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SUMMARY
The coefficient of variation (CV) has been used in different disciplines with varied purpose related to variation in quantitative measurements. 
Statistical properties of CV have been studied by various researchers. Recently, a paper by the authors featuring an investigation of the posterior 
distribution of a common CV for inverse Gaussian populations with priors obtained through some empirical fitting procedure was presented by YPC 
at the 2022 ISBA World Meeting, June 26-July 1, 2022, held in Montreal, Canada. Some of these results along with other current developments by 
the authors on the topic were also reviewed during an invited presentation by MS in the honor of Dr. Daroga Singh at the 73rd Annual Conference of 
ISAS Conference held at the Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, November 14-16, 2022. The purpose of 
this paper is to summarize and discuss three key papers on estimation and testing of CV from inverse Gaussian distribution focussed on – a common 
CV (from multiple populations under frequentist framework), CV for a single population with Bayesian framework and a common CV from multiple 
populations and Bayesian framework, reviewed at this conference. 
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1.	 INTRODUCTION 
The coefficient of variation (CV), a popular 

indicator for variability, follows the mean and standard 
deviation in the summary of a single variable for 
introductory lectures in statistics. CV is used for 
various purposes under different settings. It is used 
to measure heterogeneity, or thus, homogeneity of 
an experimental field, uniformity in seed quality 
testing (DUS: Distinctness, uniformity and stability), 
phenotypic stability of a genotype across environments 
(Lin et  al., (1986)), stability of income (Singh and 
Singh (1991)), precision and reproducibility of data in 
medical and biological science (Tian (2005)), among 
others. Its indirect uses include determining an optimal 
plot size (sample surveys - crop cutting sample surveys 
with which Dr. Daroga Singh and his team were 

intensively involved), the sample size or the number of 
replications for an experiment, a Bayesian control chart 
for a common coefficient of variation (van Zyl & van 
der Merwe (2017)) among others. 

In almost every field of investigation, researchers 
gather a large amount of data and their summaries over 
time and space. For instance in agricultural research, 
evaluation of crop genotypes/varieties is a continuous 
process leading to the availability of estimates of 
means and variances of genotypic performance. 
These estimates can be used as prior information 
to create a prior distribution in order to improve the 
estimates obtained from the current experiments. 
While the means and standard deviations of genotype 
yields are affected by environmental variables such 
as rainfall, temperature and various biotic stresses, 

Corresponding author: Murari Singh 
E-mail address: murarii.singh@utoronto.ca 



44 Murari Singh et al. / Journal of the Indian Society of Agricultural Statistics 77(1) 2023  43–48

their ratio such as CV (standard deviation/mean) is 
likely to be more stable. Thus, one can form a more 
robust prior distribution for the CV relative to that for 
the components it is made of. Furthermore, in reality, 
most of the observations on variables of interest, such 
as agronomic traits and income etc., are positive and 
for such situations the inverse Gaussian distribution 
appears a worthy candidate. The availability of prior 
information enables an assessment under the Bayesian 
framework. Combining these two aspects, the inverse 
Gaussian distribution and prior information, the 
objective of this study is to review the selected work 
done in the area of estimation and testing of CV under 
Bayesian/frequentist frameworks in the contexts of 
single and multiple populations. 

Coefficient of variation. In terms of the parameters 
of a distribution, the CV is defined as follows. Let a 
random variable X ~ (µ, σ2), that is, X is distributed with 
mean µ and standard deviation σ, then the population 
CV δ is defined as 

δ = σ/µ. 
For a random sample X1, X2, . . . , Xn of size n, Xi 

~ (µ, σ2), the sample CV is given by 
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Sample CV has been widely studied in different 
contexts and for different statistical populations. In 
many real-world applications, data are non-negative, 
"thus, the populations" with non-negative observations 
are of obvious interest. The inverse Gaussian (IG) 
distribution (Folks and Chhikara (1978)) is one such 
distribution widely studied for modelling positive 
measurements. Chaubey et  al. (2017) have explored 
the behavior of CV for IG distribution. This article 
reviews their research along the following three themes, 
organized into individual sections. 
1.	 Estimation and Testing of a Common Coefficient 

of Variation from Inverse Gaussian Distributions 
(Singh et al. (2021)), 

2.	 Bayesian Inference for Inverse Gaussian Data with 
Emphasis on the Coefficient of Variation (Chaubey 
et al. (2021)), and 

3.	 Bayesian Inference for a Common CV from Inverse 
Gaussian Distributions (Chaubey et al. (2022)). 
Inverse Gaussian (IG) Distribution has an early 

introduction and details in Tweedie (1957, 1957)), 
Chhikara and Folks (1977), Folks and Chhikara 
(1978), Chhikara and Folks (1989) among others. The 
probability density function (pdf ) of an IG random 
variable X with mean µ and dispersion parameter λ, 
denoted by IG(µ, λ), is 
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For the IG(µ, λ) distribution, the mean and variance 

are 
E(X) = µ, var(X) = µ3/λ. 
The population CV is thus given by 

/ .δ µ λ=

Various other reparametrization normally found in 
the literature are those discussed by (i) Banerjee and 
Bhattacharyya: (µ, λ) → (ψ = 1/µ, λ) 

(ii) Betro and Rotondi [2]: (µ, λ) → (τ, λ) where 
τ = λ/µ = 1/δ2. 

(iii) Chaubey et al.: (µ, λ) → (µ, δ). In this case, the 
pdf of X is given by 
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2.	 REVIEW OF ESTIMATION AND 
TESTING OF A COMMON COEFFICIENT 
OF VARIATION FROM INVERSE 
GAUSSIAN DISTRIBUTION 
The crop improvement programs undertake 

the G×E interaction studies to compare genotypes 
for their phenotypic stability based on the positive 
valued agronomic traits such as crop yield. Thus, the 
statistical inference on a common CV across several IG 
populations is of interest. 

Consider K inverse Gaussian populations with 
parameters (µi, δi), i = 1, 2, . . . , K. The pdf of ith 
population is given by 

( ) ( )1/2 2

2 3 2

1exp ;
2 2

0, 0, 0.

, ii
i i

ii i

i i

x
f x

xx

x

µµ
µ δ

µπδ δ

µ δ

 −   = −   
    

> > >

∣

�(2.1) 



45Murari Singh et al. / Journal of the Indian Society of Agricultural Statistics 77(1) 2023  43–48

This paper considers random samples Xij, j = 1, 2 . 
. . , ni, of size ni be drawn from IG (µi, δi) i = 1, 2, . . . , 
K, and has proposed methods for: 

(i) Estimation of a common CV, δ in terms of 
ϕ = δ2. They proposed four estimators for the common 
CV, which in terms of their notations, are 

1Eφ : A simple 
1-step iterative maximum likelihood estimator, the 
mean of MLEs of 2

i iφ δ=  weighted with the sample 
size but is not unbiased; 

2Eφ : Maximum likelihood 
estimator, which has unknown bias and requires an 
iterative solution of the maximum likelihood equations; 

3Eφ : An unbiased estimator constructed as a sample 
size weighted mean of the unbiased estimators of ϕi for 
a single population; and 4Eφ : A weighted estimator 
based on îφ  with weights inversely proportional to the 
estimated variance of îφ . 

(ii) Test of homogeneity of the CVs, i.e., H0 : δ1 = 
δ2 = . . . = δK vs. H1: at least two populations differ 
for δ. They proposed two tests: 1. Likelihood Ratio 
Test using the asymptotic distribution of −2 ln(Λ) (in 
common notations) as 2

-1Kχ  under the null hypothesis; 
2. Test Based on the Weighted Sum of Squares (WSS). 
Using 

4Eφ  for the common CV, a test statistic based on 
the weighted sum of squares of î sφ , analogous to the 
weighted analysis of variance test, which approximately 
has a chi-square distribution with K − 1 degrees of 
freedom under H0. 

(iii) Test for a specified value of the common 
CV, say δ0 based on the approach in Chaubey et  al. 
(2017) for an optimal power of îφ  for symmetrizing its 
distribution extended to the case of several populations. 
The test statistic also requires cumulants of 

4Eφ  derived 
from the functions of the cumulants of îφ , i = 1, ..., K, 
which has a lengthy expression/computation. 

2.1	 Datasets 
The studies in Singh et  al. (2021) and Chaubey 

et al. use the data from a series of multi environment 
trials that were conducted by the International Center 
for Agricultural Research in the Dry Areas (ICARDA), 
Aleppo, Syria. Sarker et  al. (2010) have reported 
several trials, however, this paper considered one 
multi-environment trial in 25 genotypes of small-
seeded lentils from LIYT- S (Lentil International 
Yield Trials) evaluated in 5×5 triple lattices conducted 
on a total of 15 locations from six countries in 1998. 
The estimation of CV for yield in kg/ha was carried 

out using the adjusted genotypic means. IG and other 
distributions were fitted using R (Ihaka and Gentleman 
(1996)). A reasonable goodness of fit tests/plots for IG 
distributions were found for three genotypes, labelled 
here as G2, G11, and G20. 

The studies by Singh et al. (2021) and Chaubey et al. 
(2022) use the data from a series of multi‑environment 
trials that were conducted by the International Center 
for Agricultural Research in the Dry Areas (ICARDA), 
Aleppo, Syria. More details on the genotypes and 
experimental design, the type of trials and the agro-
ecological characterization of the environments where 
these trials were conducted are given in Sarker et al. 
(2010). Of the several trials, this paper considered 
one multi-environment trial in 25 genotypes of small-
seeded lentils from LIYT- S (Lentil International Yield 
Trials) evaluated in 5 × 5 triple lattices conducted on 
a total of 15 locations from six countries in 1998. The 
estimation of CV for yield in kg/ha was carried out using 
the genotypic means adjusted for the incomplete block 
effects. Of the 24 test genotypes, the three genotypes 
labelled here as G2, G11 and G20 as mentioned in the 
multi-environment trials in Sarker et al. (2010), were 
used in these reviewed papers. The mean yield levels 
of these genotypes varied in the range 1492‑1535 kg/ha 
and the sample CV in the range 0.48 to 0.60. IG and other 
distributions were fitted using R (Ihaka and Gentleman 
(1996)). A reasonable goodness of fit tests/plots for IG 
distributions were found for the three genotypes, and 
are available via link: https:doi.org10.1007978-3-
030-86133-9 5 for Singh et al. (2021). 

2.2	 Highlights 
The four estimators have been presented for a 

common CV from IG populations. These are based on 
maximum likelihood and method of moments for δ. 
The likelihood ratio test and a weighted sum of squares 
for homogeneity of CVs were studied. The power 
transformation of CV (Chaubey et al. (2017)) to test a 
specified value for the common CV has been presented 
using a large sample approximation. The simulation 
was used to study the properties of the estimators of the 
common CV and the Type I error rate of the tests. 

Of the six tests, four for a specified value of 
common CV and two for their homogeneity, simulated 
error rates for the two tests (T1 and Z6, in their notations) 
were found close to the target level. For example, with 
three IG populations with a CV 2(ϕ) = 0.25 and samples 
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of sizes 10, 15 and 20, the simulated values Type I error 
rates, based on 100,000 simulations, corresponding 
to the true error rates 0.001, 0.01, 0.05 and 0.1 were 
essentially the same. They recommended: a) the use 
of chi-square distribution based on likelihood ratio test 
(T1) for the equality of the CVs, b) a weighted estimator 
for estimation of the common CV 

4Eφ , (one of the four 

estimators), and c) power 0
1
5

h =  of δ2:

3.	 REVIEW OF BAYESIAN INFERENCE 
FOR INVERSE GAUSSIAN DATA WITH 
EMPHASIS ON THE COEFFICIENT OF 
VARIATION 
For a single IG population, this paper obtains, 

theoretically and numerically, the joint and marginal 
posterior distributions of µ and δ based on wide classes 
of joint priors. It derives Jeffrey’s non-informative 
prior for (µ, δ) and explores in greater detail the 
GIG (Generalized IG) (Joshi and Shah (1991)) and a 
conditional inverse gamma distribution as priors of µ 
and δ. A GIG(q, a, b) random variable Z with parameters 
(q, a, b) has the pdf (see Jorgensen (1982)) 
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The entity Kq(.) is the modified Bessel function 
of second kind of order q (Glasser et al.), and has the 
following representation: 
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To obtain the likelihood of the sample, let X1, X2, 
.  .  . , Xn be i.i.d. ∼ IG(µ, δ), with summary statistics 
given as 
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For each of the two sets of joint informative priors for 
(µ, δ), GIG-GIG and GIG - conditional inverse Gamma 
(cIGm), the paper obtains theoretical expressions and 
simulated results on their joint posterior and marginal 
posteriors. 

a. GIG-GIG Prior: The joint prior for (µ, δ) is 
given by 

p(µ, δ) = p1(µ)p2(δ)� (3.3) 
where p1(µ) is obtained by assuming µ ∼ GIG(q1, 

a, b) and p2(δ) is obtained by assuming δ2 ∼ GIG(q2, 
u, v). The posterior distribution of δ, for large n, is then 
approximated by 
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2
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That is, approximately for large n, δ2|x ∼ GIG(q0, 
u, v0). Thus, it concludes that GIG is a conjugate prior 
for δ for large n. 

b. GIG - conditional inverse Gamma (cIGm) 
Prior. Here, the joint prior for (µ, δ) is given by 

p(µ, δ) = p1(µ)p2(δ|µ), 
where p1(µ) is obtained by assuming µ ∼ GIG(q1, a, b) 
and p2(δ|µ) is obtained by assuming μ/δ2 ∼ Gamma(α, 
β). Thus, the posterior distribution δ is given by 
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The above posterior approximates, for large n, to
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and we conclude that the approximate posterior of δ2 is 
inverse Gamma distribution. The performance of these 
two priors for estimation of mean active repair time 
(Folks and Chhikara (1978)) were tabulated for ten sets 
of the parameters (q1, a, b, q2, u, v) keeping the prior 
means of the CV around 1. OpenBUGS worked well 
considering the complex nature of the posteriors. They 
used OpenBUGS with 66667 iterations for simulating 
the posterior, with the number of simulated samples 
being 100002. For obtaining credible intervals, 1024 
points were taken to smooth the density. 
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3.1	 Highlights 
The posteriors found were well behaved, as no 

computational problems arose. The exact computations 
were quite fast, so no need for creating an approximation 
for the posterior was considered necessary. The 
simulated values matched very well with the exact 
values. To quote a few selected cases to estimate CV 
from the Active Repair Time Data (Folks and Chhikara 
(1978)), we notice for GIG-GIG priors with values 
(q1, a, b, q2, u, v) = (-0.5,4,4,-0.5,1,1) : the exact and 
simulated means of δ up to 3 decimals were 1.348 and 
1.349 respectively, while the 95% credible intervals 
were, exact: (1.061, 1.661) and simulated: (1.060, 
1.665). For the joint priors, GIG-cIGm with parameters 
(q1, a, b, α, β) = (−.5, 4, 4, 3, 2), the posterior mean of 
the CV was 1.362 (exact) and 1.338 (simulated), and 
the 95% credible intervals were, Exact: (1.055, 1.702) 
and simulated: (1.046, 1.656). 

4.	 REVIEW OF BAYESIAN INFERENCE 
FOR A COMMON CV FROM INVERSE 
GAUSSIAN DISTRIBU TIONS 
This study (Chaubey et al. (2022)) reports the mean 

and credible intervals from the posterior distribution of 
the common CV of the three genotypes G2, G11 and 
G20 as mentioned in the multi-environment trials in 
Sarker et  al. (2010). Some summary statistics of the 
multi-environment international yield trials in small-
seeded lentils from the 21 genotypes are: genotype 
means in the range: 1347 − 1633 kg/ha and CV = 0.49 
− 0.56 (across 15 environments, other than G2, G11, 
G20). There was one local check, thus these averages 
and ranges are based on 25 − 1 − 3 = 21 genotypes. 
The prior distributions and their parameters were 
estimated from G×E lentil trials data for the remaining 
(21) genotypes, thus they used empirical priors based 
on five distributions: Normal, Lognormal, IG, Weibull, 
Gamma, for genotypic means and CV. We also fitted 
four other distributions, namely, Chisquare, inverse 
χ2, F and Gumbel, but their performance, in terms 
of goodness-of-fit statistic (Kolmogorov-Smirnov, 
Cramer-von Mises, Anderson-Darling) and goodness-
of-fit Criterion (Akaike’s Information Criterion, 
Bayesian Information Criterion), were no better than 
the preceding five distributions and, therefore, were 
not pursued further. Some of the key R functions such 
as fitdistr(), R2WinBUGS and an HPD computing 
function from Chaubey et al. (2021) were used in the 
computation. For posterior distributions, they used 

R2WinBUGS with 3 chains, 100,000 iterations, and 
50000 burn-ins for each chain. The posterior means 
using the simulations were tabulated for δ for the 
eight combinations of the joint priors with parameters 
estimated by fitting the distributions on the rest of the 
genotypes. These eight priors were the combinations 
of IG and Gamma, the two priors for δ, and Truncated 
normal, lognormal, IG and Gamma, the four priors 
for µ. 

4.1	 Highlights - Posteriors of Common CV 
The genotypes, G2, G11 and in the range G20 had 

means (over 15 locations) in the range 1492‑1535, 
sample CV in the range 0.48-0.60 and the CV estimated 
as maximum likelihood estimates (MLEs) from IG 
distributions in the range 0.55-0.80. The frequentist 
estimates of the common CV of these three genotypes 
were: 0.54 (obtained as the mean of sample CV) 
and 0.652 (the mean of the MLEs of CV from IG 
distributions), while the average of the posterior means 
over the eight priors investigated was 0.634. The 95% 
credible intervals were also close, for instance, (0.548, 
0.723) for the IG-IG prior for (δ, µ) and (0.548, 0.722) 
for the Gamma - Gamma prior. The posterior mean is 
within reasonable closeness to the likelihood estimates. 
Considering various families of priors, the posterior 
distributions were found to be reasonably robust for 
the estimation of the common CV for the three selected 
genotypes. 

5.	 IG DISTRIBUTIONS IN ROUTINE DATA 
ANALY SIS AND CONCLUSION 
The three papers on estimation and tests of 

hypothesis on the CV from a single population, and 
a common CV from multi-populations using the 
frequentist and Bayesian approaches were reviewed and 
some main features were described. An IG distribution 
suited for modelling the positive values in routine data 
analysis has potential but is not popular in the analysis 
of designed experiments. Looking into the usefulness 
of IG distribution and availability of large datasets to 
feed in the prior distributions, the authors are of the 
view to encourage the use of IG under the Bayesian 
framework for the models including yij ∼ IG(µij, σij ), 
where, µij = µ + τi + βj (say in a randomized complete 
block design), and compare with a normal distribution 
model: yij ∼ N(µij, σ2). The priors for µij, σij and σ2 
could be drawn from a large class of distributions with 
parameter estimates from prior experiments. 
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