correlation coefficient value

Sample Size Estimator

( ) ( )( ) ( ), , 0.5y zy x z xρ ρ= = ( ) ( )( ) ( ), , 0.7y zy x z xρ ρ= =

( ), 0.1y zρ = ( ), 0.1y zρ = ( ), 0.5y zρ =

ARB RRMSE ARB RRMSE ARB RRMSE ARB RRMSE

(1) 250n =

(2) 50n =
( 2)

ˆ
sR 2.26 2.82 2.10 2.62 2.96 3.72 2.07 2.57

ˆ
CALR 2.10 2.60 1.98 2.50 2.55 3.03 1.81 2.27

1
ˆ

RCR 2.04 2.56 1.91 2.38 2.36 2.97 1.76 2.19

2
ˆ

RCR 1.96 2.48 1.80 2.26 2.02 2.53 1.56 1.94

(1) 250n =

(2) 25n =
( 2)

ˆ
sR 3.33 4.12 2.95 3.71 3.21 4.06 3.01 3.74

ˆ
CALR 3.10 3.82 2.61 3.30 2.79 3.50 2.66 3.33

1
ˆ

RCR 3.06 3.77 2.53 3.19 2.70 3.39 2.57 3.18

2
ˆ

RCR 2.98 3.65 2.48 3.14 2.46 3.10 2.24 2.78

(1) 300n =

(2) 50n =
( 2)

ˆ
sR 2.25 2.83 2.09 2.64 2.10 2.63 2.96 3.72

ˆ
CALR 2.09 2.63 1.90 2.36 1.79 2.30 2.44 3.12

1
ˆ

RCR 2.00 2.51 1.79 2.25 1.72 2.15 2.36 2.97

2
ˆ

RCR 1.94 2.43 1.76 2.21 1.52 1.91 2.02 2.53

(1) 300n =

(2) 25n =
( 2)

ˆ
sR 3.32 4.23 2.89 3.66 2.87 3.78 2.96 3.72

ˆ
CALR 2.99 3.81 2.49 3.22 2.55 3.35 2.41 3.09

1
ˆ

RCR 2.92 3.71 2.44 3.10 2.47 3.26 2.36 2.97

2
ˆ

RCR 2.86 3.62 2.41 3.06 2.41 3.17 2.02 2.53

Table 2. Correlation coefficient value between four variables (RMT85, P85, ME84 and P75) of MU284 (Särndal et al., 1992)

Variables RMT85 P85 ME84 P75

RMT85 1 0.961 0.999 0.967

P85 0.961 1 0.965 0.998

ME84 0.999 0.965 1 0.971

P75 0.967 0.998 0.971 1

Sud, U.C., Chandra, H. and Gupta, V.K. (2014). Calibration based 
product estimator in single and two phase sampling. Journal of 
Statistical Theory and Practice, 8(1), 1-11.

Wu, C. and Luan, Y. (2003). Optimal calibration estimators under two-
phase sampling, J. Off. Statist., 19(2), 119-131.
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Table 3. Values of percentageabsoluterelative biases (ARB), 
percentagerelative root mean squared errors (RRMSE) and 

percentagerelative efficiencies (RE) of the two estimators under
(2) 25n = , (2) 50n =  and (2) 75n =  within (1) 100n = , (1) 125n =  

and (1) 150n =  respectively from design based simulations using 
the MU284 population data

First phase 
sample

Second phase 
sample Estimator ARB RRMSE

(2) 75
( 2)

ˆ
sR 7.57 8.71

ˆ
CALR 7.41 8.66

(1) 100n =
1

ˆ
RCR 7.36 8.62

2
ˆ

RCR 6.05 7.05

(2) 50n =
( 2)

ˆ
sR 9.37 10.48

ˆ
CALR 7.39 8.61

1
ˆ

RCR 7.31 8.56

2
ˆ

RCR 6.04 7.03

(2) 25n =
( 2)

ˆ
sR 11.62 12.81

ˆ
CALR 7.39 8.88

1
ˆ

RCR 7.11 8.47

2
ˆ

RCR 6.29 7.36

(1) 125n = (2) 75n =
( 2)

ˆ
sR 7.54 8.66

ˆ
CALR 6.31 7.40

1
ˆ

RCR 6.19 7.34

2
ˆ

RCR 5.41 6.28

(2) 50n =
( 2)

ˆ
sR 9.27 10.43

ˆ
CALR 6.68 7.79

1
ˆ

RCR 6.19 7.34

2
ˆ

RCR 5.54 6.42

(2) 25n =
( 2)

ˆ
sR 11.79 13.00

ˆ
CALR 6.50 7.60

1
ˆ

RCR 6.19 7.52

2
ˆ

RCR 6.03 7.12

(1) 150n = (2) 75n =
( 2)

ˆ
sR 7.75 8.83

ˆ
CALR 5.45 6.50

1
ˆ

RCR 5.34 6.35

2
ˆ

RCR 5.00 5.76

(2) 50n =
( 2)

ˆ
sR 9.53 10.56

ˆ
CALR 5.60 6.61

1
ˆ

RCR 5.29 6.39

2
ˆ

RCR 5.17 5.99

(2) 25n =
( 2)

ˆ
sR 11.78 13.05

ˆ
CALR 5.80 6.98

1
ˆ

RCR 5.36 6.63

2
ˆ

RCR 5.69 6.73


