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SUMMARY
Time series modelling utilizes previous values to forecast the future values. Exponential smoothing is one of the approaches to make forecast as well 
as to smooth the time series data. Among the various exponential smoothing model, Single Exponential Smoothing (SES) is the most popular model 
in time series due its simplicity of understanding and implementation. On the other hand, state space methodology is a very useful technique to solve 
various problems in time series which is required to improve a system over time. This state space methodology can be used to represent various time 
series models including Autoregressive Integrated Moving Average (ARIMA). Kalman filter technique is an approach to estimate the time-dependent 
parameters. One heartening feature of Kalman filter is that it provides the minimum mean squared error (MSE) estimates for linear model. In present 
study, an attempt has been made to represent the SES in state space form and parameters are estimated using Kalman filter in conjunction with 
prediction error decomposition form of the likelihood function. An illustration has been given with different applications in agricultural domain. It 
has been seen that state space form of SES provides lower MSE compared to traditional SES. This integration of SES with state space formulations 
in agricultural domain will open a new era in agricultural modelling and forecasting.
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1. INTRODUCTION
Exponential smoothing is one of the most preferred 

forecasting methods for a wide range of time series data 
in business industry (Bunn, 1982; Newbold and Bos, 
1994), agriculture field (Kumar et al. 2011), ecology 
(Su et al. 2018), traffic engineering (Ghosh, 2005), 
tourism (Lim and McAleer, 2001), environmental and 
biological sciences (Ishii, 1981), telecommunication 
(Gardner and Diaz-Saiz, 2008) etc. Exponential 
smoothing is generally useful for short term forecasting. 
This method was initially developed by Brown (1956) 
during the computation of the location of submarines 
for fire-control information through designing a 
tracking system, after that, many works has been done 
on exponential smoothing.

The exponential smoothing is categorized into 
different types based on trend and seasonal components 
in the input data. These methods are SES method, Holt-
Winter’s method and Holt’s trend corrected exponential 
smoothing method (Holt, 1960). SES works in absence 
of trend and seasonal pattern. If there is linear trend 
and seasonal pattern, then the Holt’s trend corrected 
exponential smoothing method is useful. Holt-Winter’s 
method is useful for forecasting with the presence of 
both seasonal and trend pattern. But, in broad sense 
single SES is the most useful method among the other 
exponential methods. 

Different reasons behind its popularity among the 
others are: its simplicity to understand; its easiness 
to implement with a simple numerical program, its 
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reliability to forecast in a wide variety of applications 
and data storage and computing requirements for 
exponential smoothing are very minimal.

There are many significant facts about exponential 
smoothing models. First, this methodology lacks 
objective statistical identification, viz.., the smoothing 
constants of this methodology are not based on 
any statistical tests of hypothesis and exponential 
smoothing models are determined by fit of the model. 
So, it is an ad hoc model. Secondly, most exponential 
smoothing methods can be written as special cases 
of the class of Box-Jenkins models (Box et al. 1976, 
2007). But, standard Box-Jenkins model is mainly 
used for forecasting as it is not an ad-hoc process. 
That’s why, many well-known forecasters are not 
supporting to any special case of a Box-Jenkins model. 
On the other hand, it has been proved by Makridakis  
et al. (1979) and Makridakis et al. (1982) that 
exponential smoothing methods can provide almost an 
accurate forecasting as compare to non-ad hoc Box-
Jenkins models. But, the main thing is that one has to 
choose exponential smoothing models very carefully. 
Another important thing is that exponential smoothing 
methods takes very less time than Box-Jenkins models 
to build the models. But, Box-Jenkins models are more 
accurate than exponential smoothing model in many 
cases. Sometimes, the adjustment between time and 
accuracy favours the exponential smoothing model.

State space methodology is a very useful technique 
to solve many problems in time series. The relation 
between observations and unobserved series is 
represented by this methodology. These unobserved 
series are known as a state variable which determines 
the improvement of the system over the time under 
study. This methodology has two equations viz., state 
equation and measurement equation. State equation 
models the evaluation of state variable over time and 
measurement equation relates the state variable to the 
observations (Hamilton, 1994).

Kalman (1960) has given a recursive analytical 
tool to compute the optimal estimator of the state 
vector, known as Kalman filter, which minimizes MSE 
for linear models (Meinhold and Singpurwalla, 1983) 
in the presence of Gaussian noise and also provides 
consistent estimator of the parameters. 

The term filter is given for filtering out the noise 
in the process of finding out the best estimate. It is also 
very much popular for its simplicity in implementation, 

recursive algorithm and computationally efficiency. 
The estimates of the state vector are to be continually 
updated by the Kalman filter as new observations 
become available. In this way, an effort has been made 
for a state space formulation of SES with Kalman 
filter to recursively update the estimates as the new 
observations become available. Also, the study 
investigates the use of the state space framework and 
the Kalman filter along with exponential smoothing for 
improvement of forecast accuracy. The present study 
aims to answer this question by comparing a modified 
scenario (state space formulation of SES and Kalman 
filtering for updating the estimates) with the base 
scenario (SES alone without Kalman filtering).

SES can be written in the state space form to 
improve their forecasting accuracy using Kalman 
filtering technique. The present study is an attempt in 
this direction, where the basic equation of exponential 
smoothing is used as the state equation with Kalman 
filtering. State space formulation of ARIMA models, 
with the Kalman filter, is most popular (de Jong and 
Penzer, 2004). Kalman filter methodology was applied 
in numerous forecasting problems such as wind speed 
forecast (Louka et al. 2008), predicting soil temperature 
(Huang et al. 2008), forecasting GDP (Banbura and 
Runstler, 2011), electricity demand forecasting (Harvey 
and Koopman, 1993), water demand forecasting 
(Nasser et al. 2011) and exchanges rates (Wolff, 1987).

Till date SES has not been suggested in state space 
form for parameter estimation. The study will try to 
represent SES in state space form and estimate the 
parameters using Kalman filter in conjunction with 
Prediction error decomposition form of the likelihood 
function. In this regard, Kalman filter will be used for 
parameter estimation as it provides the optimal estimate 
of the states.

2. MATERIALS AND METHODS

2.1 Data Description
Time-series data on Pulse, Oil of Sardine, Cumin, 

Soybean, Livestock and Fiscal deficit has been collected 
from different sources and are treated as the study 
variable. The wholesale price data on pulse crop has 
been collected from the agmarknet.nic.in. for the period 
from January, 2005 to October, 2009. Monthly data on 
oil of sardine catch has been collected from ICAR-
Central Marine Fisheries Research Institute (CMFRI) 
for the period from April, 2004 to February, 2009.
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The future price daily data of Cumin of Unjah 
market has been collected from the agmarknet.nic.in 
for the period from 1st January, 2016 to 23rd March, 
2016. Soybean data on the spot price time series data 
has been collected from Kota market. It has been 
taken from agmarknet.nic.in for the period from 25th 
march, 2015 to 19th June, 2015. Monthly export data of 
livestock from India has been taken from indiastat.com 
for the period from September, 2007 to June, 2012. 
Fiscal deficit data has been taken from data.gov.in. for 
the period from September, 2008 to June, 2013.

2.2 Single Exponential Smoothing 
Suppose we have observed data up to and including 

time (t – 1), and we wish to forecast the next value of 
our time series  ts , the forecast is denoted by t̂s . When 
the observation ts  becomes available, the forecast error 
is ( )  ˆ  t ts s− . Then the method of simple exponential 
smoothing predicts for the next time period (t +1), 
using the forecast from the previous period ( t̂s ) and 
adjusts it using the forecast error ( ) ˆ  t ts s− . That is,

( )1  ˆ  ̂     ̂t t t ts s s sα+ = + −  (1)

Where α  is a constant between 0 and 1.From 
Eq.(1), it can be seen that the new forecast is simply 
the previous period forecast plus an adjustment for 
the error that occurred in the last forecast. When,  α
has a value close to 1, the new forecast will include 
a substantial adjustment for the error in the previous 
forecast. Conversely, when  α  is close to 0, the new 
forecast will include very little adjustment Eq. (1) can 
be rewritten as

( )1ˆ ˆ  1t t ts s sα α+ = + −  (2)

Thus, Eq. (2) can be interpreted as a weighted 
average of the most recent forecast and the most 
recent observation. The reason for using the word 
“exponential” is explained below. Eq. (2) can be 
explained by replacing ts  with its components, as 
follows:

( ) ( )1 1 1 1 1ˆ ˆt t t ts s s sα α α α+ − −= + − + −  

( ) ( )2
1 1     1 1 ˆt t ts s sα α α α− −= + − + −  (3)

If this situation process is repeated by replacing 
1t̂s −  with its components, 2t̂s −  with its components and 

so on, Eq. (3) results in

( ) ( ) ( )
( ) ( ) ( )

2 3
1 1 2 3

4 1
4 1 1

ˆ   1 1 1  

1   1 1
t t t t t

t t
t

s s s s s

s s s

α α α α α α α

α α α α α

+ − − −

−
−

= + − + − + − +

− +…+ − + − (4)
Thus, represents a weighted moving average of 

all past observations with the weights decreasing 
exponentially; hence the name “exponential 
smoothing”. Sometimes, this method is also called as 
“single exponential smoothing” or “simple exponential 
smoothing” and this method will give accurate forecasts 
only when the input time series has no trend or seasonal 
patterns, i.e., a stationary series. Thus, the first step in 
applying exponential smoothing to a given set of data 
is to test whether it is stationary or not.

2.3 State Space Formulation of the SES Method
In general, a state space model for a time series

{ , 1, 2, }tZ t = …  consists of two equations. The first is 
called the state space equation and determines the state 

1tX +  at time (t+1) in terms of the previous state tX  and 
a noise term. The state equation is 

1  t t t tX F X W+ = + , t= 1, 2...,    (5)
where, { } tF  is a sequence of v v×  matrices, 

{ }( ){ }  0,t tW N Q∼ . Sometimes, the state equation may 
also have an external input. The second equation, called 
the observation equation, expresses the w-dimensional 
observation tZ  as a function of v -dimensional state 
variable tX  plus noise. Thus

t t t tZ G X V= + , t= 1,2…,    (6)

Where, { }( ){ } ~ 0,t tV N R  and { }tG  is a sequence of 
w v×  matrices and { }{ }   t tW and V  are uncorrelated.

According to eq. (3), a time series { }tZ  has a state 
space representation if there exists a state space model 
for { }tZ  as specified by equations (5) and (6). Thus, 
the basic equation of the simple exponential smoothing 
method, as given in eq. (2) can be represented in the 
state space form similar to Eq. (5) and Eq. (6) as given 
below. The state and measurement equations will then 
be

( )1  1t t t tX X U Wα α+ = − + + , (7)

t t tZ X V= + , (8)
Where tUα  in Eq. (7) is the external input with 

tU  being equal to tX , estimate of the observation 
at time ‘t’. Once this equivalent state space model is 
established, the next step is to use Kalman filtering to 
recursively update the estimates. The following section 
presents Kalman filter briefly.
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2.4 Kalman Filter Algorithm
The Kalman filter allows a unified approach to 

estimation and prediction for all processes that can 
be given a state space representation. State space 
representations and associated Kalman filter have 
a profound impact on time series analysis and many 
related areas. The Kalman filter estimates a process 
by using feedback procedure: the filter estimates the 
process state at some time and then improves the same 
using feedback in the form of measurements. The 
Kalman filter equations can fall into two groups: time 
update equations and measurement update equations. 
The time update equations are responsible for 
projecting forward (in time) the current state and error 
covariance estimates to obtain a priori estimates for the 
next time step. The measurement update equations are 
responsible for the feedback, i.e., for incorporating a 
new measurement into the a priori estimate to obtain 
an improved a posterior estimate. The time update 
equations can also be thought of as “predictor” 
equations, while the measurement update equations 
can be thought of as “corrector” equations.

The specific equations for implementing the 
Kalman filter with eq. (8) are given below

( )1ˆ ks−
+  = (1- ˆ) ks+∝  + ks∝ , (9)

( ) ( ) ( ) ( )  1 1 1 kk kP P Q− +
+ = − ∝ − ∝ + , (10)

( ) ( ) ( )

1

1 1 1 1k k k kK P P R
−

− −
+ + + +

 = +  , (11)   

( ) ( ) ( )( )1 11 1 1ˆ ˆ ˆk kk k ks s K Z s+ − −
+ ++ + += + − , (12)

( ) [ ] ( )11 11  kk kP K P+ −
++ += − . (13)

Equations (9) and (10) are the time series update 
equations and eqs. (11) to (13) are the measurement 
update equations. The superscripts ‘–’ and ʻ+’ denote 
the priori and posterior estimates respectively. In eqs. 
(10) and (13), ( )1kP−

+  and ( )1kP+
+  are priori and posterior 

error variance respectively. In eq. (11), 1kK +  is the 
Kalman gain and the Q and R in Eqs. (10) and (11), 
are the process and measurement noise variance 
respectively. This set of steps is repeated for each time 
interval to obtain the corresponding estimates.

2.5 Augmented Dickey-Fuller Test 
In Dickey-Fuller (DF) test, it has been assumed 

that the disturbance term ut is uncorrelated. But when 
ut is correlated, the test can be further augmented by 

preceeding three equations by adding the lagged values 
of the dependent variable ∆Yt . That’s why the test 
coined the term Augmented Dickey Fuller (ADF) test. 
The ADF test here consists of estimating the following 
regression equation:

1 1
1

 
m

t t i t t
i

Y t Y Y uα β δ γ− −
=

∆ = + + + +∑  (14)

In ADF, test of the null hypothesis is set as 0δ =  
and the test follows the same asymptotic distribution as 
the DF statistic.

2.6 Prediction Error Decomposition
State space methods are used to draw valid 

inference in state space models. It provides the estimate 
of parameters with the states for forecasting future 
states and observations. Kalman filter (Kalman and 
Bucy 1961) is useful for building the one-step-ahead 
predictor of tZ  and its mean square error matrix. The 
likelihood can be evaluated via the prediction error 
decomposition due to the independence of the one-
step-ahead prediction errors.

The one-step ahead prediction errors ( )| 1ˆt t t tZ G α −− ′  
for t = 1, 2, ..., T are independently and identically 
distributed. This implies that the joint log likelihood 
function of prediction errors can be written as the sum 
of the log likelihoods at each spelling, that is,

( ) ( )
( )

2

| 1
| 1

1 1 | 1

1 1log log '
ˆ

2 2 '

T T
t t t t

t t t t t
t t t t t t t

Z H
L G G R

G G R

α −
−

= = −

′−
= − Σ + −

Σ +∑ ∑

 (15)

The parameters ( )t t t t, , ,  and RF H Q  are estimated 
by maximizing the log-likelihood function.

2.7 Procedures Used for Comparison and Validation 
of Different Models

Mean Squared Error (MSE)
Measurement of the difference between the values 

of the estimator and the estimated value is called as 
MSE of an estimator. It is defined as the average value 
of the squares of the deviations between the estimator 
and the estimated value. 

MSE 
2

1

ˆ(( ) / )
n

t t
t

Z Z n
=

= −∑  (16)
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Mean Absolute Error (MAE)
If there are n observations and forecast for n time 

periods, then there will be n error terms, and the mean 
absolute error is defined as: 

MAE 
1

ˆ1 n

t t
t

Z Z
n =

= −∑  (17)

Mean Absolute Percentage Error (MAPE) 
The average of all the percentage errors is the 

MAPE. It may be defined as an index of accuracy in 
terms of percentage of a method that can be used for 
developing the fitted time-series values in statistics, 
which can particularly be used in trend estimation. 
It does not take the sign of the data. The average is 
computed by summing their absolute values. 

MAPE 
1

1 100
ˆn

t t

t t

Z Z
n Z=

−
= ×∑  (18)

Where, tZ  is the original value and ˆ
tZ  is the 

forecasted value respectively. 

3. RESULTS
Estimated Values of Smoothing Constant and 

Initial State
The following table illustrating the value of initial 

state and smoothing constant of various data using SES 
and proposed model are illustrated below; calculated 
values for smoothing constant and initial state in 
traditional approach (SES) for Pulse, Oil, Cumin, 
Soybean, Livestock and Fiscal data has mentioned in 
table 1.
Table 1. Values of smoothing constant and initial state of various 

data using SES

Data Smoothing constant ( )á Initial State

Pulse 0.9999 102.62

Oil 0.8666 174264.50

Cumin 0.9631 14654.10

Soybean 0.9999 3316.56

Livestock 0.6857 336.60

Fiscal Deficit 0.0001 278.95

Calculated values for smoothing constant and 
initial state in traditional approach (SES) for Pulse, 
Oil, Cumin, Soybean, Livestock and Fiscal data has 
mentioned in table 2.

Table 2. Values of smoothing constant and initial state of various 
data using Kalman filter

Data Smoothing constant ( )á Initial State

Pulse 0.9999 98.29

Oil 0.8460 154220.20

Cumin 0.9999 14660.00

Soybean 0.5840 3220.00

Livestock 0.4867 378.97

Fiscal Deficit 0.0983 -142.36

Comparison of SES and Integrated Model
The MSE, MAPE and MAE have been used as an 

error minimization criterion for comparing the base 
scenario with the improved scenario in this study. The 
scenario which gives the smallest error for the data 
can be considered as better method for prediction. 
Calculated values for statistical measures viz., MSE, 
MAE and MAPE for the two approaches SES and the 
Proposed Model for all the data are reported in the 
following tables.

Table 3. Goodness of fit for Pulse data

Methods MSE MAE MAPE

SES (traditional) 31.09 4.54 2.54

SES (Kalman filter) 31.09 4.54 2.54

Table 4. Goodness of fit for Oil data

Methods MSE MAE MAPE

SES (traditional) 2575947844 37600.80 99.24

SES (Kalman filter) 2568055778 37637.70 99.86

Table 5. Goodness of fit for Cumin future price data

Methods MSE MAE MAPE

SES (traditional) 46563.42 176.03 1.18

SES (Kalman filter) 44811.83 170.77 1.14

Table 6. Goodness of fit for Soybean data

Methods MSE MAE MAPE

SES (traditional) 3692.33 33.72 0.96

SES (Kalman filter) 2819.22 35.23 1.01

Table 7. Goodness of fit for Livestock data

Methods MSE MAE MAPE

SES (traditional) 32299.75 157.09 11.48

SES (Kalman filter) 31893.01 145.11 10.38
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Table 8. Goodness of fit for Fiscal deficit data

Methods MSE MAE MAPE

SES (traditional) 196073.70 405.49 128.59

SES (Kalman filter) 168648.30 343.70 146.41

Estimated value of standard error using proposed 
model for Pulse, Oil, Cumin, Soybean, Livestock and 
Fiscal deficit data has mentioned in table 9. 

Table 9. Values of standard error using proposed model

Data Standard error

Pulse 0.010

Oil 0.008

Cumin 0.009

Soybean 0.006

Livestock 0.005

Fiscal deficit 0.003

4. DISCUSSION
The proposed model has a lower MSE compared 

the traditional SES for the data namely Oil, Cumin, 
Soybean, Livestock and Fiscal deficit. MAE and MAPE 
in most of the data has a lower value in proposed model 
than the traditional SES method. It has seen that the 
Kalman filter gives the lower MSE. The proposed 
model has lower MSE for all the data except Pulse in 
which it has equal MSE to the SES method. Hence, it 
may be concluded that SES method using the Kalman 
filter is proved to be much better as compared to the 
traditional approach for forecasting.

The study is also further proceeded for calculating 
standard error using Kalman filter as because SES does 
not provide standard error due to its ad-hoc in nature. 
This is one of the main disadvantage of traditional 
SES. Another significant restriction of this traditional 
SES is that it is heuristic in nature. So in this regard, 
Kalman filter methodology is used to correct the above 
problem. This method is ideally suited for finding out 
standard error of the estimates (Table 9). 

In this SES approach, fitting of this model is 
usually carried out through algorithm of Grid search. 
The main drawback of this algorithm is that the number 
of possible models to be searched is extremely large 
and it requires a large computation time. Moreover, 
this method is only an approximate method and 
has problems with convergence of the estimates of 
parameters. To this end, a very efficient and powerful 

Kalman filter technique has been employed to rectify 
the above limitations. 

5. CONCLUSION
In literature, most of the existing studies used 

only advanced time series models like Box-Jenkins 
ARIMA in a state space framework with Kalman 
filtering for improving the estimates. The present study 
is an attempt to fill the gap by proposing a state space 
approach for simple exponential smoothing, which 
is one of the most widely used smoothing methods. 
The present study also tries to answer the question 
of whether state space approach really improves the 
forecasting accuracy by applying it to various data 
in agricultural field. It is noted that, for the various 
data, proposed model has been showed with lower 
MSE, MAE and MAPE than the single exponential 
smoothing. Hence, it can be inferred that the SES with 
Kalman filter is performing relatively better than the 
traditional SES method. The proposed approach can be 
extended to other applications as well, when the main 
interest lies on to increase the forecasting accuracy of 
the exponential smoothing methods.
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