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SUMMARY
Linear integer programming is a widely used optimization technique to solve various real life problems. The purpose of this article is to present some 
innovative applications of linear integer programming in the area of design of experiments and sample surveys. It is demonstrated how construction 
problems of various block designs and different classes of sampling plans can be solved using linear integer programming formulations.
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Prologue
Today, we are all united not only in our desire to pay our respect to Late Dr. Daroga Singh during his birth centenary year, but rather in our need to do 
so because of his extraordinary appeal in the community of statisticians across the globe. He has always been held in high esteem.

This paper is a tribute in honour and loving memory of Daroga Singh with whom I (second author) had an opportunity to work as a student as well as 
faculty at ICAR-Indian Agricultural Statistics Research Institute (IASRI), New Delhi. Right from our student days to the entire professional career, 
he had been a source of strength and inspiration to all of us. Indeed, the first author was fortunate to learn sampling theory from the textbook written 
by him and from the teaching of his students who currently holds eminent positions in various institutes of national and global importance. It gives us 
immense pleasure to know that Indian Society of Agricultural Statistics has decided to bring out a Special Issue of the Journal of the Indian Society 
of Agricultural Statistics in memory of Daroga Singh, former Director of IASRI on his birth centenary.

By giving us an opportunity to contribute to the Special Issue, we have been given a chance to say thank you, Daroga Singh, for the way you 
illuminated statistical sciences in general and theory and applications of survey sampling in particular and our lives by your messages and training. 
We want you to know that life without you is very, very difficult, though the strength of the messages that you gave us over the years has gradually 
provided us strength to move forward. The days that we spent under your guidance and what we had learned from you will always remain in our 
hearts as our most cherished treasure.

We express our proud thankfulness to God for allowing us of our generation to be associated with this towering personality who not only made 
monumental contributions towards the advancement of statistical sciences, but also remained, at the same time, so down to earth and so compassionate 
simple person easily accessible. Daroga Singh was the very essence of simplicity, of wisdom, of dedication, of duty, of sincerity, of humbleness, of 
compassion, of friendship, of care. He was always a helping hand to all. His eagle eye to look at the data and work at ground level was unparalleled. 
He was a pillar of support.

We miss him deeply. His fond memories survive.
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1.	 INTRODUCTION
Linear Integer Programming (LIP) refers to 

constrained optimization techniques where objective 
function is a linear function of integer decision 
variables subject to linear inequality constraints. A LIP 

formulation in general can be stated as follows:
Maximize ϕ = a′x
subject to Ax ≤ b 
x ∈ Zn � (1)
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where the x ∈ Zn is a vector of n integer decision 
variables i.e., x = (x1, x2, ..., xn)′ with xi, i = 1, 2, ..., n 
being a non-negative integer variable. In formulation 
(1), a is n × 1 vector of coefficients in the objective 
function, A is a matrix of order m × n of coefficients of 
the constraints and b is a m × 1 vector and a, A and b are 
all known. A solution of (1) can be obtained by either 
cutting planes algorithms, branch and bound method, 
branch and cut method, branch and price method or 
relaxation and decomposition techniques (Genova and 
Guliashki, 2011). Solvers such as Cplex and Symphony 
can be used to solve an LIP formulation on a computer. 
For more details on LIP, one can see Schrijver (1998); 
Conforti et al. (2014).

LIP is widely used in various kinds of practical 
problems such as warehouse location problem, 
machinery selection problem, capital budgeting 
problem, network and graph problems, maximum flow 
problems, set covering problems, matching problems, 
spanning trees problems and many scheduling 
problems (Chen et  al., 2011). The purpose of this 
article is to give an exposure to the readers about some 
selected applications of LIP in design of experiments 
and sample surveys. More specifically, applications 
of LIP to obtain various classes of block designs and 
controlled sampling plans will be shown.

2.	 APPLICATIONS IN CONSTRUCTION OF 
BLOCK DESIGNS
Construction of various classes of block designs 

such as Balanced Incomplete Block (BIB) Designs, 
nearly BIB designs including Regular Graph designs, 
Semi-Regular Graph designs, Balanced Treatment 
Incomplete Block (BTIB) designs, Balanced Bipartite 
Block (BBPB) designs are important problems and 
various algebraic methods are available to construct 
these designs. These methods work for specific 
parametric settings for any class of these designs. 
Construction problems of these designs can be set as 
a LIP formulation. The advantage of this method is 
that it is uniformly applicable across all permissible 
parametric settings for any class of designs.

Before giving the LIP formulation for a block design 
construction, some preliminaries are needed. Let N = 
(nij ) denote the v × b treatment-block incidence matrix 
of a binary incomplete block design where v denotes 
the number of treatments and b, the number of blocks 
and nij denote the number of times ith (i = 1, 2, ..., v) 

treatment appears in jth (j = 1, 2, ..., b) block. Let NN′ 

denote the v × v concurrence matrix of the design where 
diagonal elements represent the number of replications 
of the treatments and off-diagonal elements gives the 
concurrences between pairs of treatments, that is, the 
number of blocks in which pairs of treatment appear 
together. To be more specific,

1 12 1

21 2 2

1 , 1

v

v

v v v v

r
r

r

λ λ
λ λ

λ λ −

 
 
 ′ =  
  … 

NN





    � (2)

where ri denotes the number of replications of ith (i = 1, 2, 
..., v) treatment, λii′ denotes the number of concurrences 
between treatment i and i′(i ̸= i′ = 1, 2, ..., v). Interestingly, 
the structure of NN′ matrix is known for various classes 
of block designs mentioned above. For example, for a 
BIB design ri = r ∀ i and λii′ = λ, ∀ i ̸= i′ = 1, 2, ..., v, for 
a nearly BIB design ri = r ∀ i and λii′ = λ or λ + 1, ∀ i ≠ 
i′ = 1, 2, ..., v and for a BTIB design, r2 = ... = rv = r (say) 
and λ1i′ = λi

′
1 = λ1 ∀ i′ = 2, 3, ..., v, λii′ = λ ∀ i ̸= i′ = 2, ..., 

v. Further, we assume that the block size for each block 
is k here and the designs are binary, i.e., elements of N 
are 0 and 1. Clearly, N′1v = k1b where 1t denotes a t×1 
vector of ones. One can easily generalize the approach 
to get designs with unequal block sizes.

Now, we are ready for construction of an 
incomplete block design belonging to above mentioned 
classes using LIP. For doing so, N matrix will be 
obtained from a given NN′ matrix in v steps so that 
N  =  (N1

...‌N2
..

....
...‌Nv)′ where N′

i denotes the ith (i = 
1, 2, ..., v) row of N matrix and is clearly of order 1 × 
b. In each step, one row of the N will be obtained such 
that the entire N matrix gives the desired NN′ matrix 
and thus, the desired design. Further, for a given matrix 
A with n rows, let A(i) be the sub-matrix taking first i 
rows of the matrix and let A(−i) be the sub-matrix after 
removing the ith row from the matrix. In other words, 
A(i) = (A1

..
....

...Ai)′ and A(−i) = (A1
..
....

...Ai−1
...Ai+1

..
....

...An)′, 
i  =  2, 3, ..., n  −  1 with A(−1) = (A2

..
....

...An)′. In other 
words,. Now we describe the steps to get a block design 
using LIP.

Step 1: Obtain N′
1 by filling 1 in r1 positions at 

random out of b positions. 
Step i,(i = 2, 3, ..., v): Compute k(i−1) = N(i−1)′1i−1 

and ( 1)1 / i
j jw k −=  if ( 1) 0i

jk − > , otherwise wj = 1, j = 1, 
2, ..., b. Denote w = (w1, w2, ..., wb)′. Solve the LIP 
problem: 
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Maximize ϕ = w′x
subject to 1b ir′ =x

N(i−1)x = λi� (3)
x ≤ k1b − k(i−1)

where λi = (λ1i, λ2i, ..., λi−1,i)′ and x is b × 1 vector of 
binary integer variables. There are two possibilities 
here.

Substep 1: A solution of (3) exists. Let an 
optimum solution be xo. Then update incidence matrix 
as N(i) = (N(i−1)′...xo)′ and if i < v, go to next i, else return 
N(v).

Substep 2: A solution of (3) does not exist. This 
means N(i−1) does not lead to a desired N(v). This calls 
for an alternate N(i−1). To obtain such a matrix, delete 
any one (say, mth) row from N(i−1) at random. Store mth 
row of N(i−1) in a matrix T and set mth row of N(i−1) 

as 0′
b. Compute k(i−1) = N(i−1)′1(i−1) and ( 1)1 / i

j jw k −=  if 
( 1) 0i
jk − > , otherwise wj = 1, j = 1, 2, ..., b. Solve the LIP 

problem:
Maximize ϕ = w′x
subject to b mr′ =1 x  

( 1)
( ) ( , )
i

m m i
−
− =N x λ � (4)

x ≤ k1b − k(i−1)

Tx < rm1s

where λ(m,i) = (λ1m, λ2m, ..., λm−1,m, λm+1,m, ..., λim)′ If 
there exists an optimum solution, say, xo, then update 
incidence matrix N(i−1) with mth row as xo and go to 
next i. Otherwise, repeat this substep till an alternate 
solution is found. If an alternate solution is not found 
even after t1 (a preassigned value, say 100) repetitions 
then start afresh with Step 1.

Remark 1. For allocation of a given treatment to 
blocks, the objective function gives higher weightage to 
those blocks which have received least number of other 
treatments before that step. The first two constraints 
in the formulation (3) ensure desired treatment 
replications and concurrences. Last constraint ensures 
that block sizes do not exceed beyond k. Formulation 
(4) has an extra constraint which is to ensure that a 
deleted row does not recur as a solution.

Remark 2. If all v steps are completed then the 
above method produces N(v) which is a desired incidence 
matrix of an incomplete block design with parameters 
as v, b, k and replications and concurrences as in NN′ 

matrix. Different classes of block designs mentioned 
earlier can be constructed using this approach.

2.1	 Examples of block design construction
In this section we shall provide some examples of 

block designs constructed using the approach presented 
in Section 2.

2.1.1 Construction of BIB design
Consider construction of a BIB design with 

parameters v = 8, b = 14, r = 7, k = 4, λ = 3. First solution 
was presented by Bose (1939). Here we present a 
solution in Table 1 using our proposed approach. First 
few steps to generate this design is illustrated below.

In Step 1, N′
1 is obtained by allocating first 

treatment to any of the 7 blocks out of the 14 blocks. 
Let N′

1 = (1 1 1 1 0 0 0 0 1 0 0 0 1 1). For allocating 
treatment 2 in step 2, we compute k(1) = (1 1 1 1 0 0 
0 0 1 0 0 0 1 1)′ which gives w = 114. So to allocate 
treatment 2, we solve the following formulation:

Maximize ϕ = x1 + x2 + ...x14

subject to x1 + x2 + ... + x14 = 7
x1 + x2 + x3 + x4 + x9 + x13 + x14 = 3
x1 ≤ 3	 x2 ≤ 3	 x3 ≤ 3	 x4 ≤ 3
x5 ≤ 4	 x6 ≤ 4	 x7 ≤ 4	 x8 ≤ 4
x9 ≤ 3	 x10 ≤ 4	 x11 ≤ 4	 x12 ≤ 4
x13 ≤ 3	 x14 ≤ 3
An optimal solution to above formulation is 

0′x  =  (0 0 0 0 0 0 0 1 1 1 1 1 1 1)′ and thus, we get 
(2) 1 1 1 1 0 0 0 0 1 0 0 0 1 1

 =
0 0 0 0 0 0 0 1 1 1 1 1 1 1
 
 
 

N . So in Step 3, we 

compute k(2) = (1 1 1 1 0 0 0 1 2 1 1 1 2 2)′ which gives 
w = (1 1 1 1 1 1 1 1 0.5 1 1 1 0.5 0.5)′. To allocate 
treatment 3, we solve the following formulation:

Maximize ϕ = x1 + x2 + ... + x8 + 0.5x9 + x10 + x11 + 
x12 + 0.5x13 + 0.5x14

subject to x1 + x2 + ... + x14 = 7
x1 + x2 + x3 + x4 + x9 + x13 + x14 = 3
x8 + x9 + x10 + x11 + x12 + x13 + x14 = 3
x1 ≤ 3	 x2 ≤ 3	 x3 ≤ 3	 x4 ≤ 3
x5 ≤ 4	 x6 ≤ 4	 x7 ≤ 4	 x8 ≤ 3
x9 ≤ 2	 x10 ≤ 3	 x11 ≤ 3	 x12 ≤ 3
x13 ≤ 2	 x14 ≤ 2
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An optimal solution to this formulation is (1 1 0 1 
0 0 1 0 0 1 1 1 0 0)′ and thus 

(3)

1 1 1 1 0 0 0 0 1 0 0 0 1 1
 = 0 0 0 0 0 0 0 1 1 1 1 1 1 1 .

1 1 0 1 0 0 1 0 0 1 1 1 0 0

 
 
 
 
 

N

This process continues till treatments 4 to 8 are 
allocated. After obtaining optimal solution in all the 8 
steps, N(8) matrix is obtained as

1 1 1 1 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 0 1 0 0 1 0 0 1 1 1 0 0
1 0 1 0 0 1 1 1 0 0 0 1 0 1

(8) =
1 0 1 0 1 1 0 0 0 1 1 0 1 0
0 1 1 0 1 0 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 0 1 0 1 0 0 1
0 1 0

N .

 1 1 1 0 1 0 0 0 1 1 0

 
 
 
 
 
 
 
 
 
 
  
 

The block contents of the design is shown in 
Table 1.

2.1.2 Construction of regular graph design
A regular graph design is an incomplete block 

design with replications ri = r, ∀i and con currences as 
λ and λ + 1 where λ = ⌊r(k − 1)/(v − 1)⌋ (John and 
Mitchell, 1977; Cheng and Wu, 1981; Mandal et  al., 
2014). Consider construction of a regular graph design 
with v = 6, b = 9, r = 6, k = 4 and concurrences 3 and 4. 
A solution of such a design is given in Table 2.

Similarly, binary block designs belonging to 
various classes such as partially balanced 6 incomplete 
block (PBIB) designs, semi-regular graph designs etc. 
can be easily obtained using the proposed approach.

Remark 3. There is a possibility that even when 
a design exists, the method may not give a solution. 
This is due to the fact that before some ith step, the 
method may continue to give a N(i−1) which does not 
lead to final N matrix even after substep 2. It is difficult 
to tell which row or rows is responsible for this and 
thus, substep 2 may not always be effective. However, 
we found that the algorithm is very effective to obtain 
binary incomplete block designs for v ≤ 30, k ≤ 10. 
For larger v and k, the proposed approach may not be 
practical to use.

3.	 APPLICATIONS IN SAMPLE SURVEYS
In sample surveys, controlled sampling is often 

used when it is not advisable to adopt simple random 
sampling without replacement (SRSWOR) due to 
administrative and other reasons. Avadhani and 
Sukhatme (1967) presented the following layout 
of N  =  7 villages from which n = 3 villages are to 
be sampled.

*	 2	 *	 1	 *
7	 *	 5	 *	 4
*	 6	 *	 3
Table 3 gives the list of preferred and non-preferred 

samples from the above population.
A controlled sampling plan should minimize 

probability of non-preferred samples and also should 
retain desirable features of SRSWOR. Solution to this 
problem was given by Avadhani and Sukhatme (1967) 
using a BIB design. Rao and Nigam (1990) presented 

Table 1.  A BIB design with v = 8, b = 14, r = 7, k = 4, λ = 3

Block-1 1 3 4 5

Block-2 1 3 6 8

Block-3 1 4 5 6

Block-4 1 3 7 8

Block-5 5 6 7 8

Block-6 4 5 7 8

Block-7 3 4 6 7

Block-8 2 4 6 8

Block-9 1 2 6 7

Block-10 2 3 5 6

Block-11 2 3 5 7

Block-12 2 3 4 8

Block-13 1 2 5 8

Block-14 1 2 4 7

Table 2. A regular graph design with v = 6, b = 9, r = 6, k = 4 

Block-1 2 3 5 6

Block-2 1 4 5 6

Block-3 1 3 4 6

Block-4 2 3 4 6

Block-5 1 3 4 5

Block-6 2 3 4 5

Block-7 1 2 5 6

Block-8 1 2 4 5

Block-9 1 2 3 6
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a solution using a linear programming formulation to 
this problem. We present a LIP formulation to obtain 
a controlled sampling plan for this problem. For this, 
let S1 and S2 denote respectively, the set of preferred 
and non-preferred samples and let the total number of 
samples be t. Define a vector a = (a1, a2, ..., at)′such 
that if jth sample belong to S2 then aj = 1, otherwise, 
aj = 0. Also, for a given pair of units i ≠ i′, define a 

vector ( )( ) ( ) ( ) ( )
1 2, , ...,ii ii ii ii

tc c c′ ′ ′ ′ ′=c     such that ( ) 1ii
jc ′ =  if 

jth sample contains units i, i′. Now a LIP formulation 
with integer decision variables to obtain controlled 
sampling plan can be devised as:

Minimize ϕ = a′x
subject to t b′ =1 x

Cx = bπ(2)� (5)
where b is a suitably chosen positive integer, 
C  =  (c(12)...c(13)

...
...c(N−1,N))′ and π(2) is the vector of 

second order inclusion probabilities. For a controlled 
sampling plan with second order inclusion probabilities 
as that of SRSWOR, 

(2)
( 1)/2

( 1)
( 1)

1N N
n n

N N −

−
=

−
π  where 1m denote a m  ×  1 

column vector of ones.
Remark 4. In formulation (5), for a given 

controlled sampling problem, the objective function 
weights, coefficient matrix and right side of constraints 
are known except the value of b. To have an idea of 
possible value of b, note that elements of C are 0s and 
1s and x is a vector of non-negative integers. Hence, the 
product Cx must be a vector of non-negative integers. 
This implies that b must be chosen in such a way that 
bπ(2) becomes a vector of non-negative integers.

For the problem of Avadhani and Sukhatme (1967), 
t =N Cn = 35,

a = (10010001101100110110110000010000010)′, 

For this example, (2)
21

1
7

1=π . Using b = 7 and solving (5) 

gives an optimal solution xopt = (0100000010001000
1000000010100000100)′. Samples corresponding to 
nonzero values of xopt gives the support of the sampling 
plan as in Table 4 where probability of selection of 
samples, denoted as p(s), for each sample is 1/7.

Table 4. A controlled sampling plan for the problem of  
Avadhani and Sukhatme (1967) 

Support p(s)

1 2 4 1/7

1 3 7 1/7

1 5 6 1/7

2 3 5 1/7

2 6 7 1/7

3 4 6 1/7

4 5 7 1/7

Remark 5. It may be mentioned here that a proper 
block design with v = N treatments arranged in b blocks 
each of size k = n can be used to get a sampling plan. 
Considering v treatments as N population units, if each 
block of the design is given probability of selection 1/b 
then first order inclusion probability πi = ri/b where ri 
is the number of replications of the ith (i = 1, 2, ..., v) 
treatment. With equireplicated designs, this reduces to 
πi = r/b = k/v = n/N. Unequal probability of selection 
may also be given to the blocks. Let p be the vector 
of probability of selection of the blocks of the design. 
Then it is easy to see that Np = π where N is treatment-
block incidence matrix of a binary incomplete block 
design and π is the vector of first order inclusion 
probabilities of the units. Then p = N′(NN′)−1π. Thus, 
one can get a sampling design with specified first order 
inclusion probabilities by selecting blocks of the design 
according to probability of selection p given above.

A special type of sampling plans called balanced 
sampling plans excluding contiguous units were 
introduced by Hedayat et  al. (1988) for sampling 
from naturally ordered populations in which nearby 
units give similar observations. Stufken et  al. (1999) 
extended the concept to balanced sampling plans 
excluding adjacent units (BSA plans). Here two units 
are said to be adjacent when their distance is less than or 
equal to m. Under these plans, all units have same first 
order inclusion probabilities, all non-adjacent pairs of 
units have constant second order inclusion probabilities 

Table 3. List of preferred and non-preferred samples

Preferred samples Non-preferred samples

1  2  4 1  5  7 3  4  6 1  2  3 2  3  4

1  2  5 2  3  5 3  5  6 1  2  6 2  3  6

1  2  7 2  4  5 3  5  7 1  3  6 2  3  7

1  3  4 2  5  6 3  6  7 1  3  7 2  4  6

1  3  5 2  5  7 4  5  6 1  4  6 2  4  7

1  4  5 2  6  7 4  5  7 1  4  7 3  4  7

1  5  6 3  4  5 5  6  7 1  6  7 4  6  7



40 Baidya Nath Mandal and V.K. Gupta / Journal of the Indian Society of Agricultural Statistics 77(1) 2023  35–42

and all adjacent pairs have second order inclusion 
probability as 0. In other words, πij = 0 whenever 

i, j are adjacent and 
( 1)

( 2 1)
n n

N N m
−

=
− −  under circular 

ordering of units. Algebraic, algorithmic as well as 
linear programming based methods for obtaining BSA 
plans are available in literature (Stufken et al. (1999); 
Stufken and Wright (2001); Wright and Stufken (2008); 
Mandal et al. (2008). BSA plans can be obtained using 
linear integer programming approach also. Let the total 
number of samples which do not contain any adjacent 
pairs of units be t. For a given nonadjacent pair of 

units i  ≠  i′, define a vector ( )( ) ( ) ( ) ( )
1 2, , ...,ii ii ii ii

tc c c′ ′ ′ ′ ′=c     
such that ( ) 1ii

jc ′ =  if jth sample contains units i, i′. 
Let * (1, 1) (1, 2) ( 1, )( )m m Nm N+ + ′=C c c c 

. A BSA plan, if 
exists, can be obtained by solving the linear integer 
programming formulation

Minimize   tφ ′= 1 x

subject to C*x = bπ(2)� (6)
with b suitably chosen positive integer and π(2) is 
the vector of second order inclusion probabilities for 
non-adjacent pairs of units. Choice of b may be made 
according to Remark 4.

To illustrate the above procedure, consider N = 15, 
n = 4, m = 1. Then it can be checked that total numbers 
of possible samples without containing any adjacent 

pairs of units is t = 450, (2)
90 90

( 1) 1
( 2 1) 15

n n
N N m

−
= =

− −
1 1π  

and C*is a 90 × 450 matrix of 0s and 1s.Using b = 15 
and solving (6), we get an optimal solution as xopt with 
exactly 15 unities in the positions 11, 54, 83, 102, 131, 
174, 203, 222, 250, 304, 316, 333, 378, 388 and 422, 
respectively and in the rest of the positions with 0s. The 
15 samples corresponding to unities in the set of all 
possible samples without adjacent pairs of units gives 
the support of a BSA plans with N = 15, n = 4, m = 1 
as shown in the columns of Table 5. Each sample in the 
support is given probability of selection p(s) = 1/15. 
One can check that for this plan, πij = for all adjacent 

pairs of units and 
1

15
=  for all other pairs.

Thus, one can use the above approach to get a BSA 
plans with specified N, n and m.

Since BSA plans does not permit variance 
estimation of Narain-Horvitz-Thompson estimator, 
hence distance balanced sampling plans (DBSPs) 

were introduced in literature by Mandal et al. (2009). 
Under DBSPs, πi’s are same for all units and any 
two units with same distance have same πij ’s and πij 
≥ πi′j′ if distance between i, j ≥ distance between i′, j′. 
Second order inclusion probabilities depend on the 
choice of distance function between two units. To be 

more specific, 
( 1) ij

ij
ijj i

fn n
N f

π
=

−
=

∑  where fij is a non- 

decreasing function of distance between unit i and j. 
Under the choice, fij = δ(i, j) where δ(i, j) = min{|i − 
j|, N − |i − j|}, second order inclusion probabilities 

are given by 3

4 ( 1) ( ,  )ij
n n i j

N
π δ−

=  for even N and 

3

4 ( 1) ( ,  )n n i j
N N

δ−
=

−
 for odd N.

DBSPs can be obtained by algorithmic approaches 
and algebraic approaches as suggested by Mandal 
et al. (2009) and Mandal et al. (2010). Linear integer 
programming approach can also be effectively used to 
obtain such plans. Define t and C as in formulation (5). 
Then a DBSP can be obtained by solving the following 
formulation:

Minimize   tφ ′= 1 x

subject to Cx = bπ(2)� (7)
with π(2) being the vector of second order inclusion 
probabilities with elements as given in the previous 
paragraph and b being a suitably chosen positive 
integer.

For illustration, consider N = 9, n = 3. Here t = 84, 
C is a 36×84 matrix with 0s and 1s containing elements 
1 rth row and cth column whenever rth pair of units is 

contained in cth sample. Here, π(2) = 
1
30  (1, 2, 3, 4, 4, 3, 

2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 2, 3, 4, 4, 3, 1, 2, 3, 4, 4, 1, 2, 
3, 4, 1, 2, 3, 1, 2, 1)′. Choosing b = 30 and solving (7) 
gives the solution xopt = (00010000020000012012010
0000000010000200001212000000010002000112000
010020010000000000)′ which leads to the plan given 
in Table 6.

Table 5. Support of BSA plan with N = 15, n = 4, m = 1

1 1 1 1 2 2 2 2 3 3 3 4 4 5 6

3 4 5 7 4 5 6 8 5 7 9 6 10 7 8

6 8 11 9 7 9 12 10 8 13 11 9 12 10 11

10 14 13 12 11 15 14 13 12 15 14 13 15 14 15
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4.	 DISCUSSION
It is shown in this article that linear integer 

programming is useful in construction of block 
designs which deals with one-way elimination of 
heterogeneity. This is possible because the treatment-
block incidence matrix uniquely determines the design. 
But in elimination of two and more heterogeneity 
settings, there are two or more incidence matrices and 
so the determination of such designs uniquely becomes 
very difficult. Research attempts may be made to solve 
this problem. Apart from block designs, linear integer 
programming are also useful in obtaining fractional 
factorial designs (Fontana, 2013), supersaturated 
designs (Mandal and Koukouvinos, 2014), cross over 
designs (Mandal et al., 2016), among others.

Table 6. A DBSP with N = 9, n = 3

Support p(s) Support p(s)

1 2 6 1/30 2 6 7 1/30

1 3 6 2/30 2 6 8 2/30

1 4 7 1/30 3 4 8 1/30

1 4 8 2/30 3 5 8 2/30

1 5 6 1/30 3 6 9 1/30

1 5 7 2/30 3 7 8 1/30

1 5 9 1/30 3 7 9 2/30

2 3 7 1/30 4 5 9 1/30

2 4 7 2/30 4 6 9 2/30

2 5 8 1/30 4 8 9 1/30

2 5 9 2/30

Sampling designs with appealing properties can be 
obtained by making use of linear integer programming 
approach. In this article, we have seen how various 
controlled sampling designs can be obtained through 
their application. Linear integer programming can also 
be used to obtain two-dimensional controlled sampling 
designs, for example, one can see Tiwari and Nigam 
(1998, 2010). Further, unequal probability sampling 
designs including inclusion probability proportional 
to size (IPPS) sampling designs can also be obtained 
using linear integer programming formulations with 
suitable constraints.
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