
1. INTRODUCTION
We consider the 2-colour microarray experiments 

in which same set of genes is spotted on each array 
and as a consequence gene (G), array-gene interaction 
(AG), dye-gene interaction (DG) and variety-gene 
interaction (VG)} known as genes / gene specific effects 
are orthogonal to array (A), dye (D) and variety (V), 
known as global effects. A design that is efficient under 
a model containing global effects remains efficient 
under a model containing both global and gene specific 
effects. Therefore, the search for efficient designs 
can be restricted to the models involving only global 
effects. In 2-colour cDNA microarray experiments, the 
treatments or varieties are different types of tissues, 
drug treatments or time points of a biological process, 
which may be unstructured or have a factorial structure. 
The design is called a single factor or varietal design 
if the treatments are unstructured and factorial if the 
treatments have factorial treatment structure. In single 
factor experiments, the interest is in estimation of all 
or some pair wise treatment comparisons. In designs 
for factorial experiments, the inference is drawn with 

respect to factorial effects {main effects of the factors 
and interactions among them}. In factorial experiments, 
main effects of factors and interactions among them 
are defined via orthogonal parameterization involving 
mutually orthogonal treatment contrasts.

In microarray experiments, natural baseline 
or null state may exist. For example, there may be 
tissues from two mutants, one of which proliferates a 
particular disease and other does not. Therefore, the 
mutant that does not proliferate into disease is baseline. 
In a toxicological study with binary factors, each 
representing the presence or absence of a particular 
toxin, the state of absence can be regarded as a natural 
baseline level of each factor. Null state or baseline 
of a factor need not strictly mean zero level on some 
scale, but may as well refer to a standard or control 
level like the one currently being used in practice. 
Such experimental situations involving the control or 
standard treatment (natural baseline) do occur even 
beyond the domain of microarray experiments.
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In multi-factor microarray experiments in which 
one of the levels of each factor is a natural baseline, the 
comparisons with the baseline are of importance rather 
than the usual main effects and interactions. To make 
the exposition clear, consider a 2-colour microarray 
experiment in which it is desired to compare two cell 
lines FI∆ and V449E at times zero hour and 24 hours 
{see e.g. Glonek and Solomon (2004)}. The cell line 
V449E proliferates into leukaemia while FI∆ is non-
leukaemic. Therefore, there are two factors dictating 
the cell populations. The first factor (F1), namely, 
mutant has two levels FI∆ and V449E of which FI∆, 
being non-leukaemic, is baseline. The two levels of 
mutants may be coded as 0 and 1 respectively. The 
second factor (F2) is time with two levels as 0 hours 
and 24 hours and first of these levels (0 hours) is 
baseline. These two levels are also coded as 0 and 1 
respectively. Thus considering the two factors together, 
there are four treatment combinations, 00, 01, 10, 11 
representing the cell population. Let 00 01 10 11, , ,τ τ τ τ
denote the expected log intensities, that is, the effects of 
these treatment combinations.

Now the question “Are there any genes specific to 
V449E that result into leukaemic effects?” can be 
answered from the treatment contrast 10 00τ τ− . Further, 
the change in intensity of FI∆ (natural baseline of 
mutant) between zero and 24 hours can be estimated 
from the treatment contrast 01 00τ τ− . Further, the 
difference in FI∆ and V449E at time 24 hours can be 
estimated from the treatment contrast 11 01τ τ− . The 
difference between these two lines at 0 hours was 
estimated using 10 00τ τ− . The difference of the two 
{( 11 01τ τ− )– 10 00( )τ τ− } represents the differential 
expression between the two cell lines that exists at 24 
hours beyond what was present at time zero. Similarly 
this difference can also be estimated as 
( 11 10τ τ−  ) –  01 00( )τ τ− }. Therefore, the inference is 
required on the three contrasts viz.

10 10 00 ;θ τ τ= −

01 01 00θ τ τ= −  and

11 11 01 10 00θ τ τ τ τ= − − + .

Here 10 01,θ θ  and 11θ  are baseline parameterization 
of main effect of F1, F2 and interaction F1F2 respectively. 
However, if at least one factor, like gender, lacks a 
natural baseline, then the baseline parameterization is 

inappropriate because this will arbitrarily single out 
one level of such a factor. In such situations, it is 
advisable to use the orthogonal parameterization.

The corresponding treatment contrasts of main 
effect F1, main effect F2 and interaction effect F1F2 are

10 11 01 10 00 2* ( ) /θ τ τ τ τ= − + − ,

01 11 01 10 00 2* ( ) /θ τ τ τ τ= + − −  and

11 11 01 10 00 2* ( ) /θ τ τ τ τ= − − +

From the above, it is clear that the definitions of 
main effects under the two parameterizations are 
entirely different. While 11θ  is proportional to 11

*θ , this 
equivalence for two factor interaction also disappears 
in case of experiments involving more than two factors.

The main distinction between these two kinds 
of parameterization is that while the orthogonal 
parameterization defines the factorial effects via 
mutually orthogonal treatment contrasts, the baseline 
parameterization defines these effects with reference to 
natural baseline levels of the factors and, hence, entails 
non-orthogonality.

For efficient designs for two-level factorial 
microarray experiments for estimation of factorial 
effects of interest under orthogonal parameterization, 
a reference may be made to Yang and Speed (2002), 
Churchill (2002), Yang and Draper (2003), Wang 
(2004), Gupta (2006), Kerr (2006), Grossmann and 
Schwabe (2008).

Although the baseline parameterization looks 
simpler than the orthogonal parameterization, it renders 
the task of finding optimal or efficient designs somewhat 
more challenging due to lack of orthogonality. Glonek 
and Solomon (2004) were the first to study designs for 
multi-factor microarray experiments under baseline 
parameterization. They have introduced a criterion 
of statistical efficiency in terms of variances of the 
estimated parameters of interest. For given number 
of arrays, b, a design is said to be admissible if the 
variance of each of the estimated parameters of interest 
is less than or equal to the variance of the estimated 
parameters of interest through any other design in 
same number of arrays and strict inequality holds for 
at least one parameter. This criterion was illustrated in 
obtaining efficient designs for 22 factorial experiments 
for given number of arrays. They have also illustrated 
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the utility of admissible criterion for 2 × 3 factorial 
experiments.

The key reference for obtaining optimal/efficient 
designs for baseline parameterization is Banerjee and 
Mukerjee (2008) and also to know more about 
optimality aspect of factorial experiments with baseline 
parameterization one may refer to Mukerjee and Tang 
(2012). They studied n-factorial experiment with 
factors as 1 2, , , , ,j nF F F F   with factor 1,jF j n≤ ≤

at 2js ≥  levels represented by 0, 1, …, 1js − . The 

total number of treatment combinations is 
n

j
j 1

v s
=−

=∏ . 

The treatment combinations in lexicographic order are 
given by 1 2 ... n× × ×a a a  where ×  denotes the symbolic 
direct product and ( )10 1 1 2, , ..., ; , , ...,j js j n−′ = =a . 

Corresponding to the treatment combination 1 ni i , 
0 1j ji s≤ ≤ − , 1 j n≤ ≤ , Error! Digit expected. 1 ni iτ



 
defines the expected log intensity (fluorescence 
intensity measured from application of treatment 
combination 1 ni i  and transformed to log scale), i.e., 
the effect, of the treatment combination 1 ni i… . As 
before, the baseline level of each factor is denoted by 0. 
Hence, 00 0 00 0θ τ=

 

 stands for the baseline effect. 
Also, baseline parameterization for main effect, say, 
that of factor 1F , is represented by the 1 1s −  parameters

1 10 0 0 0 00 0... ... ...i iθ τ τ= −  ( )1 11 1i s≤ ≤ − .
The baseline parameterization for a two-factor 

interaction, say, 1 2F F  is represented by the 
( ) ( )1 21 1s s− −  parameters

1 2 1 2 1 20 0 0 0 0 0 0 0 0 000 0... ... ... ... ...i i i i i iθ τ τ τ τ= − − +  
( )1 1 2 21 1 1 1,i s i s≤ ≤ − ≤ ≤ − .

Similarly, one can define 1 ni iθ


 for every 

( )1 0 0 0 1 1,n j ji i i s j n≠ ≤ ≤ − ≤ ≤   so that any such 

1 ni iθ


 represents a factorial effect as determined by its 
nonzero subscripts. The total number of parameters 

( ){ }1 1 0 0
ni i ni iθ ≠



   to be estimated are 1v −  and 
these are collectively referred to as the θs for ease in 
presentation. Banerjee and Mukerjee (2008) have 
obtained lower bound to the variance of 1 ni iθ



 when 
number of arrays are equal to 1v − . A design which 

attains these lower bounds for each of θs, is called an 
optimal design. Banerjee and Mukerjee (2008) have 
also given a method of construction of optimal design 
in 1v −  arrays. If all main effects and interaction effects 
are of interest, then a design in 1v −  arrays is a saturated 
design and leaves no error degree of freedom for 
estimation of experimental error or testing of hypothesis 
regarding parameters of interest. Therefore, it is 
required to generate a design in number of arrays

1b v> − . For 1b v> − , a new criterion of optimality 
viz. ω-optimality was introduced for 1 2s s×  factorial. A 
design 1 2 2( , , )d D s s b∈ × for 1 2s s×  factorial in given 
number of arrays, b, is said to be ω-optimal, if it 
minimizes

1 2 1 2

1 2 1 2
1 2 1 2

1 1 1 1

1 0 0
1 1 1 1

ˆ ˆ ˆvar( ) var( ) var( )
s s s s

i i i i
i i i i

T θ θ ω θ
− − − −

= = = =

= + +∑ ∑ ∑∑

 (1)
One approach to get an ω-optimal design is to 

generate all possible 
1 2( ) /v v
b
− 

 
 

 designs and select 

the design with minimum value of T1. The optimal 
design may not be unique. Another approach suggested 
by Banerjee and Mukerjee (2008) is to (i) generate all 
optimal saturated design in 1b v= −  arrays, (ii) given 
b, augment each optimal design in (i) in all possible 
ways to generate design with b arrays and (iii) select 
one design as per chosen optimality criterion T1 in (1). 
Using this approach, they have suggested the procedure 
of augmenting up to 1 21 1 1( ) ( )( )b v s s= − + − −  
arrays, i.e. adding any number of arrays from 1 to 

1 21 1( )( )s s− −  and conjectured that these designs are 
ω-efficient. Here we have generalized the value of 
number of arrays (b) for n factors mixed level factorial 
experiments based on baseline parameterization i.e. 
number of arrays for n factors is

( ) ( ) ( )( ) ( )1 2
1 22 1

1 1 1 1 1 1
j

j

n n

i i i
j i i i

v b v j s s s
= ≠ ≠ ≠ =

  − ≤ ≤ − + − − − − 
  

∑ ∑


 . 

 (2)
Thus for n factors mixed level factorial experiments 

we may add any number of array from 1 to 

( ) ( )( ) ( )1 2
1 22 1

1 1 1 1
j

j

n n

i i i
j i i i

j s s s
= ≠ ≠ ≠ =

  − − − − 
  

∑ ∑


  with (v-1) 

and conjectured that these designs are ω-efficient.
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The generation of designs, however, is quite 
tedious. Therefore, in the present investigation, a 
software has been developed to generate optimal 
designs for any number of factors in 1b v= −  arrays 
and for two-factor factorial experiments in 

1 21 to 1 1 1( ) ( ) ( )( )b v v s s= − − + − −  arrays. The 
details are given in Section 2. The method of generation 
of ω-efficient designs for two-factors in 

1 21 1 1( ) ( )( )b v s s= − + − −  has been extended to three 
factors in Section 3. A discussion on future scope is 
given in Section 4.

2. SATURATED AND UNSATURATED 
DESIGNS
In this section, we have generated optimal saturated 

block designs in block size 2 for estimation of factorial 
effects under baseline parameterization. As we have 
discussed earlier that in a saturated design, there is no 
error degree of freedom. If the interest is in only main 
effects and two factor interactions, then it leaves some 
degrees of freedom for error under the assumption of 
absence of higher order interactions except main  
effects and two factor interactions. Thus there is a need 
to obtain both saturated as well as unsaturated 
ω-efficient designs for mixed level factorial experiments 
based on baseline parameterization. In this section, we 
extend the procedure of obtaining block designs for 
mixed level factorial experiments of any number of 
factors in any number of blocks satisfying  

( ) ( ) ( )( ) ( )1 2
1 22 1

1 1 1 1 1 1
j

j

n n

i i i
j i i i

v b v j s s s
= ≠ ≠ ≠ =

  − ≤ ≤ − + − − − − 
  

∑ ∑


 , 

where v, b, and n are number of treatment combinations, 
arrays and factors respectively. We begin with some 
preliminaries required for generation of designs with 
baseline parameterization.

In two-colour microarray experiments, only two 
treatment combinations can be accommodated on each 
array and one of them is labelled with red dye and the 
other with green dye. Let the treatment combinations 

1 ni i  and 1 nj j  be labeled with red and green dyes 
respectively. Then an array is denoted by an ordered 
pair ( 1 ni i , 1 nj j ).A design is represented by a 
collection of such pairs. Assuming the absence of dye-
colour bias, the ordering within any pair is immaterial. 
Baseline of treatment combination 1 0 0...ni i ≠  

1( ... )ni iρ  is obtained by replacing non-zero level of 
any factor by zero level and leaving the level of other 

factors unchanged. The procedure of obtaining the 
design is as follows:

Steps of Construction
Case I: When 1b v= −

1. Write all possible treatment combinations 
excluding the control treatment 00…0 in 
lexicographic order.

2. Obtain baseline of each treatment combination 
by replacing the first non-zero level by zero 
and keeping levels of other factors unchanged.

3. Keep all treatment combinations obtained in 
step 1 in lexicographic order with the upper dye 
(say red) and corresponding baseline treatment 
combination with the lower dye (say green) in 
an array

This yields an optimal saturated design in 1b v= −  
arrays. The above procedure can give optimal saturated 
block designs for any 1 2 ns s s× × ×  factorial 
experiment.

Example 1: For a 2×3 factorial experiment, the 
optimal block design in 5 arrays is

Arrays 1 2 3 4 5

Dye 1 01 02 10 11 12

Dye 2 00 00 00 01 02

In this way we can construct a design with v–1 
number of arrays.

Case II: When 

( ) ( ) ( ) ( )( ) ( )1 2
1 22 1

1 1 1 1 1 1
j

j

n n

i i i
j i i i

v b v j s s s
= ≠ ≠ ≠ =

  − < ≤ − + − − − − 
  

∑ ∑




1. Generate a design in 1b v= −  as given in Case 
I of Section 2.

2. Search for the first treatment combination 
having two non-zero levels of n factors in first 
row of the design obtained in Step 1.

3. Now identify its baseline treatment combination 
by replacing the non-zero level of factor 3 by 
zero and keeping the levels of factor 1 and 2 
unchanged.

4. Add a column (array) containing the treatment 
combination in step 1 in upper dye and its 
baseline treatment combination in lower dye in 
the design with 1b v= −  obtained in Step 1.

This yields a design in b v=  arrays.
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5. For getting a design in 1b v= +  arrays, repeat 
steps 2 to 4 for second treatment combinations 
having all non-zero levels 2 factors in first row 
of the design obtained in Step 1.

6. For getting a design in any number of arrays 
2b v= +  to 

1 2 1 3 2 31 1 1 1 1 1 1( ) ( )( ) ( )( ) ( )( )v s s s s s s− + − − + − − + − − , 
repeat steps 2 to 4 for all other 

1 2 1 3 2 31 1 1 1 1 1 2( )( ) ( )( ) ( )( )s s s s s s− − + − − + − − −

treatment combinations having all non-zero 
levels of two factors in the lexicographic order.

7. Now identify first treatment combination 
having all non-zero levels of all 3 factors in 
first row of the design obtained in Step 1.

8. Now identify its baseline treatment combination 
by replacing the non-zero level of factor 2 by 
zero and keeping the levels of factor 1 and 3 
unchanged and repeat step 4.

 This gives a design in 
1 2 1 3 2 31 1 1 1 1 1 1( ) ( )( ) ( )( ) ( )( )v s s s s s s− + − − + − − + − −

+1 blocks.
9. Now for the treatment combination identified 

in step 7, identify its baseline replacing the 
non-zero level of factor 3 by zero and keeping 
the levels of factor 1 and 2 unchanged and 
repeat step 4.

 This gives a design in 
1 2 1 3 2 31 1 1 1 1 1 1( ) ( )( ) ( )( ) ( )( )v s s s s s s− + − − + − − + − −

+2 arrays/blocks.
10. For generating all other 

1 2 31 1 1 2( )( )( )s s s− − − −  arrays, repeat steps 
7, 8, 9 for every other treatment combination 
having non-zero levels for all three factors.

A design 1 2 3 2( , , )d D s s s b∈ × ×  for 1 2 3s s s× ×  
factorial in given number of arrays, b, is said to be 
ω-optimal for main effects and two factor interactions, 
if it minimizes

31 2

1 2 3
1 2 3

31 2 1

1 2 1 3
1 2 1 3

32

2 3
2 3

11 1

2 00 0 0 00
1 1 1

11 1 1

0 0
1 1 1 1

11

0
1 1

ˆ ˆ ˆvar( ) var( ) var( )

ˆ ˆvar( ) var( )

ˆvar( )

ss s

i i i
i i i

ss s s

i i i i
i i i i

ss

i i
i i

T θ θ θ

ω θ θ

θ

−− −

= = =

−− − −

= = = =

−−

= =

= + + +

+ +

∑ ∑ ∑

∑∑ ∑∑

∑∑  (3)

The efficiency of the block designs with 1b v> − , 
can be obtained by the ratio of criterion T2 of the design 

obtained to that of the design with minimum value of 
T2 obtained through generating all possible 

1 2( ) /v v
b
− 

 
 

 designs.

1. In the design obtained for n = 2 in Case I, 
search for the first treatment combinations 
having all non-zero levels in first row of the 
design obtained in Case I.

2. Now identify its baseline treatment 
combination by replacing the non-zero level 
of factor 2 by zero and keeping the levels of 
factor 1 unchanged.

3. Add a column (array) containing the treatment 
combination in step 1 in upper dye and its 
baseline treatment combination in lower dye in 
the design with 1b v= −  obtained in Case I.

This yields a design in b v=  arrays.
1. For getting a design in 1b v= +  arrays, repeat 

steps 1 to 3 for second treatment combinations 
having all non-zero levels in first row of the 
design obtained in Case I.

2. For getting a design in any number of arrays 
2b v= +  to 1 21 1 1( ) ( )( )v s s− + − − , repeat 

steps 1 to 3 for all other 1 21 1 2( )( )s s− − −
treatment combinations having all non-zero 
levels in the lexicographic order.

Example 2: For 2×3 factorial experiments, the 
optimal block design in 6 or 7 arrays is

Arrays 1 2 3 4 5 6 7

Dye 1 01 02 10 11 12 11 12

Dye 2 00 00 00 01 02 10 10

For computer aided generation of the efficient 
block designs under baseline parameterization obtained 
in Case I and Case II, a software module using C# 
programming language with ASP.NET platform has 
been developed and can be access in https://drs.icar.
gov.in/dbp/. For running the software module, user is 
asked to select number of factors ( 2 10 )n≤ ≤ and 
select the levels ( 2 10 1, )js j n≤ ≤ ≤ ≤  of each of the n 
factors as shown in the following screen

On selecting the number of factors and the levels 
as, say 2 and 3, 1 21 1 1( )( )s s− − +  block designs get 
generated in 1 21 1 1 1, , ...,( ) ( )( )b v v v s s= − − + − −
blocks/arrays as shown in Fig. 2.
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Fig. 1. Selection of number of factors and their levels

Fig. 2. Block designs in block size 2 in 5, 6 and 7 blocks for 2 ×3 factorial experiment for estimation of factorial effects based on baseline parameterization
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Fig. 3. A block design for 2×2×3 factorial experiment in 11 blocks for estimation of factorial effects under baseline parameterization
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If one selects, any number of factors greater than 2, 
and their levels ( 2 10 1, )js j n≤ ≤ ≤ ≤ , then optimal 
saturated block design in block size 2 in 1b v= − blocks 
for estimation of factorial effects under baseline 
parameterization gets generated. One such design in 11 
blocks for 2×2×3 factorial experiment is given in Fig. 3.

3. UNSATURATED BLOCK DESIGNS FOR N 
FACTORS
For 3n ≥  factors, we have generated optimal 

saturated block designs in block size 2 for estimation of 
factorial effects under baseline parameterization. As 
discussed earlier in a saturated design, there is no error 
degree of freedom. If the interest is in only main effects 
and two factor interactions, then it leaves some degrees 
of freedom for error under the assumption of absence 
of 3 factor interactions. In this section, we extend the 
procedure of obtaining block designs for three factors 
in any number of blocks satisfying

( ) ( ) ( )( ) ( )1 2
1 22 1

1 1 1 1 1 1
j

j

n n

i i i
j i i i

v b v j s s s
= ≠ ≠ ≠ =

  − ≤ ≤ − + − − − − 
  

∑ ∑




Example 3: In an experiment it is desired to study 
the three factors, represented by F1, F2, and F3. The 
factors F1 and F2 have 2 levels {0 and 1} each and 
factor F3 has three levels (0, 1 and 2). The cell population 
corresponds to 12 treatment combinations 000, 001, 
002, 010, 011, 012, 100, 101, 102, 110, 111, 112. Let 

000 001 002 010 011 012 100 101 102 110 111 112 and , , , , , , , , ,τ τ τ τ τ τ τ τ τ τ τ τ
denote the expected log intensities, that is, the effects of 
these treatment combinations. We focus on the situation 
where, there is a null state or baseline level, say, 0, of 
each factor. Then 000 000θ τ=  stands for the baseline 
effect. We consider the baseline parameterization 
according to which the main effects of F1, F2, and F3 
and their two factor interactions respectively are

100 100 000θ τ τ= − , 010 010 000θ τ τ= − , 001 001 000θ τ τ= − , 
002 002 000θ τ τ= − , 110 110 100 010 000θ τ τ τ τ= − − + , 

101 101 100 001 000θ τ τ τ τ= − − + , 102 102 100 002 000θ τ τ τ τ= − − + , 

011 011 010 001 000θ τ τ τ τ= − − + , 012 012 010 002 000θ τ τ τ τ= − − +

The optimal block design for 2×2×3 factorial 
experiment with baseline parameterization with 

1 11b v= − =  blocks obtained through Case I of Section 
2 is

Array 1 2 3 4 5 6 7 8 9 10 11

Dye 1 001 002 010 011 012 100 101 102 110 111 112

Dye 2 000 000 000 001 002 000 001 002 010 011 012

Using Steps of construction 5 to 10 given above, we 
can get 9 more blocks in the following order for getting 
a block design in any number of blocks from 12 to 20.

Array 12 13 14 15 16 17 18 19 20

Dye 1 011 012 101 102 110 111 111 112 112

Dye 2 010 010 100 100 100 101 110 102 110

4. DISCUSSION
The efficient block designs in blocks of size 2 for 

estimation of factorial effects under baseline 
parameterization have been obtained in Sections 2 and 
3. These designs have been obtained under the 
assumption of absence of dye effects. In the presence of 
dye effects, we need to obtain row-column designs. For 
obtaining a row-column design, consider the blocks of 
a block design as columns and use the simplest approach 
of dye swap arrangement recommended in the literature 
for each of the columns to make the treatment 
combinations balanced with respect to dye effects, i.e., 
if a column consists of treatment combinations in the 
ordered pair as ( 1 ni i , 1 nj j ), add one more column 
with the order pair ( 1 nj j , 1 ni i ).Banerjee and 
Mukerjee (2008) have shown that the row-column 
design with 2 1( )b v= −  columns obtained by dye-
swap arrangement of a optimal saturated block design 
in 1b v= −  arrays is optimal in the sense that all 
factorial effects are estimated with minimum variance . 
In this approach number of arrays becomes twice that 
of required in block design set up, which may not be 
feasible due to constraints of resources. Therefore, it is 
required to see whether it is possible to get a row-
column design in same or few extra columns as that of 
a block design and still the treatment combinations are 
orthogonal with respect to dyes. For 2×2 factorial, such 
a design in 4 columns is possible and given as

Array 1 2 3 4

Dye 1 01 00 11 10

Dye 2 00 10 01 11

The procedure of obtaining ω-efficiency of a block 
design for 2 or 3-factor experiment obtained through 
augmentation in 1b v> −  blocks, the minimum value 
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of T1 in (1) or T2 in (2) can only be obtained through 

generating all possible 
1 2( ) /v v
b
− 

 
 

 designs. 

Therefore, it is required to obtain a lower bound to T1 
in (1) or T2 (2). Further, the method of construction of 
optimal/efficient designs in number of arrays equal to 
or more than the number of treatment combinations for 
more than 3-factor factorial experiments needs to be 
studied.

ACKNOWLEDGEMENTS
The authors are grateful to the anonymous reviewer 

for valuable suggestions that have led to improvement 
of the manuscript. The research work is a part of Ph.D. 
thesis of first author submitted to PG School of IARI, 
New Delhi. The IASRI fellowship received is gratefully 
acknowledged.

REFERENCES
Banerjee, T. and Mukerjee, R. (2008). Optimal factorial designs for 

CDNA microarray experiments, Ann. Appl. Stat., 2(1), 366-385.

Churchill, G.A. (2002). Fundamentals of experimental design for 
cDNA microarrays. Nature Genetics (Suppl.), 3, 490-495.

Glonek, G.F.V. and Solomon, P.J. (2004). Factorial and time course 
designs for cDNA microarray experiments. Biostatistics, 5, 
89-111.

Grossman, H. and Schwabe, R. (2008). The relationship between 
optimal designs for microarray and paired comparison 
experiments. Preprint

Gupta, S. (2006). Balance factorial design for cDNA microarrray 
experiments. Comm. Stat. Theory and Methods. 35, 1469-1476.

Kerr, K.F. (2006). Efficient 2k factorial designs for blocks of size two 
with microarray applications, Journal of Quality Tech., 38(4), 
309-318.

Mukerjee, R. and Tang, B. (2012). Optimal fractions of two-level 
factorials under a baseline parameterization Biometrika, 99(1), 
71-84.

Wang, P.C. (2004). Designing two-level fractional factorial experiments 
in blocks of size two. Sankhya, 66, 327-342.

Yang, Y.J. and Draper, N.R. (2003). Two-level factorial and fractional 
factorial designs in blocks of size two, Journal of Quality Tech., 
35(3), 294-305.

Yang, Y.H. and Speed, T. (2002). Design issues for cDNA microarray 
experiments. Nature and Rev. in Genetics. 3, 579-588.


