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SUMMARY
Adaptive cluster sampling (ACS) technique is usually used for estimation of the abundance of an exclusive, clustered biological population. Commonly, 
neighbouring units are added to the sample if it satisfies a pre-determined criterion. Use of auxiliary information to increase the precision of estimators 
is a very general practice. This paper deals with the use of auxiliary information for the development of efficient estimator of finite population mean 
under ACS design using the well-known Calibration Approach given by Deville and Särndal (1992). The statistical performance of the calibration 
estimators of population mean under ACS are evaluated through a simulation study with respect to conventional Horvitz Thomson (HT) estimator of 
population mean which do not utilize the auxiliary information. The results of the simulation study conducted on a rare and clustered population often 
cited in Smith et al. (1995) show that proposed calibration estimators are more efficient than conventional HT estimator of the population mean under 
ACS with respect to percentage Relative Bias (%RB) and percentage Relative Root Mean Squared Error (%RRMSE). 
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1. INTRODUCTION
Survey statisticians frequently deal with situations 

in which the sampling units bearing characteristics 
of interest are sparsely scattered, but in a clustered 
manner for a geographically distributed population. 
For instance, estimation of rare birds, number of trees 
of a rare species, production of non-hybrid crops, 
infected with a rare disease, drug use etc. Estimating 
rare characteristics present difficult sampling and 
estimation problems. Conventional sampling methods 
like simple random sampling, stratified sampling, 
clustered sampling are unable to deal with above-
mentioned situations. The basic reason behind this is 
that in case of rare and clustered species estimation, 
we may not get enough units in the sample meeting 
with specified criteria. In such cases, the investigators 
are motivated to search for sampling and estimation 
methods that go beyond the conventional set of 
techniques. Thompson (1990, 1991a, 1991b) was the 
first to introduce Adaptive Cluster Sampling (ACS) 
into the literature on survey sampling. Thompson 

and Seber (1996) followed it up. With an adaptive 
sampling scheme, the procedure for selecting units 
to include in the sample may depend on values of 
the variable of interest observed during the survey, 
i.e. the sampling is “adapted” to the data (Thompson 
and Seber, 1996). ACS technique is usually used for 
estimation of the abundance of exclusive, clustered 
biological population which are geographically rare 
and hidden. ACS design allows observed values to 
trigger increased sampling effort during the survey. 
Commonly, neighbouring units are added to the sample 
if it satisfies a pre-determined criterion. ACS designs 
assign high probabilities to samples that include areas 
with high density of characteristics under study. This 
intuitively appealing design can have lower variance 
than conventional designs. The increase in precision 
may depend on the spatial distribution of the population, 
the condition determining when to adapt sampling 
effort etc. Compared to conventional sampling designs, 
adaptive sampling can result in higher efficiency (i.e. 
higher precision for fixed cost) and higher rates of 
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encountering occupied habitat and detecting rare species 
(Brown, 2003; Smith et al., 2004). Adaptive sampling 
designs have been applied for survey of a wide range 
of rare species including Pacific hake larvae (Lo et al., 
1997), rare deforestation events (Magnussen et al., 
2005), terrestrial herpetofauna (Noon et al., 2006), 
subtidal macroalgae (Goldberg et al., 2007), plant 
disease organisms (Ojiambo and Scherm, 2008), red 
sea urchin (Skibo et al., 2008), and freshwater mussels 
(Smith et al., 2003; Outeiro et al., 2008; Hornbach 
et al., 2010). Turk and Borkowski (2005) provide a 
review of works carried out in the ACS design during 
1990–2003.

Use of auxiliary information to improve the 
precision of the estimates is a very common practice 
in survey sampling. Several authors attempted to deal 
with ratio estimator of the population mean using 
auxiliary information of the variable under ACS design 
(Dryver and Chao, 2007; Chao et al., 2008; Chutiman 
et al., 2013; Chutiman and Chiangpradit, 2014). The 
calibration approach, proposed by Deville and Särndal 
(1992), is frequently used for developing estimators 
of important population parameters incorporating 
auxiliary information. The calibration approach 
focuses on the design weights given to the sampling 
units for estimation. These calibration weights satisfy 
a set of calibration constraints that make use of the 
specified auxiliary information. In fact, the generalized 
regression estimator (GREG) (Cassel et al., 1976) is a 
special case of the calibration estimator choosing the 
Chi-square distance function (Deville and Särndal, 
1992). In the past few decades, calibration estimation 
has gained significant attention not only in the field 
of survey methodology but also in survey practice. 
Following Deville and Särndal (1992), lot of work 
has been carried out in calibration estimation i.e. 
Singh et al. (1998, 1999), Wu and Sitter (2001), Kott 
(2006), Aditya et al. (2016, 2017), Salinas et al. (2018), 
Biswas et al. (2020) etc. Särndal (2007) and Kim and 
Park (2010) provided a comprehensive review of the 
calibration approach. In this article, an attempt has been 
made to develop calibration estimator for estimation of 
population mean using known auxiliary information 
under ACS design. In order to study the statistical 
performance of the proposed calibration estimators 
under ACS design framework, a simulation study was 
carried out using a real dataset on the blue-winged teal 
bird population taken from often cited Smith et al. 
(1995).

2. STANDARD ESTIMATION PROCEDURE 
UNDER ADAPTIVE CLUSTER 
SAMPLING
Consider a population U = {1,…, j,…, N} with 

the assumption that N is known. Y is a variable 
defined on the population U and taking real values 
as 1 2, , ... , Ny y y  . The objective is to estimate the 
population mean i.e. 

1

1 N

j
j

Y y
N =

= ∑ . In order to take a 

sample by ACS design, first of all, an initial sample of 
n1 units are selected from a finite population by simple 
random sampling without replacement (SRSWOR). 
Then, for each selected units a predefined condition of 
the character of interest Y say jy C>  is to be verified. 
If the condition is satisfied by the sampled unit, then the 
rest of the unit’s neighbourhood is added to the sample. 
Now, those neighbourhood units which satisfy the 
condition C are also added in the sample. The process 
is continued until we get the edge units i.e. which do not 
satisfy condition C. Finally, we get the sample in which 
we get n clusters (not necessarily distinct), one for each 
initially selected unit. If the selected unit in the initial 
sample does not satisfy the predefined condition C, 
then there is no adaptive selection and it is considered 
as a cluster of size one. Neighbourhoods can be defined 
in a variety of ways. The first-order neighbourhood is 
the most prevalent technique where neighbourhood 
consists of the unit itself and the four adjacent units 
sharing a common boundary.

For illustration purpose, we have taken the often 
cited blue-winged teal bird population for ACS design 
(Fig. 1) given by Smith et al. (1995). This figure 
represents 200 quadrants of 25 km2 area each with 
counts given for quadrats having non-zero bird counts. 
Pictorial representation of the selection of an adaptive 
cluster sample from this population is also given in 
Fig. 1. An initial simple random sample of 10 quadrats 
is selected indicated with ⊗ . For the predefined 
condition C i.e. yj ≥ 1, all neighbourhood quadrats 
would be sampled with ACS design denoted with   . 
Quadrats with   having the teal counts that do not 
satisfy C are the edge units.

Let, the population can be partitioned into K 
distinct networks, where the ith network is denoted 
as iA . Let, im  denote the number of units in the 
network iA . Define *

iy  as the total of y-values in the 

ith network as *

i

i j
j A

y y
∈

= ∑ . Let, the initial sample mean 
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is 
1

1
11

1 n

j
j

y y
n =

= ∑ . Thompson (1990) defined the partial 

inclusion probability as given by

1 1

1 .i
i

N m N
n n

π
 −    ′ = −     
      

The probability iπ ′  can be interpreted as the 
probability that the initial sample intersects network 

iA  , the network containing unit i. It is same for each 
unit in the network. It is also referred as the marginal 
initial intersection probability i.e. the probability that 
at least one unit in the initial sample intersects the ith 
network. The probability that network i and j are both 
intersected i.e. the joint initial intersection probability 
is given by

1 1 1 1

1 i j i j
ij

N m N m N m m N
n n n n

π
 − − − −        ′ = − + −        
        

.

Thompson (1990) proposed the modified Horvitz-
Thompson estimator of the population mean using the 
initial intersection probability under ACS design as 
given by

* *
*

( ) ' '
1 1 1

1 1 1ˆ K k k
i i i

HT AC i i
i i ii i

y J y
Y d y

N N Nπ π= = =

= = =∑ ∑ ∑  (2.1)

Fig. 1. An adaptive cluster sample (C: yj ≥  1) from the Blue-winged teal population as quoted in Smith et al. (1995)

where, Ji takes value 1 if the initial sample intersects 
the ith network and 0 otherwise, k be the number of 
distinct networks intersected by the initial sample and 

1i id π ′= . Thompson (1990) showed that ( )
ˆ
HT ACY  is 

unbiased and the sampling variance of the ( )
ˆ
HT ACY  is 

given by

( ) ( )( )* *
( ) 2

1 1

1ˆ K K

HT AC ij i i j j
i j

V Y d y d y
N = =

= ∆∑∑  (2.2)

where, ' ' ' .ij ij i jπ π π∆ = −

3. PROPOSED CALIBRATION 
ESTIMATORS UNDER ADAPTIVE 
CLUSTER SAMPLING DESIGN 
Let, U={1, 2, …, N} be the finite population under 

consideration and Y is the study variable as defined 
earlier. Let, X be a linearly related auxiliary variable 
with real values 1 2, , ... ,  .Nx x x  Let us assume, 

*

1 1

N K

j i
j i

X x x
= =

= =∑ ∑  is known, where * 
i

i j
j A

x x
∈

= ∑ and K is 

the total number of distinct networks in the population. 
In this study, we have proposed calibration estimator for 
estimation of finite population mean under ACS design 
using the available auxiliary information when the 
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members bearing a characteristic of interest are sparsely 
scattered in a geographically distributed population 
in unknown manners. Let, the study variable jy  was 
observed for all j s∈  , where s is the set all sampling 
units obtained by ACS design. Using the well-known 
Calibration Approach (Deville and Särndal, 1992), an 
attempt was made to improve the Horvitz-Thompson 
estimator ( ( )

ˆ
HT ACY  ) of the population mean, Y , under 

ACS design. The proposed calibration estimator of the 
population mean is given by

*
( )

1

1ˆ k

CAL AC i i
i

Y w y
N =

= ∑  (3.1)

where, iw  is the desired calibrated weight. 
The new set of weights iw  are chosen as close 

as possible to the design weight id  under calibration 
equation. For this purpose, following Deville and 
Särndal (1992), we minimize the chi-square type 
distance function given by 

2

1
( )

k

i i i i
i

w d d q
=

 − ∑   (3.2)

subject to the constraint *

1

1 k

i i
i

X w x
N =

= ∑ , where iq  are 

suitably chosen constants. The loss function is

( )
2

*

1 1

( )
,

k k
i i

i i i
i ii i

w d
w NX w x

d q
ϕ λ λ

= =

−  = − − 
 

∑ ∑  (3.3) 

Now, by minimizing above loss function, new set 
of calibration weights iw  are obtained as following

2* * *

1 1

k k

i i i i i i i i i i
i i

w d d q x d q x X d x
= =

  = + −  
  

∑ ∑  (3.4)

where, population total *

1 1

N K

i i
i i

X x x
= =

= =∑ ∑  is assumed to 

be known and * 
i

i j
j A

x x
∈

= ∑ .

The proposed calibration estimator based on the 
revised weights is given by

2

* *

* *1
( )

*1 1

1

1 1ˆ

k

i i i ik k
i

CAL AC i i i ik
i i

i i i
i

d q x y
Y d y X d x

N N d q x

=

= =

=

 = + − 
 

∑
∑ ∑

∑

( )( ) ( ) ( )
ˆ ˆˆ ,HT AC CAL AC HT ACY B X X= + −  (3.5)

where, *
( )

1

1ˆ k

HT AC i i
i

X d x
N =

= ∑  and 

2* * *
( )

1 1

ˆ
k k

CAL AC i i i i i i i
i i

B d q x y d q x
= =

= ∑ ∑ .

Calibration estimators are asymptotically design 
unbiased and equivalent to Generalized Regression 
(GREG) estimator (Deville and Särndal, 1992). Thus, 
the proposed calibration estimator in the Equation (3.5) 
is also asymptotically design unbiased and equivalent 
to GREG estimator. Accordingly, for the asymptotic 
variance and variance estimator of the proposed 
calibration estimator, the expressions given by Särndal 
et al. (1992) in case of GREG estimator can be used 
with modifications in the population regression errors 
and the sample regression residuals. The approximate 
variance of the proposed calibration estimator is given 
by

( ) ( )( )( ) 2
1 1

1ˆ K K

CAL AC ij i i j j
i j

AV Y d E d E
N = =

= ∆∑∑  (3.6)

where, 
2* * * * *

1 1
,

K K

i i i i i i i i
i i

E y Bx B q x y q x
= =

   = − =    
   
∑ ∑  and 

' ' ' .ij ij i jπ π π∆ = −

The expression of the estimator of variance is 
given as 

( ) ( )( )( ) 2 '
1 1

1ˆˆ
k k

ij
CAL AC i i j j

i j ij

V Y w e w e
N π= =

∆
= ∑∑  (3.7)

where, 
2* * * * *

1 1

ˆ ˆ, .
k k

i i i i i i i i i i
i i

e y Bx B w q x y w q x
= =

   = − =    
   
∑ ∑

When we choose ( ) 1*
i iq x

−
=  the revised weights 

given Equation (3.4) simplify to 

* *

1 1

n k

i i i i i i i
i i

w d d d x X d x
= =

  = + −  
  

∑ ∑  (3.8)

The proposed calibration estimator based on these 
revised weights is given by

* *

* *1 1
( )

* *1 1

1 1

1 1ˆ .

k k

i i i ik k
i i

CAL AC i i i ik k
i i

i i i i
i i

d y d y
Y d y X d x X

N N d x d x

= =

= =

= =

 = + − = 
 

∑ ∑
∑ ∑

∑ ∑

 (3.9)

Now, when we choose 1iq =  the revised weights 
as given in Equation (3.4) simplify to 

2* * *

1 1

k k

i i i i i i i i
i i

w d d x d x X d x
= =

  = + −  
  

∑ ∑ . (3.10)
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The proposed calibration estimator based on this 
revised weights is given by

2

* *

* *1
( )

*1 1

1

1 1ˆ

k

i i ik k
i

CAL AC i i i ik
i i

i i
i

d x y
Y d y X d x

N N d x

=

= =

=

 = + − 
 

∑
∑ ∑

∑
. (3.11)

The formula of approximate variance and estimator 
of the variance of these proposed calibration estimators 
can be simplified accordingly using Equations (3.6) 
and (3.7).

4. SIMULATION STUDY
In order to study the statistical performance of the 

proposed calibration estimators under the ACS design 
framework, a simulation study was carried out using 
a real dataset. The blue-winged teal bird population 
(Fig. 1) given in the often cited Smith et al. (1995) 
has been utilized. Blue-winged teal birds are counted 
from aircraft to monitor density and test ecological 
hypotheses. Because the distribution of blue-winged 
teal bird populations is spatially clustered, precise 
estimation of density is difficult. ACS is effective in 
this situation since it allows observed values to trigger 
increased sampling effort during the survey. Under 
the simulation study, the number of blue-winged teal 
bird observed in 25 km2 quadrats in 200 quadrats has 
been considered as the character of interest Y. Thus, the 
population size is considered to be N=200. Empty cell 
represents zero counts of the bird. It can be observed 
that the population mean of this blue-winged teal 
population is Y =70.60 i.e. approximately 71 birds per 
quadrats.

In the simulation study, in order to study the 
statistical performance of proposed calibration 
estimators, an auxiliary variable X which is highly 
correlated with the study variable Y has been generated. 
Here, it has been assumed that X follows Normal 
distribution considering:

Mean of 
X ( X )

Standard deviation 
of X ( xσ )

Correlation coefficient between X 
and Y ( xyρ )

30 10 0.9

We used Monte Carlo simulation to draw samples 
from the enumerated populations. From the study 
population, a total of 5000 independent samples were 
selected from the population of N=200 quadrats using 
ACS design for different choices of initial sample 
by Simple Random Sampling Without Replacement 

(SRSWOR). If the observed y value of a sampled unit 
satisfies the condition C i.e. 0iy > , then the rest of the 
unit’s neighbourhood was added to the sample. If any 
other units in that neighbourhood satisfy the condition 
C, then their neighbourhoods were also added to the 
sample. The process was continued until a cluster of 
units is obtained for each unit selected in the initial 
sample. Different choices of initial sample sizes have 
been taken as n1= 10, 15, 20, and 25.

From each of the 5000 independent samples, 
estimates of the proposed calibration estimators 
( ( )

ˆ
CAL ACY ) of the population mean (as given in Equation 

3.8 considering ( ) 1*
i iq x

−
= ) as well as modified Horvitz-

Thompson estimator (
( )

ˆ
HT ACY ) (as given in Equation 2.1) 

were calculated. The sample mean estimator of the 
initial sample ( ˆ

SRSY ) was also computed. Values of 
these estimates were averaged over 5000 replicate 
samples under Monte Carlo simulation. The estimators 
of population mean under ACS were evaluated on the 
basis of three measures viz. percentage Relative Bias 
(%RB) and percentage Relative Root Mean Squared 
Error (%RRMSE) as given by

2

1 1

ˆ ˆ1 1ˆ ˆ( ) 100 ( ) 100.
S S

i i

i i
RB and RRMSE

S S= =

   − −
= × = ×   

   
∑ ∑θ θ θ θθ θ

θ θ

where, îθ  are the value of the estimator of population 
parameter θ for the character under study obtained at ith 
sample in the simulation study and θ  is considered to 
be the population parameter i.e. population mean. The 
Percentage Relative Efficiency (PRE) of the proposed 
calibration estimator (

( )
ˆ
CAL ACY

 ) of the population mean 
(Y ) in comparison to the Horvitz-Thompson estimator 
( ( )

ˆ
HT ACY ) as well as the sample mean estimator of initial 

sample ( ˆ
SRSY ) based on the %RRMSE can be obtained 

as 

( ) ( ) ( )( ) ( )
ˆ ˆ ˆ 100CAL AC i CAL ACPRE Y RRMSE Y RRMSE Y = ×  

where, i=HT(AC) or SRS.

5. RESULTS AND DISCUSSION 
The results of the simulation study are presented 

here. Table 1 presents the absolute of percentage 
Relative Bias (%RB) of all the estimators of the 
population mean (Y ) under ACS for different initial 
sample sizes (n1). Table 2 presents the percentage 
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Relative Root Mean Squared Error (%RRMSE) and 
Percentage Relative Efficiency (PRE) of the proposed 
calibration estimator of the population mean with 
respect to SRS and HT estimators under ACS design.

Table 1. Absolute %RB of all the estimators of the population 
mean (Y ) for different initial sample sizes (n1) under adaptive 

cluster sampling

n1
ˆ
SRSY ( )

ˆ
HT ACY ( )

ˆ
CAL ACY

10 4.79 1.67 4.60

15 2.12 0.47 3.23

20 1.78 0.90 3.43

25 1.82 1.35 0.55

Table 2. %RRMSE of all the estimators and PRE of the proposed 
calibration estimator (

( )
ˆ
CAL ACY ) of the population mean ( Y ) for 

different initial sample sizes (n1) under adaptive cluster sampling 

n1

%RRMSE PRE( ( )
ˆ
CAL ACY )

ˆ
SRSY ( )

ˆ
HT ACY ( )

ˆ
CAL ACY ˆ

SRSY ( )
ˆ
HT ACY

10 296.90 147.49 138.42 214.49 106.55

15 235.71 113.14 109.02 216.21 103.78

20 202.98 92.19 89.94 225.68 102.50

25 176.91 76.98 75.58 234.07 101.85

From Table 1, it is evident that with respect to 
absolute %RB, the Horvitz-Thompson estimator i.e. 

( )
ˆ
HT ACY  gives the least amount of bias in the estimation 

of the population mean (Y ) under ACS as compared 
to the sample mean estimator of initial sample ( ˆ

SRSY  ). 
Absolute %RB of the proposed calibration estimator 
of the population mean is higher. Absolute %RB 
decreases with the increase in initial sample sizes (n1). 
Table 2 reveals that the proposed calibration estimator 
( ( )

ˆ
CAL ACY  ) of the population mean (Y ) gives lesser 

%RRMSE than that of the Horvitz-Thompson estimator 
( ( )

ˆ
HT ACY ) as well as the sample mean estimator of 

initial sample ( ˆ
SRSY ). PRE of the proposed calibration 

estimator of the population mean under ACS design 
with respect to SRS and HT estimators clearly suggest 
superiority for all sample size combinations. Thus, the 
proposed calibration estimators of the population mean 
developed under ACS design were always more efficient 
based on %RRMSE and PRE than the usual Horvitz-
Thompson estimator and sample mean estimator of 
the initial sample of the population mean. %RRMSE 

decreases with the increase in initial sample sizes (n1). 
The sample mean estimator of the initial sample ( ˆ

SRSY ) 
always performs poorly under ACS design.

6. CONCLUSIONS
In this study, two forms of calibration estimators 

of population mean has been proposed under ACS 
design using known auxiliary information following 
Calibration Approach by Deville and Särndal (1992). 
In order to study the statistical performance of the 
proposed calibration estimators, a simulation study 
was carried out using a real dataset on the blue-winged 
teal bird population. The results of the simulation study 
showed that the proposed calibration estimators of the 
population mean (Y ) were performing better than the 
usual sample mean estimator of initial sample ( ˆ

SRSY  ) 
as well as Horvitz-Thompson estimator ( ( )

ˆ
HT ACY  ) under 

ACS design. The %RB of the proposed calibration 
estimator of the population mean ( )Y  is little higher 
than that of the Horvitz-Thompson estimator ( ( )

ˆ
HT ACY  ) 

and, in general, it is decreasing with the increase of 
the initial sample sizes (n1). Simulation results also 
reveal that the proposed calibration estimators of the 
population mean under ACS design was always more 
efficient with respect to %RRMSE and PRE than the 
usual Horvitz-Thompson estimators (

( )
ˆ
HT ACY ) of the 

population mean (Y ) given by Thompson (1990).
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