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1. INTRODUCTION 
An estimation method can be improved by the 

use of suitable auxiliary information. There are some 
well-known methods of incorporating the auxiliary 
information, viz., ratio method of estimation, product 
method of estimation, regression method of estimation, 
combined ratio-type of estimation, unbiased ratio-
type of estimation, etc. The calibration approach also 
incorporates the auxiliary information in estimating 
the population parameters and improves the estimation 
method. A calibration estimator is derived using some 
distance functions under different constraints. The 
distance between improved calibrated weights and 
design weights must be least as possible. Deville and 
Särndal (1992) were the first who use the calibration 
approach to estimate the population total. There are 
some other researchers such as Singh (1998), Särndal 
and Estevao (2000), Wu and Sitter (2001), Tracy et al. 
(2003), Särndal (2007), Kim et al. (2007), Kim and Park 
(2010), Koyuncu and Kadilar (2014), Clement (2017), 

Nidhi et al. (2017) and Özgül (2018) who have used 
the calibration approach in estimating the population 
parameters at the estimation stage.

The objective of the present study is to estimate 
the population mean under stratified random sampling 
using the calibration approach. We have tried to find 
out a generalized-type calibration estimator of the mean 
of a stratified population. To obtain the new stratum 
weights, we have used chi-square type distance which 
is minimized subject to the calibration constraints 
based on a single auxiliary variable. We have derived 
some existing calibration estimators from the suggested 
generalized-type calibration estimator and it has been 
verified that the suggested generalized-type calibration 
estimator works well. We have performed a simulation 
study to strengthen the theoretical outputs. An extensive 
effort has also been made where the information on 
some other characteristics is available. 
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2. SAMPLING PROCEDURE, NOTATIONS 
AND DEFINITIONS
Let ( )1 2, ,...,= NU U U U  be a finite population of N 

distinct and identifiable units. Let us suppose that the 
population can be stratified into L strata and thh  stratum 

consists of hN  units such that 
1=

=∑
L

h
h

N N ( ); 1, 2,...,=h L  . 

Let Y  and X  be the characteristics under study and 
auxiliary respectively. Let hiy  and hix  be the 
observations on the thi  unit in the thh  stratum for the 
study and auxiliary variables respectively
( ); 1, 2,...,= hi N . Let us draw a random sample of hn

units from the thh  strata using simple random sampling 
without replacement (SRSWOR) scheme such that

1=
=∑

L

h
h

n n . Let us now consider some usual notations 

and terminologies:

1==
∑

L

hh
h

N Y
Y

N
: Population mean under study 

variable

1==
∑

L

hh
h

N X
X

N
: Population mean under auxiliary 

variable

1

1
=

= ∑
hN

h hi
ih

Y y
N

: Population mean for the thh  stratum 

under study variable

1

1
=

= ∑
hN

h hi
ih

X x
N

: Population mean for the thh  

stratum under auxiliary variable

1
= ∑

hn

hih
ih

y y
n

: Sample mean for the thh  stratum 

under study variable

1
= ∑

hn

h hi
ih

x x
n

: Sample mean for the thh  stratum 

under auxiliary variable

( )22

1

1
1 =

= −
− ∑

hN

hhY hi
ih

S y Y
N

: Population mean square 

for the 
thh  stratum under study variable

( )22

1

1
1 =

= −
− ∑

hN

hhX hi
ih

S x X
N

: Population mean square 

for the 
thh  stratum under auxiliary variable

( )22 1
1

= −
− ∑

hn

hy hi h
ih

s y y
n

: Sample mean square for 

the 
thh  stratum under study variable

( )22 1
1

= −
− ∑

hn

hhx hi
ih

s x x
n

: Sample mean square for 

the 
thh  stratum under auxiliary variable

3. LITERATURE REVIEW
The objective of the present research is to estimate 

the population mean Y . The usual unbiased estimator 
of the population mean Y  in stratified random sampling 
is given by 

1=
= ∑

L

hst h
h

y w y  (1)

where = h
h

N
w

N
In sequence of improving the estimation method, a 

number of estimators have been suggested for 
estimating the population mean Y  under calibration 
approach. Some of the well known calibration 
estimators have been discussed in the subsequent 
subsections. 

3.1 Singh et al. (1998) Estimator
A new calibration estimator of the population mean

Y , proposed by Singh et al. (1998) in stratified random 
sampling is given as

,
1=

= ∑
L

hc st h
h

y yδ  (2)

Here, the calibrated weight hδ  is chosen such that 
the chi-square type distance 

( )2

1=

−
∆ = ∑

L
h h

h h h

w
w q

δ
 (3)

is minimum subject to the condition

1=
=∑

L

hh
h

x Xδ  (4)

The optimum calibrated weight hδ  under the above 
assumptions is represented as
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2 1

1

; 1, 2,...,
=

=

 
   = + − = 
  
 
 

∑
∑

L
hh h

hh h hL
h

hh h
h

w q x
w X w x h L

w q x
δ

 (5)
Thus, the calibration estimator becomes

1
, 21 1

1

=

= =

=

 
    = + − 
  
 
 

∑
∑ ∑

∑

L

hh h hL L
h

hh hc st h L
h h

hh h
h

w q x y
y w y X w x

w q x
 (6)

3.2 Nidhi et al. (2017) Estimator
Another calibration estimator of the population 

mean Y , proposed by Nidhi et al. (2017) in stratified 
random sampling is given by

( ),
1=

′= ∑
L

hc st h
h

y n yδ  (7)

The calibrated weight ′hδ  is chosen such that the 
chi-square type distance

( )2
'

1=

′ −
∆ = ∑

L
h h

h h h

w
w q

δ
 (8)

is minimum subject to the constraints

1=

′ =∑
L

hh
h

x Xδ  (9)

1
1

=

′ =∑
L

h
h
δ  (10)

The Lagrange function is defined as

( )2

1 2
1 1 1 1

2 2 1
= = = =

′ −    ′ ′= − − − −   
   

∑ ∑ ∑ ∑
L L L L

h h
hhh h h

h h h hh h

w
x w X

q w
δ

µ φ δ φ δ

 (11)

where 1φ  and 2φ  are the Lagrange multipliers.
The Lagrange function given in equation (11) leads 

to the optimum calibrated weight '
hδ  as

( )
1 1'

2
2

1 1 1

= =

= = =

  −  
  = +       −          

∑ ∑

∑ ∑ ∑

L L

h hh h h
h h

hh h h h L L L

h hh h h h h h
h h h

w X x w q
w w q x

w q x w q w q x
δ

 

( )
1 1

2
2

1 1 1

;= =

= = =

  − −  
  +       −          

∑ ∑

∑ ∑ ∑

L L

h h hh h h
h h

h h L L L

h hh h h h h h
h h h

w X x w q x
w q

w q x w q w q x

 1,2,...,=h L

Thus, the final form of the calibration estimator 
( ),c sty n  is given as

( ),
1

1 1 1 1
2

2 1

1 1 1

=

= = = =

=

= = =

= +

     −             − 
     −    

    

∑

∑ ∑ ∑ ∑
∑

∑ ∑ ∑

L

hc st h
h

L L L L

h hh h h h h h h hh h L
h h h h

hhL L L h
h hh h h h h h

h h h

y n w y

w q x y w q w q y w q x
X w x

w q x w q w q x

 (12)

4. PROPOSED GENERALIZED-TYPE 
CALIBRATION ESTIMATOR
Let us now define a generalized-type calibration 

estimator of the population mean Y  in stratified random 
sampling as follows: 

( ) *
,

1=
= ∑

L

hst c h
h

y g yδ  (13)

where *
hδ  is a new calibrated weight for the thh

stratum. The new calibrated weight *
hδ  is chosen such 

that the chi-square type distance

( )2*
*

1=

−
∆ = ∑

L
h h

h h h

w

w q

δ
 (14)

is minimum subject to the calibration constraints

( ) ( )*
1 1 2 1 1 2

1 1
, ,..., , ,...,

= =

=∑ ∑h h

L L

h h n h h N
h h

f x x x w g X X Xδ  ( )1I

( ) ( )*
2 1 2 2 1 2

1 1
, ,..., , ,...,

= =

=∑ ∑h h

L L

h h n h h N
h h

f x x x w g X X Xδ  ( )2I

( ) ( )*
1 2 1 2

1 1
, ,..., , ,...,

= =

=∑ ∑h h

L L

h kh n h kh N
h h

f x x x w g X X Xδ  ( )kI

where ( )1 2, ,..., ; 1,...,=
hlh nf x x x l k  are the functions 

of the auxiliary variable for the sample drawn from the 
thh  stratum such as mean, standard deviation, coefficient 

of variation, etc. The functions
( )1 2, ,..., ; 1,...,=

hlh Ng X X X l k  are the functions of the 
auxiliary variable for the population in the thh  stratum 
such as mean, standard deviation, coefficient of 
variation, etc.
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Let us consider the Lagrange function

( ) ( )

( )

2*
* *

1 2
1 1 1

1 2
1

2 , ,...,

, ,...,

= = =

=

− 
= − −






∑ ∑ ∑

∑

h

h

L k L
h h

l h lh n
h l hh h

L

h lh N
h

w
f x x x

w q

w g X X X

δ
µ φ δ

 (15)

where lφ ’s; 1,...,=l k  are the Lagrange multipliers.               
Here, we use the mathematical theory of maxima 

and minima to find the optimum value of the new 

calibrated weight 
*
hδ  for which the Lagrange function 

given in equation (15) would become minimum. 
Differentiating the equation (15) with respect to *

hδ  and 
equating the derivative to zero, we get

( )
( )

( )

2**
*

1 2* * *
1 1 1

1 2
1

2 , ,

, ,..., 0

= = =

=

−∂ ∂ ∂ 
= − −∂ ∂ ∂ 

 =


∑ ∑ ∑

∑ h

L k L
h h

i h ih
h i hh hh h h

L

h ih N
h

w
f x x

w q

w g X X X

δµ φ δ
δ δ δ

( ) ( )
*

1 2
1

2 2 , ,..., 0
=

−
⇒ − =∑ h

k
h h

l lh n
lh h

w
f x x x

w q

δ
φ

( )*
1 2

1
, ,...,

=

⇒ = + ∑ h

k

h h h h l lh n
l

w w q f x x xδ φ
 (16)

Let us assume ( )1 2, ,...,=
hh nx x x x  and

( )1 2, ,...,=
hh NX X X X . Thus, we have 

( )*

1=
= + ∑

k

h h h h l lh h
l

w w q f xδ φ

( ) ( )( )*
1 1⇒ = + + ⋅⋅⋅ +h h h h h h k kh hw w q f x f xδ φ φ

[ ]
( )

( )

1
*

1

 
 ⇒ = +  
  

 

h h

h h h h k

kh h

f x
w w q

f x
δ φ φ

*⇒ = + T
h h h hw w q Fδ φ  (17)

where 
1  

  =  
    



k

φ
φ

φ
 and 

( )

( )

1  
  =  
    



h h

nh h

f x
F

f x
 are the 

column vectors. 

4.1 Determination of Constants ( ); 1, 2,...,=l l kφ

Let us put the value of *
hδ  from equation (17) into 

the equations ( )1I , ( )2I , …, ( )kI  i.e.

( ) ( )*
1 2 1 2

1 1
, ,..., , ,..., ;

= =

=∑ ∑h h

L L

h lh n h lh N
h h

f x x x w g X X Xδ
 

 1, 2,...,=l k

( ) ( )*

1 1
; 1, 2,...,

= =

⇒ = =∑ ∑
L L

hh lh h h lh
h h

f x w g X l kδ
 

( ) ( ) ( )
1 1 1

;
= = =

 ⇒ + = 
 

∑ ∑ ∑
L k L

hh h h l lh h lh h h lh
h l h

w w q f x f x w g Xφ
 

 1, 2,...,=l k

( ) ( ) ( ) ( )
1 1 1 1= = = =

 ⇒ = − 
 

∑ ∑ ∑ ∑
L k L L

hh h l lh h lh h h lh h lh h
h l h h

w q f x f x w g X w f xφ

 1, 2,...,=l k

From the above, we get a system of equations with 
k constraints. The system of equations can be written as

( ) ( ) ( )

( ) ( )

2
1 1 1

1 1

1 1
1 1

= =

= =

+ ⋅⋅ ⋅ +

= −

∑ ∑

∑ ∑

L L

h h h h k h h kh h h h
h h

L L

hh h h h h
h h

w q f x w q f x f x

w g X w f x

φ φ

 ( )1E

.                          .

.                          .

.                          .

( ) ( ) ( )

( ) ( )

2
1 1

1 1

1 1

= =

= =

+ ⋅⋅ ⋅ +

= −

∑ ∑

∑ ∑

L L

h h h h kh h k h h kh h
h h

L L

hh kh h kh h
h h

w q f x f x w q f x

w g X w f x

φ φ

 ( )kE

Let us now write the system of equations in the 
matrix form

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

2
1 1

1 1 1

2
1

1 1

1 1
1 1

1 1

= =

= =

= =

= =

 
              
  
 

− 
 

=  
 
 −
  

∑ ∑

∑ ∑

∑ ∑

∑ ∑



   





L L

h h h h h h kh h h h
h h

L L
k

h h h h kh h h h kh h
h h

L L

hh h h h h
h h

L L

hh kh h kh h
h h

w q f x w q f x f x

w q f x f x w q f x

w g X w f x

w g X w f x

φ

φ
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⇒   =A Bφ  (18)
where 

( ) ( ) ( )

( ) ( ) ( )

2
1 1

1 1

2
1

1 1

= =

= =

 
 
 

=  
 
 
  

∑ ∑

∑ ∑



  



L L

h h h h h h kh h h h
h h

L L

h h h h kh h h h kh h
h h

w q f x w q f x f x

A

w q f x f x w q f x
 

and

( ) ( )

( ) ( )

1 1
1 1

1 1

= =

= =

 − 
 

=  
 
 −
  

∑ ∑

∑ ∑



L L

hh h h h h
h h

L L

hh kh h kh h
h h

w g X w f x

B

w g X w f x
.

Let us assume that the matrix A is non-singular 
matrix. Since the matrix A is non-singular, the inverse 
of matrix A exists and hence  

( )1 1− =A adj A
A

where A  is the determinant of matrix A.
The solution of the system of equations (18) is 

given as 
1−= A Bφ  (19) 

Thus, the suggested generalized-type calibration 
estimator becomes

( ) ( )1
,

1 1

−

= =

= +∑ ∑
L L T

h h hst c h h
h h

y g w y w q A B F y  (20)

4.2 Some Special Cases 
Case 1: If chi-square type distance is minimized 

subject to only one constraint i.e. *

1=
=∑

L

hh
h

x Xδ , then we 

have 

( )1 = hh hf x x  and ( )1 = hhhg X X .
In such a case, the matrices A, B and F are given as

2

1 1 1= ×

 =  
 
∑

L

hh h
h

A w q x , 
1 1 1= ×

 = − 
 

∑
L

hh
h

B X w x  and 

1 1×
 =  hF x .
Therefore, the deduced generalized-type calibration 

estimator is given by

( )
1

2

1,
1 1 1

1

−

= = =

=

 = +  
 

 −  
 

∑ ∑ ∑

∑

L L L

hh h h h hst c h
h h h

TL

h hh h
h

y g w y w q w q x

X w x x y

( ) 1
1, 21 1

1

=

= =

=

 
   ⇒ = + −   
 
 

∑
∑ ∑

∑

L

hh h hL L
h

hh hst c h L
h h

hh h
h

w q x y
y g w y X w x

w q x

which is same as the calibration estimator proposed 
by Singh et al. (1998). 

Case 2: If chi-square type distance is minimized 
subject to two calibration constraints i.e.   

*

1 1= =

= =∑ ∑
L L

hhh h
h h

x X w Xδ  and *

1
1

=

=∑
L

h
h
δ , then we have

( )1 = hh hf x x  and ( )1 = hhhg X X

( )2 1=h hf x  and ( )2 1=hhg X

The matrices A, B and F are given as
2

1 1

1 1

= =

= =

 
 
 =
 
 
 

∑ ∑

∑ ∑

L L

h hh h h h
h h
L L

hh h h h
h h

w q x w q x
A

w q x w q
, 1

0
=

 
− =  

  

∑
L

hh
h

X w x
B  

and 
1

 
=  
 

hxF

Thus, the deduced generalized-type estimator 
becomes

( )2,
1

1 1 1 1

1

=

= = = =

=

= +

−
 − 
 

∑

∑ ∑ ∑ ∑
∑

L

hst c h
h

L L L L

h hh h h h h h h hh h L
h h h h

hh
h

y g w y

w q w q x y w q x w q y
X w x

A

where 
2

2

1 1 1= = =

    = −    
    
∑ ∑ ∑

L L L

h hh h h h h h
h h h

A w q x w q w q x

which is the expression for the calibration estimator 
proposed by Nidhi et al. (2017). 

Note: In the similar manner, one can get some 
other well known existing calibration estimators and 
some new calibration estimators of the population 
mean Y  by minimizing the chi-square type distance *∆
subject to the three constraints, four constraints, …, 
k constraints.
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5. AN EXTENSION UNDER 
CONSIDERATION
In the previous subsections, we have pioneered out 

a generalized-type calibration estimator of the 
population mean Y  under the calibration constraints 
based on a single auxiliary characteristic. An extension 
can also be carried out where ( )lhf  and ( )lhg  are the 
functions of some other momentous characteristics. 
For instance, one can consider both the cost of 
enumeration C  and information on a single auxiliary 
variable X  at the same time. Let ( ),ih h hf x c  be the 
functions of the auxiliary variable and the cost of 
enumeration for the sample drawn from the thh  stratum. 
Let ( ),hih hg X C  be the functions of the auxiliary 
variable and the cost of enumeration for the population 
in the thh  stratum. Thus, the resulting generalized-type 
calibration estimator of the population mean Y  is given 
by

( ) ( )* 1 * *
,

1 1

−

= =

= +∑ ∑
L L T

h h hst c h h
h h

y G w y w q A B F y  (21) 

where 

( ) ( ) ( )

( ) ( ) ( )

2
1 1

1 1
*

2
1

1 1

, , ,

, , ,

= =

= =

 
 
 

=  
 
 
  

∑ ∑

∑ ∑



  



L L

h h h h h h h kh h h h h h
h h

L L

h h h h h nh h h h h kh h h
h h

w q f x c w q f x c f x c

A

w q f x c f x c w q f x c

,

( ) ( )

( ) ( )

1 1
1 1

*

1 1

, ,

, ,

= =

= =

 − 
 

=  
 
 −
  

∑ ∑

∑ ∑



L L

hh h h h h h h
h h

L L

hh kh h h kh h h
h h

w g X C w f x c

B

w g X C w f x c

 and 

( )

( )

1
*

,

,

 
 =  
  



h h h

nh h h

f x c
F

f x c
.

6. SIMULATION STUDY
The calibration estimators proposed by Singh et al. 

(1998) and Nidhi et al. (2017) are the special cases of 
generalized calibration estimator ( ),st cy g . Thus, we 
have conducted a simulation study to assess the 
efficiency of calibration approach based estimators 
derived by Singh et al. (1998) and Nidhi et al. (2017) 
with that of the usual estimator of the population mean. 

To study the efficiency of the calibration estimators, we 
have taken a finite population of 3100 distinct and 
identifiable units. This population is composed of 4 
strata with strata sizes of 800, 300, 1200 and 800 units. 
Now, we decide to select a sample of 620 units from the 
population. The sample from each stratum is taken 
using proportional allocation scheme with 

1 ; 1, 2, 3, 4.
5

= =h

h

n
h

N
 the procedure suggested by 

Reddy et al. (2010) has been used to generate the data 
for the variables Y  and X . Table 1 shows the 
description of the distribution of the population.

Table 1. Particulars of Population

Stratum 
No. ( )h

Stratum 
size ( )hN

Sample 
Size ( )hn

Distribution 
of Study 

Variable, i. e., 
( )2, Y YY N µ σ

Distribution 
of Auxiliary 

Variable, i.e., 
( )2, X XX N µ σ

I 800 160 ( )50,25N ( )110,25N

II 300 60 ( )45, 49N ( )150, 49N

III 1200 240 ( )70, 81N ( )125, 81N

IV 800 160 ( )100, 36N ( )180, 36N

Table 2 depicts the approximate MSE (AMSE) of 
the usual estimator sty  and calibration approach based 
estimators derived by Singh et al. (1998) and Nidhi 
et al. (2017). The percentage relative efficiency (PRE) 
of the calibration approach based estimators derived by 
Singh et al. (1998) and Nidhi et al. (2017) with respect 
to the usual estimator sty  has also been shown. The 
formulae for computing the AMSE are given below:

( )
5000 2

1

1
5000 =

 = − ∑st stl
l

AMSE y y Y

( ) ( )
5000 2

1 1, ,
1

1
5000 =

   = −   ∑st c st c l
l

AMSE y g y g Y

( ) ( )
5000 2

2 2, ,
1

1
5000 =

   = −   ∑st c st c l
l

AMSE y g y g Y

Note: Repetition of the sample is considered as 
5000. 
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Table 2. AMSE and PRE of Estimators sty , ( )1,st cy g  and 

( )2,st cy g

Estimator AMSE PRE

sty 0.0705 100.00

( )1,st cy g 0.0316 223.44

( )2,st cy g 0.0288 244.99

7. CONCLUDING REMARKS
In the present research, we have suggested a 

generalized-type calibration estimator of the population 
mean in stratified random sampling. The expressions 
for the new stratum weights have been derived using 
the chi-square type distance measure. The new stratum 
weight is so chosen that it minimizes the chi-square 
type distance subject to the calibration constraints 
based on a single auxiliary variable. The generalized-
type calibration estimator can produce a number of 
well-known existing calibration estimators and some 
new calibration estimators of the mean of a stratified 
population. The calibration estimators derived by Singh 
et al. (1998) and Nidhi et al. (2017) have been shown 
as some special cases of the suggested generalized-type 
calibration estimator. A simulation study has been 
performed to compare the efficiency of some calibration 
estimators considered as special cases of the suggested 
generalized-type calibration estimator with that of the 
usual estimator. Table 2 reveals that the calibration 
estimators ( )1,st cy g  and ( )2,st cy g  perform well as 
compared to the usual estimator sty . An extensive 
version of the suggested calibration-type estimator has 
also been pioneered out.
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