
1.	 INTRODUCTION
One of the most difficult tasks in time series 

analysis is price forecasting of agricultural 
commodities. Accurate price forecasting has emerged 
as a key concern in agriculture from the perspectives 
of farmers, policy planners and agro-based industries. 
Agricultural prices often exhibit random patterns due to 
their high dependence on weather and other associated 
factors. As a result, these lead agricultural commodity 
prices to be non-linear and non-stationary in nature. 
In literature, many artificial intelligence (AI) models 
such as artificial neural network (ANN), support vector 
regression (SVR), etc. have been found to be more 
useful as compared to the traditional autoregressive 
integrated moving average (ARIMA) model. The 
AI models can map any non-linear function without 
making any assumptions about the characteristics of 

the data. In addition, these do not require any prior 
model assumptions. In spite of the recent success of 
the ANN models in different domains, the problem of 
the vanishing as well as the exploding gradient and 
over fitting due to the back propagation algorithm 
sometimes limit its generalisation capability. As a 
result, SVR based on the structured risk minimisation 
principle often provides improved generalising ability 
over ANN.

Several authors have made effort to compare 
as well as to improve the performance of different 
machine learning algorithms. Kajitani et  al. (2005) 
compared the performance of artificial neural network 
models and autoregressive time series models for the 
Canadian lynx data set. Their results showed that ANN 
models performed better than Autoregressive (AR) 
models in the presence of non-linear and non-Gaussian 
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characteristics. The importance of detrending and 
deseasonalisation in neural network forecasting was 
discussed by Zhang and Qi (2005). They observed that 
detrending combined with deseasonalisation increases 
forecasting precision. Duan and Stanley (2011) used the 
SVR to reduce the impact of cross-correlations between 
various financial markets to enhance the prediction of 
financial return data series. They emphasised how the 
structural risk minimisation approach has improved the 
forecasting accuracy.

As the conventional mono-scale smoothing 
techniques often fail to capture the complex non‑linear 
and non-stationary patterns, Huang et  al. (1998)) 
proposed the concept of empirical mode decomposition 
(EMD). It utilises the principle of the divide and 
conquers rule i.e., it decomposes the non‑linear 
and non-stationary data into several intrinsic mode 
functions (IMF) and a residue with varying frequencies. 
Then each IMF along with the residue is modelled and 
forecasted. These forecasted values are summed up to 
obtain the final series.

An et  al. (2012) have mentioned that EMD can 
detect hidden patterns and trends of time series. 
Guo et  al. (2012) have demonstrated the superiority 
of an EMD-based feed-forward neural network in 
comparison to the traditional forecasting techniques 
in anticipating wind speed series. Chen et  al. (2012) 
also proposed an EMD-based neural network model 
to predict tourism demand. Their proposed model 
outperformed the ARIMA model as well as the ANN 
model. Cheng and Wei (2014) utilised the EMD-SVR 
approach to forecast stock prices for the Taiwan stock 
exchange. They compared it with AR and SVR models 
and observed the performance of the EMD-SVR model 
to be superior. Das et  al. (2019) have compared the 
EMD-ANN with the EMD-SVR model and found 
that the EMD-SVR model performed better than the 
EMD-ANN model. Duan et  al.(2016) developed a 
hybrid EMD-SVR model for the short-term prediction 
of ocean waves, which performed better than the 
conventional statistical models and also than the 
wavelet decomposition-based SVR (WD-SVR) model.

With this backdrop, we have attempted to evaluate 
the appropriateness of empirical mode decomposition 
(EMD)-based neural network and support vector 
regression (SVR) approaches for forecasting wholesale 
prices of three major potato markets namely, Agra, 
Bangalore, and Mumbai. As the benchmark models, 

autoregressive integrated moving average (ARIMA), 
time delay neural network (TDNN) and SVR models 
have been employed for the comparative evaluation.

2.	 METHODOLOGIES

2.1	 ARIMA Models
The ARIMA model was introduced by Box and 

Jenkins in the year 1970 as a generalisation of the 
ARMA model. In ARMA, the forecasted value of the 
variable is the linear combination of its past (lag) values 
and past (lag) errors. The general form of the forecasted 
value at time t generated by the ARMA (p, q) process 
can be expressed as:

t 1 t 1 p t p t 1 t 1 q t qy c y y− − − −= + α +…+α + ε −β ε −…−β ε

� (1)

where iα  (i=1, 2…., p) and ( )j j 1 2 q,β = …  are the 
model parameters.

As the estimate approach is only available for 
stationary series, the first step in the ARIMA modelling 
process is to verify the series’ stationarity. If ‘d’ 
times differencing is needed for the data to become 
stationary, then the ARIMA model is represented as 
ARIMA(p, d, q), where p and q refer to the order of 
the auto regression and moving average, respectively. 
Based on autocorrelation function (ACF) and partial 
autocorrelation function (PACF) many ARIMA models 
were selected. Model parameters are estimated by the 
method of maximum likelihood. For all estimated 
models, diagnostic testing for model adequacy is 
carried out using a plot of the residual ACF using 
portmanteau tests such the Ljung-Box tests. The most 
suitable ARIMA model is selected using the smallest 
Akaike Information Criterion (AIC) or Schwarz–
Bayesian Criterion (SBC) value and the lowest root 
mean square error (RMSE).

The formula for AIC is given as

( )AIC  2 L 2kln= − + � (2)
where L is the maximum likelihood of the model 

and k is the number of estimated parameters in the 
model.

The formula for SBC is given as

( )SSE pSBC ln ln n
n n

 = + 
 

� (3)
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where SSE is the sum of squared errors, n is 
the number of observations and p is the number of 
estimated parameters of the model.

2.2	 Time Delay Neural Network Models
The concept of ‘artificial neural network’ comes 

from the biological neural networks that allow learning 
by example from the representative data. ANNs, like 
the human brains, have neurons that are coupled to 
one another in various layers of the networks and these 
neurons are called nodes. A neural network structure 
usually contains an input layer, an output layer and 
one or more hidden layers. Each layer has one or more 
nodes. During the training process, the information 
inside one node is associated with random initial 
weights and biases and then, subsequently passed to 
the next layer, where it gets transformed by using an 
activation function. During the back propagation, the 
weights and biases are adjusted by the gradient descent 
method accordingly.

In a time delay neural network (TDNN), the lagged 
observations of the time series variable are utilised in 
the input layer. Determination of the number of layers 
and the number of nodes in each layer is carried out 
based on experimentation. For a single hidden layer 
TDNN with p input nodes, q hidden nodes and a single 
output node, the general expression for the forecasted 
value at time t is given by:

q p

t 0 j 0 j ij t i
j 1 i 1

y h u u k v v yˆ −
= =

  
= + +     

∑ ∑  (4)

tŷ  is the forecasted value at time t, ijv  is the weight 
connection between the ith input node and jth hidden 
node, ju  is the weight between jth hidden node and the 
output node. 0u  and 0 jv  denote the bias term. h and k 
represent the activation functions at the output and 
hidden layer respectively. The error function which is 
widely used for the training purpose is mean squared 
error and is given by

( )n 2
t tt 1

1E  y y
n

ˆ
=

= −∑ � (5)

The weights and biases are updated by using the 
calculated gradients and a learning rate α . The learning 
rate is a hyperparameter that controls how frequently 
the parameters of an optimisation algorithm or a neural 
network are updated during training. Its impact on how 

fast or slowly the model learns and converges makes it 
a crucial parameter. In order to achieve sustained and 
effective training, selecting the appropriate learning 
rate is crucial. A very low value can delay the 
convergence while a high value can cause no 
convergence at all.

Mathematically the updated weight is given by

ij ij
ij

Lv v    
v

. ∂← − α
∂ � (6)

where 
ij

L
v
∂
∂  is the partial derivative of the error 

function with respect to the weight ijv .

2.3	 Support Vector Regression Models
The support vector regression is an adaption of 

support vector machines. In SVR for solving non-linear 
regression problems, the inputs are first mapped non-
linearly into a high-dimensional feature space (F), 
where they are linearly associated with the outputs. For 

a given dataset, ( ){ }n
i i i 1

G  x   q,
=

= , where ix  and iq  
represent the input vector and the scalar output, 
respectively, and n is the size of G, the regression 
equation is given by:

( ) ( )Tf x  w x  b.= Φ +

where w is the weight vector, ( )xΦ  is a non-linear 
mapping function in the feature space and T denotes the 
transpose. The ε -insensitive loss function used for 
SVR formulation is given as

( )( ) ( ) ( )
å

f x q f x q
L f x q

0

       
,

                  

if

otherwise

ε ε − − − ≥= 


�(7)

To estimate the weight vector w and constant b, the 
following regularised risk function has to be minimised:

( ) ( )( )
n

2
å i i

i 1

C 1R C L f x q w
n 2

,
=

= +∑ � (8)

Here, 21 w
2

 is the regularisation term used to 

estimate the flatness of a function. C denotes the 
regularisation constant, which determines the trade-off 
between model flatness and empirical risk. C and ε  are 
both user-determined parameters.
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Fig. 1. (a) Diagram of support vector regression

Fig. 1(a) diagrammatically represents the SVR 
model, where the loss will be considered zero if the 
forecasted value falls within the ε -insensitive zone.

*
i i and ξ ξ  are the positive slack variables, which 

measure the deviation of actual observations from the 
boundaries of the ε -insensitive zone. After using the 
slack variables, the regularised risk function transforms 
to the following constrained form:

Minimise: ( )
n

2 *
i i

i 1

1 w  C  
2 =

+ ξ + ξ∑

Subject to: 

( )( )
( )( )

i i i

i i i

*
i i

q w x  

w x q  

 0 1

.

.

,        , ..

b

b

for i n

ε

ε

 − Φ − ≤ + ξ
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 ξ ξ ≥ = …

′

′

By utilising the Lagrangian multipliers and Karush-
Kuhn-Tucker conditions, this optimisation problem can 
be further transformed as:

Maximize:

( ) ( ) ( )

( )( )

n n
* * *

d i i i i i
i 1 i 1

n
* *
i i j j i j

i j 1

L  q

1  K x  x
2 ,

,

( . )

= =

=
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α −α α −α
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=


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∑

After calculating the Lagrangian multipliers, the 
SVR function becomes:

( ) ( )
n

*
i i i j

i 1

f x   K x  x b( . )
=

= α −α +∑ � (9)

Here, ( ) ( ) ( )i j i jK x  x  x   x. .= Φ Φ . The kernel 
function providing the inner product of two vectors in 
the feature space is denoted by ( )i jK x  x. . The radial 
basis function (RBF) is the most commonly used kernel 

function and is mathematically expressed as 
2

i jx x
e
 −γ − 
  .

2.4	 Empirical Mode Decomposition
The empirical mode decomposition is a self-

adaptive time series decomposition technique to 
decompose non-linear and non-stationary time series 
data into several oscillatory functions (intrinsic mode 
functions) along with a trend component (residue). 
However, each of these IMFs should follow two 
conditions. Firstly, the number of extrema (sum of the 
number of maxima and minima) and the number of 
zero crossings should differ by at most one. Secondly, 
for an IMF, the mean value of the envelope defined by 
local maxima and the envelope defined by local minima 
must be zero at all points.

The IMFs are extracted through a sifting procedure 
as follows.

i)	 The local maxima and minima of the time 
series data ty( )  are identified.

ii)	 All the local maxima points are connected by a 
cubic spline function to create the upper 
envelope upy . Similarly, the local minima 
points are utilised to form the lower envelope 

lowy .
iii)	 The mean envelope ( )11m t  is formed by 

computing the mean values of the lower and 
upper envelopes.

	 ( ) up low
11

y y
m t

2
+

= � (10)

iv)	 In the next step, the mean envelope is subtracted 
from the actual data series.

	 ( ) ( )11 t 11h t y m t= − � (11)
v)	 The series ( )11h t  is then checked whether it is 

fulfilling all the necessary conditions of an 
IMF or not. If not, the sifting process is again 
followed on ( )11h t  until the necessary 
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conditions are satisfied. The process of 
obtaining the first IMF after the kth iteration 
can be expressed as:

	 ( ) ( ) ( ) ( ) ( )1k 1k 11 k 1h t m t h t c t− − = = � (12)
vi) To ensure enough physical sense of both 

amplitude and frequency modulations, Huang 
et  al. (1998) have proposed a conventional 
criterion,

( ) ( ) ( ) ( )( )
( )

2T
kk 1t 0

T 2
k 1t 0

h t h t
Stopping criterion SC  

h t

−=

−=

−
=
∑

∑
� (13)

	 The value of SC lies between a predetermined 
limit of 0.2 to 0.3.

vii) After obtaining the first IMF, it is subtracted 
from the actual series,

	 ( ) ( )t 1 1y c t r t− = � (14)
	 Now, if ( )1r t  is not a monotonic function, then 

it is treated as a new series and the same sifting 
process is followed again to extract the second 
IMF.

viii) This sifting process is continued until the 
residue becomes a monotonic function from 
which no more IMF can further be extracted. 
The final residue after the extraction of the thn  
IMF can be given as

	 ( ) ( ) ( )n 1 n nr t c t  r t− − = � (15)
Therefore, the actual data series is finally 

decomposed into the following form:

( ) ( ) ( )
n

j n
j 1

y t  c t r t
=

= +∑ � (16)

Proposed ensemble hybrid model
After obtaining the subseries from the Original 

series by the EMD process, each IMF and residue are 
fitted and predicted through ANN or SVR. Then all the 
forecasted values are summed up to obtain the final 
forecast result. In this study decomposition was done 
in ‘R’ software using the ‘EMD’ package.

2.5	 Evaluation of the Forecasting Accuracy
To compare the accuracy of the forecasting 

performance of the different models, two criteria have 
been followed and are given as follows.

Root Mean Square Error (RMSE)
RMSE is widely used for comparing the accuracy 

of different forecasting models. When comparing 
models, the one with the lower RMSE is generally 
preferred because it indicates a better overall fit to the 
data. It is the average of the squared errors and is given 
by the following expression

( )2n
t tt 1

y y
RMSE

n
=

−
=
∑

� (17)

Directional prediction statistics ( )statD
Directional prediction statistics are used in 

forecasting accuracy when the direction of change is a 
critical component of decision-making. These metrics 
provide insights into a model’s ability to make correct 
directional calls. The expression for the statD  is given 
by

n

stat t
t 1

1D  a   1 00%
n =

= ×∑ � (18)

Fig. 1(b). Proposed ensemble hybrid model
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[ ]  

t 1 tt 1 t1 y y y y 0
a  

0

 

, 

if

otherwise
++

  − − ≥  = 


where ty  and  ty  are actual and predicted values 
respectively

3.	 EMPIRICAL FINDINGS

3.1	 Data and Implementation
For this study, monthly wholesale prices (₹/- per 

quintal) of potato from January, 2005 to December, 
2020 for three markets namely, Agra, Bangalore, 
and Mumbai, have been collected from the National 
Horticulture Research and Development Foundation 
(http://nhrdf.org/en-us). The observations from January, 
2005 to December, 2019 are used for training purposes 
and the last 12 months data points are used for the post-
sample evaluation (January, 2020 to December, 2020).

The descriptive statistics of the wholesale prices 
of the three markets under study are presented in table 
1. The average price of potato was the highest in the 
Bangalore market followed by the Mumbai and Agra 
markets. However, the highest price volatility was 
observed in the case of the Agra market, followed by 
the Mumbai and Bangalore markets.

Table 1. Descriptive statistics of the potato markets

Markets Agra Bangalore Mumbai

Minimum 147 414 394

Maximum 2829 3200 3195

Mean 739.76 1211.77 1109.92

Standard deviation 452.38 490.29 452.34

Kurtosis 3.71 1.54 2.90

Skewness 1.69 1.15 1.41

CV (%) 61.15 40.46 40.75

The seasonal indices of different markets are 
given in table 2. Seasonal indices are calculated in 
the following way. Average for each month and the 
overall average are calculated. Seasonal index for each 
season is calculated by dividing the seasonal average 
by the overall average. The resulting seasonal indices 
represent how much each season deviates from the 
overall average. It can be seen that prices became 
higher for the months from July to December in the 
case of Agra and Mumbai markets, whereas no such 
pattern was observed for the Bangalore market. Hence, 

before proceeding further, seasonal adjustments of the 
data were carried out for the Agra and Mumbai markets.

Table 2. Seasonal indices of potato markets

 Agra Bangalore Mumbai

January 0.68 1.00 0.88

February 0.65 0.87 0.82

March 0.76 0.77 0.85

April 0.84 0.90 0.93

May 0.97 1.02 0.99

June 1.07 1.06 1.00

July 1.18 1.07 1.01

August 1.16 0.96 1.03

September 1.18 0.96 1.06

October 1.30 1.02 1.13

November 1.30 1.20 1.20

December 0.91 1.18 1.10

Augmented Dickey-Fuller (ADF) test was used 
to check the stationarity of the price data. The ADF 
test compares a test statistic against critical values 
to help identify whether a time series is stationary or 
non-stationary. The null hypothesis of the ADF test is 
that the time series data has a unit root, which means 
it is non-stationary. The alternative hypothesis is that 
the data is stationary, meaning it does not have a unit 
root. The results, shown in table 3, clearly indicate the 
stationary nature of the Agra and Bangalore market 
prices. However, Mumbai market prices were found 
to be non-stationary at level, which became stationary 
after the first differencing.

Table 3. Results of the ADF test

Markets
Level 1st Difference

Statistic p -Value Statistic p-Value

Agra -3.74 0.02 - -

Bangalore -3.81 0.02 - -

Mumbai -3.40 0.42 -6.54 <0.01

In the next step, the Brock, Dechert and Scheinkman 
(BDS) test was performed to check whether the data 
are non-linear or not. The BDS test compares the 
distribution of closest neighbour distances in the 
original data to those of surrogate data sets reflecting 
linear behaviour to look for nonlinearity in time series 
data. There are significant discrepancies between these 
distributions, which suggests nonlinearity. The results, 
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given in table 4, reject the assumption of linearity for 
all the price series under study.

Table 4. Results of the BDS test

AGRA

Embedding Dimension =2 Embedding Dimension =3

Epsilon Statistic p-Value Statistic p-Value

61.72 2.15 0.03 3.6 <0.01

123.35 2.46 0.01 2.98 <0.01

185.18 2.68 <0.01 2.67 <0.01

246.9 4.26 <0.01 3.5 <0.01

BANGALORE

Embedding Dimension =2 Embedding Dimension =3

Epsilon Statistic p-Value Statistic p-Value

86.33 3.36 <0.01 6.12 <0.01

172.66 2.82 <0.01 4.99 <0.01

259 2.05 <0.01 3.72 <0.01

345.33 1.79 0.07 2.91 <0.01

MUMBAI

Embedding Dimension =2 Embedding Dimension =3

Epsilon Statistic p-Value Statistic p-Value

69.02 3.54 <0.01 3.5 <0.01

138.03 3.99 <0.01 3.25 <0.01

207.05 3.75 <0.01 2.57 0.01

276.07 3.78 <0.01 2.29 <0.02

After determining the nature of the price series, 
the training sets were utilised for fitting the ARIMA, 
TDNN, SVR, EMD-TDNN and EMD-SVR models in 
this study.

Fitting of the ARIMA Models
The selection of the best ARIMA models was 

carried out on the basis of the lowest AIC and BIC 
values as well as the lowest RMSE values. ARIMA(1, 
0, 1), ARIMA(1, 0, 1), and ARIMA(0, 1, 1) had been 
selected for the Agra, Bangalore and Mumbai markets, 
respectively. Residual diagnostics indicated that the 
residuals were well-behaved. Parameter estimates of 
the selected ARIMA models are presented in table 5.

Fitting of the TDNN Models
The TDNN models employed in this study consisted 

of one input layer, one hidden layer with several nodes 
and a single output node. Logistic and linear activation 
functions were used in the hidden and output layers, 
respectively. TDNN models with 1 input and 7 hidden 

nodes, 3 input and 8 hidden nodes and 4 input and 8 
hidden nodes were found to be the best for the Agra, 
Bangalore and Mumbai markets, respectively. In this 
study fitting of TDNN model was done in ‘R’ software 
by using the package ‘nnet’.

Fitting of the SVR Models
The SVR models for potato market prices were 

built with the following specifications (Table 6). RBF 
(radial basis function) was used in each case as the 
kernel function. SVR model fitting was done in ‘R’ 
software by using the package “e1071”. The lags for 
the models were selected based on experimentation. 
The lags were varied from 1 to 6. The optimum hyper 
parameter combination was obtained by the grid 
search method. 10 fold cross-validation was done for 
overcoming the over fitting problem. A small value of 
C can create a complex model as it allows more data 
points and support vectors while a large value of C 
can produce a simpler model as it penalizes error more 
heavily developing a model with fewer support vectors. 
Similarly a smaller value of epsilon creates a narrow 
margin leading to a more accurate fit to the training 
data and a large value creates a wider margin leading 
to a more generalized model. The gamma parameter 
essentially sets the scale of the RBF kernel.

Table 6. Specifications of the SVR models

Markets No. of lag(s) used C  γ

Agra 1 500 0.10 0.0001

Bangalore 1 1000 0.05 0.0001

Mumbai 1 1000 0.20 0.0001

Table 5. Parameter estimates of the ARIMA models

Markets Parameters Estimates p value

Agra C 693.74 (102.28) <0.01

1α
0.90 (0.03) <0.01

1β
0.40 (0.07) <0.01

Bangalore C 1132.32 (119.61) <0.01

1α
0.89 (0.03) <0.01

1β
0.20 (0.08) 0.02

Mumbai C 7.90 (12.20) 0.52

1β
0.30 (0.08) <0.01

Note: Standard errors are mentioned in paranthesis.
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Fitting of the EMD-based models
Each series decomposed by EMD resulted in six 

IMFs and one residue. For a particular series, each 
mode was fitted with the same class of model (either 
TDNN or SVR). The modes were divided into training 
and testing. The last 12 months were meant for testing 
purpose. The developed model for each mode was used 
to forecast the respective components and the forecasted 
value from all IMFs and the residue were summed up to 
obtain the final forecasted value. The fitting procedure 
of different models is discussed in the methodologies. 
In this way, EMD-based TDNN and SVR models were 
developed. Fig. 2(a) – 2(c) illustrates the IMFs and 
residues obtained through the EMD process for the 
Agra, Bangalore and Mumbai markets, respectively.

Fig. 2(a). IMFs and residual for the Agra market

Fig. 2(b). IMFs and residual for the Bangalore market

Fig. 2(c). IMFs and residual for the Mumbai market

4.	 DISCUSSION
Different models employed in this study were 

compared both in terms of the RMSE (Table 7) and the 
D statistic values (Table 8). In table 7 RMSE values for 
both training and testing are given for different models. 
From the table values, it can be observed that the 
TDNN and SVR models are performing well compared 
to the ARIMA model in the case of Agra and Bangalore 
markets. However, the superior performance of the 
ARIMA model is evident as compared to the TDNN 
model for the Mumbai market. It is worth mentioning 
at this juncture that even though the price series is 
non-linear, TDNN fails to perform better than the 
linear ARIMA model due to its inability to handle non-
stationarity. The experimental results also reveal the 
comparative superiority of the EMD-SVR model for 
the Agra and Bangalore markets and the EMD‑TDNN 
model for the Mumbai market. Moreover, all the 
EMD-based models have performed better than the 
other competing models. It is noteworthy that the 
comparative performance of the TDNN and the SVR 
models are not similar in the case of with and without 
EMD. It suggests that the superiority of one model over 
the other one cannot be generalized over EMD or any 
such decomposition techniques. The figures 3(a to c) 
represents the best models for the respective markets. 
The graphs of only test set and the forecasted results 
are represented in the figures 4(a to c).

Table 8. Comparison of forecasting accuracy in terms of D 
statistic values

Markets ARIMA TDNN SVR EMD-TDNN EMD-SVR

Agra 75 83.33 75 91.67 91.67

Bangalore 75 83.33 83.33 83.33 91.67

Mumbai 91.67 58.33 58.33 91.67 66.67

5.	 CONCLUSION
In the current investigation, we have assessed the 

suitability of EMD-based TDNN and SVR models 
for forecasting wholesale potato prices of the Agra, 
Bangalore, and Mumbai markets. As the benchmark 
models, ARIMA, TDNN and SVR models have also 

Table 7. Comparison of forecasting accuracy in terms of RMSE values

MARKETS
ARIMA TDNN SVR EMD-TDNN EMD-SVR

TRAINING TESTING TRAINING TESTING TRAINING TESTING TRAINING TESTING TRAINING TESTING

Agra 160.34 738.12 217.47 496.19 109.23 263.83 167.15 223.12 162.44 201.34

Bangalore 229.25 960.96 350.54 841.43 154.65 345.77 167.20 268.39 172.74 201.9

Mumbai 123.01 645.86 382.59 733.11 127.11 275.37 132.06 210.15 152.58 217.72
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Fig. 3(a). Actual and (EMD-SVR) predicted series for potato wholesale 
price of Agra market

Fig. 3(b). Actual and (EMD-SVR) predicted series for potato wholesale  
price of Bangalore market

Fig. 3(c). Actual and (EMD-TDNN) predicted series for potato  
wholesale price of Mumbai market

been employed. The experimental results clearly 
demonstrate the comparative superiority of the EMD-
SVR model for the Agra and Bangalore markets and 
the EMD-TDNN model for the Mumbai market in 
terms of root mean squared error values and turning 
point predictions. The results also indicate that the 
EMD based models are more capable of handling 
non-stationary and non-linear data compared to other 
models. As agricultural price data are nonlinear and 
nonstationary, these decomposition-based models 
can perform better in fitting and forecasting of other 
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Fig. 4(a)  Garph of test series and predicted series of Agra market
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Fig. 4(b)  Garph of test series and predicted series of Bangalore market

0

500

1000

1500

2000

2500

3000

3500

Observed Data Predicted Data

Fig. 4(c). Garph of test series and predicted series of Mumbai market
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agricultural commodities. Still EMD methods suffers 
from some problems like mode mixing and endpoint 
effects. In mode mixing multiple IMFs can capture 
components of different scales or frequencies which can 
make the interpretation challenging. The generalisation 
of this study includes the application and comparative 
evaluation of other mode decomposition techniques 
such as Ensemble Empirical Mode Decomposition 
(EEMD), Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (CEEMDAN), 
Variational mode decomposition (VMD), etc. for 
improved forecasting of non-stationary and non-linear 
agricultural commodity price series.
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