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1.	 INTRODUCTION AND LITERATURE 
REVIEW
Estimation of the unknown size (N) of a finite 

population [in different contexts/application areas] has 
been of interest to the statisticians. The well-known 
Catch - Mark - Release - Recatch method is talked 
about frequently. There are available non-trivial and 
often-needed alternatives to this method as well. We 
will not enter into discussions on the Catch-Recatch 
methodology as such but cite a few relevant references 
at the end. We also refer interested readers to Chaudhuri 
(2015), who effectively used network sampling and 
adaptive sampling in tandem to capture sparsely located 
elements in unknown pockets.

In this paper, we will deal with finite populations 
having some peculiar / special features and discuss 
the problem of estimation of the unknown size (N) of 
the specially featured population/subpopulation. The 
peculiarity of such a population lies in the fact that 
none of these population units is directly accessible 
to the investigator, but there is a well-defined finite 

population [also called reference population] closely 
connected to the population of interest, whose units 
may be accessed directly. For example, consider a 
general population and, within it, suppose there are 
individuals (i) having access to food coupons only 
through distribution centers or service centers, or, (ii) 
suffering from a rare disease and necessarily visiting 
one or more diagnostic centers for treatment, and the 
like. These individuals are otherwise not identifiable 
in the general population. The only way to identify 
them is by visiting the appropriate centers meant for 
such purpose.

It is postulated that there is a well-defined network 
connecting the reference population to the population 
of our interest. While the totality of reference units 
gives the total view of the population network of our 
interest, a sample of such reference units creates only a 
partial view of the same. Based on this sample network, 
it is required to unbiasedly estimate the size (N ) of the 
population of our interest.
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We refer to Seber (1982) for literature review 
and a host of results in standard formulations of the 
problem. It needs to be noted that we are dealing with 
a non- standard set-up and follow a network approach 
to reach the ultimate units of our interest. The first non-
trivial study of the problem of estimation of N based 
on a partial view of the network seems to be due to 
Kiranandan (1976). Following this, there are two more 
studies. Maiti et al. (1993) derived interesting results 
on unbiased estimation of N, being completely unaware 
of Kiranandan′s work. Later, Sinha et al. (2006) took 
cognizance of Kiranandan′s work and presented an 
equivalent version, along with a critical appraisal of 
Kiranandan′s work. These studies address the above 
problem with/without additional information [which 
may be made available in terms of what has been termed 
as probing]. Based on a random sample of reference 
units drawn from the reference population and the 
sample network drawn, we need a count of the number 
of the ultimate population units so captured and their 
individual incidences within the sampled reference 
units. In most studies, this alone would constitute the 
data and we should proceed towards estimation of 
N from here. This corresponds to the scenario of no 
probing. However, it seems to be an utterly impossible 
proposition to go anywhere from here! Kiranandan 
(1976) succeeded in deriving a novel formula for ˆ( )N , 
an unbiased estimator for N, in terms of the frequency 
counts of the ultimate population units captured via the 
sample network. Unfortunately, in most applications, 

ˆ( )N , so computed, may turn out to be a large negative 
quantity! There are other undesirable features of ˆ( )N  
as well, like it may turn out to be less than the actual 
number of ultimate units captured/observed in the 
process of sampling. The criterion of unbiasedness thus 
seems to take its toll in this process.

2.	 HANDLING SPECIALLY FEATURED 
POPULATIONS
We are referring to finite populations whose units 

are not directly accessible in any manner. In that 
respect, apriori, no question of labelling of such units 
arises. Accessibility of the units occurs only through 
a finite [identifiable] collection of Reference Units 
[RUs]. That is why, we refer to the inaccessible units as 
Ultimate Units [UUs]. And we are also referring to the 
existence of a Bipartite Di-graph connecting the RUs 
with the UUs. Our objective in this study is to estimate 

the unknown number N of the size of the population 
of UUs.

2.1	 Reference Units and Ultimate Units
Suppose there exists a total of M distinct service 

centers catering to a total of N distinct individual 
beneficiaries. An individual beneficiary may, however, 
avail of services from multiple service centers, without 
any restriction whatsoever. To start with, it is stipulated 
that the individual beneficiaries are neither directly 
accessible nor are they identifiable. The only way 
to learn about them is through visiting one or more 
of the service centres to which they are affiliated/
attached/registered. The M service centres are distinct 
and identifiable, and form a finite labeled population 
of Reference Units - abbreviated as RUs. We assume 
this number M to be known. In case we decide to 
check/inspect all the service centres, we gain access 
to all the N beneficiaries, termed as Ultimate Units - 
abbreviated as UUs, through the underlying network 
which forms a bipartite digraph, in the language of 
graph theory. On the other hand, in case M is large so 
that complete enumeration is cost-prohibitive, we may 
as well take recourse to sampling of the service centres 
and end up with an incomplete description of the 
underlying network involving a part of the population 
of beneficiaries.

2.2	 Bipartite Di-Graph and a Network of Reference 
and Ultimate Units
Imagine that a sample of RUs of size m, written 

as s(m), has been selected according to SRSWOR(M, 
m). [Note that this could as well be any other Fixed 
Size (m), i.e., FS(m), sampling scheme with desirable 
properties]. Since, apriori, the UUs are neither 
identifiable nor bear any labelling for the total count N 
[which is itself unknown], we may assign labelling of 
these UUs in the sample as follows:

Set RUs(m) = [RUi1, RUi2, RUim ; 1 ≤ i1 < i2 < ... < 
im ≤ M ].

Note that the RUs are already labelled as (RU1, 
RU2, ..., RUM ) in some convenient order and we 
may conveniently/deliberately simplify the notations 
by dropping the prefix RU. So, WOLG, let us set 
s(m) = [1, 2, ..., m]. We pick up the first sampled RU, 
i.e., RU1 and find out a listing of UUs contained therein. 
If this total number is n1, we assign serial numbers UU1, 
UU2, ..., UUn1

 to these n1 UUs in some manner. Note 
that there is no hard and fast rule for doing so. Next 
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we check the second sampled RU, i.e., RU2. If there 
are some common UUs with RU1, we simply carry out 
the identification and do not assign any extra label to 
such UUs. If there are new UUs, we assign them serial 
numbers starting from UUn1

+1, and so on until these 
new UUs [i.e., those not covered by RU1] are exhausted. 
We continue this way till we come to the last sampled 
RU i.e., RUm. Over here, we list all those UUs, if any, 
which have not so far been covered by the union of the 
RUs, viz. RU1 to RUm, taken up previously for listing 
of UUs. Incidentally, in the process, we have generated 
a Bipartite Digraph involving the two sets: RUs and 
UUs. Further, while the selected number of RUs is 
fixed, the number of UUs captured in the process is a 
random quantity. Let us denote this number by n(s(m)). 
Henceforth, we may use the notation n and the resulting 
sample of UUs may be denoted by UUs(n).

We must note that the bipartite digraph so 
generated is based on the sampled RUs and the induced 
sample of UUs. We have henceforth deliberately used 
the notations rus and uus to indicate subset selection 
context.

2.3	 Sampling from Reference Units and Creation of 
a Sample Network
In the above, we have mentioned about the 

population of M RUs and selection of a fixed size of 
m RUs, adopting SRSWOR or any other convenient 
FS(m) sampling design. Based on this random selection 
of m RUs, conceptually we are capable of generating an 
underlying network connecting the sampled RUs and 
the induced UUs. This network will be referred to as 
a Sample Network. There is an underlying population 
network which is not accessible to us unless we carry 
out complete enumeration of all the M RUs. Before 
proceeding further, let us consider the example of food 
coupon distribution indicated in Section 1.

Suppose there are M = 5 Service Centers [SCs] i.e., 
RUs with reference to the given population in respect 
of providing Food Coupons. A beneficiary has free 
access to any one or two or even more SCs without any 
restriction whatsoever. We will be using RUs and SCs 
interchangeably and conveniently in the example.

Ideally, if we are in a position to scan through the 
records of all the M SCs, we have a perfect idea about 
the entire and complete Network of ALL SCs crossed 
with ALL beneficiaries in the reference population. 
This is the Population Network we are referring to. 

In that case, there is no need for any further statistical 
analysis at sampling level. However, most often, it is 
prohibitive to carry out a thorough investigation at the 
population level involving ALL the M SCs. That is why 
we suggest that one may adopt a convenient FS(m) 
sampling scheme for random selection of m RUs out 
of M RUs. [Our example deals with only 5 SCs but in 
reality it could be 20 or even more - so that sampling a 
subset would be called for.]

To fix the ideas, we display the digraph in Fig. 1 
below for the case of M = 5, N = 8, with one-way 
arrows from the right [RU] to the left [UU].

Fig. 1. Network of 5 RUs and 8 UUs 

Left Side…UUs & Right Side…..RUs.

Naturally, this incidence pattern can be represented 
by an Incidence Matrix I(5 × 8) where I(i, j) = 1 if RUi 
connects to UUj ; otherwise, it is 0. The underlying 
incidence matrix is given in Table 1 below.

Table 1. Incidence Matrix of the Network of 5 RUs and 8 UUs

Reference 
Units 1 2 3 4 5 6 7 8 Ni

1 1 1 0 0 0 0 0 0 2

2 0 0 1 1 0 0 0 0 2

3 0 1 0 1 1 0 0 0 3

4 0 0 0 1 0 1 0 0 2

5 0 0 0 0 1 1 1 1 4

Mj 1 2 1 3 2 2 1 1 13

We have introduced the notations Mjs and Nis, 
defined respectively as :

( ) ( ), ;  , .    j ii j
M I i j N I i j= =∑ ∑
As is evident, these are respectively the column 

totals and row totals of the incidence matrix. Further,

( ),
 ,  .   j ii j

j i

M I i j N= =∑ ∑ ∑
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This is exactly the total number of one-way ties 
originating from the right side and terminating at the left 
side. Readers interested in knowing more about such 
networks may consult Bandyopadhyay et al (2011).

For m = 3, assume that under SRSWOR(5, 3) 
sampling scheme, the selected sample of 3 RUs is 
indeed s(m) = (RU1, RU3, RU4). We can also determine 
from Table 1 that n(s(m)) = 5 and, as a matter of fact, 
the sampled UUs are labelled as (uu1, uu2, ..., uu5). In 
Figure 2 below we display the induced sample based 
biograph and Table 2 gives the incidence matrix of the 
same.

Fig. 2. Network of 3 RUs and 5 induced UUs

Left Side.…UU*s & Right Side…..RUs

UU1* = UU1; UU2*= UU2; UU3*= UU4; UU4*= 
UU5; UU5* = UU6.

Table 2. Incidence Matrix of the Network of 3 rus and  
5 Induced uus

Reference Units 1 2 3 4 5 ni

1 1 1 0 0 0 2

3 0 1 1 1 0 3

4 0 0 1 0 1 2

mj 1 2 2 1 1 7

What would be our proposed estimate for N in this 
case?

It is interesting to note that the entire collection of 
RUs is available to the statistician and because these 
are all distinct, one can label them in any arbitrary 
manner and come up with RU1, RU2, ..., RUM, thereby 
arriving at a finite labelled population of M RUs. It 
is now natural for the statistician to take recourse to 
a convenient sampling scheme, say FS(m) sampling 
scheme with desirable properties of the first and second 
order inclusion probabilities. Vide Hedayat and Sinha 
(1991). The statistician is thus naturally drawn to the 
techniques of finite population sampling and inference. 
As a particular case, SRSWOR(M, m) becomes a natural 
choice.

We have already indicated a method of construction 
of the sample network based on (m = 3) RUs, viz., 
RU1, RU3, RU4. It led to n = 5 UUs, with the induced 
labelling as uu1 to uu5. We also have the corresponding 
incidence matrix of order 3 × 5 in Table 2.

Presumably this is our data. At this stage, are we in 
a position to develop adequate and appropriate theory 
for unbased estimation of N, the total number of UUs 
in the population? Even under SRSWOR(5, 3) sampling 
scheme, this seems to be an impossible proposition 
mainly because we are looking for an unbiased 
estimator for N. Incidentally, the interested readers can 
easily draw the sample bipartite graph connecting 3 rus 
with the 5 uus. Further to this, interestingly, we find 
that we also have data for each captured UU [through 
our sampling effort] on the number of RUs [out of the 
sampled 3 RUs] on which it is incident. Naturally, 
each such incidence number is at least one and does 
not exceed three. From the population network, we 
had exact information on Nj for each UUj. The sample 
counterpart may be denoted by mj. It is better to attach 
indicators to the labels of the UUs since only sampled 
UUs will possess such information on mjs. Thus, for 
example, I(RU(s(3)); (j)) would provide necessary 
information where the indicator value is 1 iff UUj is 
contained in the collection of UUs based on the sample 
RU(s(3)). Accordingly, we note that ( ) ( )( )3 ;s

j

I RU j n=∑  , 

the sample number of UUs captured through our 
sampling effort. We hope we have made the notations 
clear and meaningful.

As indicated earlier, this impossible proposition 
[of suggesting an unbiased estimator for N] was made 
possible by Kiranandan (1976) in his PhD Dissertation 
at Harvard University. We will take up a detailed 
presentation of this study in Section 3.2 below. Over 
there, we will closely follow the work done by Sinha 
et  al.(2006). Prior to this, we would like to take up 
another [relatively easier!] approach for unbiased 
estimation of N. Here we will closely follow the work 
of Maiti et al.(1993) and this is contained in Section 
3.1 below. Both the estimation problems are discussed 
in Section 3.

3.	 UNBIASED ESTIMATION OF THE 
SIZE OF A SPECIALLY FEATURED 
POPULATION
With our limited understanding about the amount 

of data on the available ultimate units, we wish to 
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provide an estimate of the size N of the population of 
UUs. And, that too, an unbiased estimate! That is too 
much to hope for. There are very few studies under this 
framework.

3.1	 Concepts of Probing and No-Probing
Let us look at the sample incidence matrix and 

the resulting sample quantities mjs. Is it possible to 
entertain the idea of ’probing’ ? By that we mean we 
can approach all or a subset of these sampled UUs with 
the ’proposal / request’ to release information on the 
number of additional [unsampled] RUs containing the 
specific UU whom we are requesting ! Now that we 
have hypothetically access to the population network, 
if we approach the sampled UUs and they oblige us by 
providing / releasing the requested information, then 
we will be in a position to assess the correctness of the 
figures and prepare an extended table as follows.
Table 3. Sample of 5UUs induced by SRSWOR(M = 5, m = 3) on 

3RUs

Sampled RUs Induced UUs

RU1 [(1, 2)]

RU3 [(2; 3, 4)]

RU4 [(4; 5)]

Table 4. Induced UUs and their incidence counts

Induced UUs
− − −−

Incidence Counts
among Sampled RUs

Net Effect
AfterProbing

UUs1 m1 = 1 M1 = 1 + 0 = 1

UUs2 m2 = 2 M2 = 2 + 0 = 2

UUs3 m3 = 2 M3 = 2 + 1 = 3

UUs4 m4 = 1 M4 = 1 + 1 = 2

UUs5 m5 = 1 M5 = 1 + 1 = 2

In Table 4, the notations are supposed to be self-
explanatory. After probing, information on Total Count 
of RUs in the entire population for each of the induced 
UUs becomes available. Before probing, this count [for 
every incident UU] was based on the evidence provided 
by Sampled RUs. On the other hand, after probing, this 
count reflects the total count of such incidences in the 
entire collection of M SCs. However, it is only for the 
induced UUs in the sample.

In passing, we may note that on final count, 
information accrued through probing amounts to Yj for 
the sampled jsUU  in the frame-work of unified theory 
of sampling. Maiti et al.(1993) followed this approach 
and used Mj for Yj and applied sampling techniques to 

arrive at an unbiased estimate of N, the total number of 
Ultimate Units in the entire population, based on data 
under/after probing.

Once more we fix the notations.
We have denoted by M the total number of RUs in 

the population and by m the sample size for selection 
of RUs under random sampling. We have denoted by 
N the total [unknown] number of Ultimate Units in 
the population. Let us denote by n the sample number 
of UUs captured through our sampling effort. For the 

jsUU  in the sample, we have denoted by mj the number 
of sampled RUs connected to it before probing. We may 
rightly denote the corresponding count after probing 
as Mj. Clearly, for each 

jsUU  in the sample, These are 
essentially all the information available to us. Note that 
we have assumed that each of the n UUs in our induced 
sample has been asked / requested to adopt probing and 
extend the count mj to Mj.

3.2	 Estimation of N Under Probing : Theory and 
Examples
When SRSWOR(M, m) is adopted for selection of 

m RUs out of M RUs, Maiti et al.(1993) suggested the 
formula

N̂  = ( )/ j

j j

m
M m

M∑

and it turns out that this estimator is unbiased. In 
the particular case of m = 1, it readily follows that N̂  ≥ 
n, where n is the sample count of induced UUs.

For the cases of m > 1, the estimator given above 
is unbiased; however, it is not clear if N̂  ≥ n, based on 
data for each of the all possible M

mC  samples of RUs. 
At this stage, we skip the proof of unbiasedness of N̂ .

Maiti et al. (1993) started by considering a binary 
matrix of order M × N, where M stands for the known 
number of Service Centers and N is the unknown 
number of Beneficiaries. As the set-up suggests, the 
entries in the matrix are 0s and 1s. That is what we have 
considered here. In Sinha et al. (2006), the entries have 
been generalized to any set of real values.

In the general case, it follows that whenever 
I(j) = 1 for some UUj in the population network, under 
SRSWOR(M, m) sampling,

E(mj) = mMj/M,
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Mj being the total count of RUs in the population 
network having UUj incident on each one of them. To 
avoid triviality, note that Mj = 0 simply means that I(j) 
= 0 outright and hence this specific UU does not exist 
in the existing framework of Reference Units versus 
Ultimate Units.

Note further that this estimation is possible since, 
under probing, Mj becomes available whenever I(j) = 1 
and UUj is included in the sample as UUsj so that the 
investigator gets hold of Mj. Strictly speaking, under 
SRSWOR(M, m) sampling, for every UUj for which 
I(j) = 1, mj has Hypergeometric Distribution with 
parameters [M, Mj; m] and, hence, [0 ≤ mj ≤ min (Mj, 
m)]. This explains the validity of the formula for N̂   in 
general for m ≥ 1.

We now take an illustrative example and, for the 
purpose of illustration of the computations, we may use 
the same network as shown above.

Example 3.1
In the given network, we have M = 5, m = 3. 

Further, while RU1, RU3, RU4 are the selected RUs, 
these collectively induct a total of 5 UUs. Moreover, 
with probing applied to each of these 5 inducted UUs, 
the frequency counts [viz., both mj and M j] are shown 

in Table 4. From this, we derive 
j

j j

m
M∑  = 11/3.

Therefore, on final count,

N̂  = (M/m) ×  j

j j

m
M∑ = (5/3) × 11/3 = 55/9 = 6 

[approx.]
Remark 3 In case an arbitrary FS(m) sampling 

design is adopted, the formula changes to

	
( )( ) ( )( ) ( ), | / j i

i j

N s R I i s R I j i R π= ∑ ∑

Here I(i, s(R)) = 1(0) when RUi is (is not) in the 
sample s(R)) of RUs. Likewise, I(j|i) is the usual 
indicator relating to RUi and UUj in the incidence 
network. Further, with reference to the adopted FS(m) 
sampling design, π’s are the first order inclusion 
probabilities of the RUs.

The above formula is given in Maiti et al.(1991). 
Available multiple estimators due to Sirken (1970), 
Birnbaum and Sirken (1965) are of the above type.

With this, we close our discussion on unbiased 
estimation of N under probing.

3.3	 Estimation of N Without Probing : Theory and 
Examples
This time, as before, we start with a random 

selection of RUs and arrive at the induced collection of 
UUs. We do not feel encouraged to undertake the task 
of probing - not even for a subset of the selected and 
induced UUs. We go back to the example considered in 
the earlier set-up. Thus, there are altogether 5 RUs and 
we have selected 3 of them and the data accrued on the 
induced UUs results in 5 of them with frequency counts 
( im s) as given in Table 3. We reproduce the mj-values 
here.

[1, 2, 3, 2, 2]
Without any probing, our data collection effort 

ends here. It seems quite a daunting task to come up 
with any clue towards unbiased estimation of the total 
number of UUs i.e., of N in the population. Kiranandan 
(1976) did that seemingly impossible task and arrived 
at a fundamental identity showing a representation 
of N.

Heuristically, N = ( ) ,
j

I j∑  where I(j) assumes the 

value 1 whenever UUj is a valid entity in the collection 
of UUs. But the verification comes only through the 
RUs which are M in number. We may set I(j|i) = 1 if 
and only if UUj is induced by RUi. Moreover, I(j|i)I(j|k) 
= 1 if and only if both the indicators asssume value 1, 
and so on. We may now state below one useful identity:

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )1

| | | | | |

 ( 1) |1 |2 | .
i i k i k t

M

I j I j i I j i I j k I j i I j k I j t

I j I j I j M
< < <

−

= −∑ +∑∑ −

…+ − …

∑ ∑ ∑

The proof of this identity is very elementary in 
nature. It follows from the counting argument and 
use of inclusion-exclusion principle. Imagine UUj is 
inducted by some s RUs and WOLG, we may assume 
: I(j|1) = I(j|2) = . . . = I(j|s) = 1. Then the LHS is unity 
and the RHS is

( ) 2 3 4
s s sf s s C C C= − + − +…

It is easy to argue that f (s) = 1 for each s = 1, 2, . . ..
We may now state the Fundamental Identity or, the 

Fundamental Representation Theorem :
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Theorem 3.1
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )1

 | | |       

| | |  

( 1) |1 |2 | .

j j i j i k

j i k t

M

j

I j I j i I j i I j k

I j i I j k I j t

I j I j I j M

<

< <

−

= = − ∑ +

∑∑ −…+

− …

∑ ∑∑ ∑ ∑

∑ ∑

∑

N

.

= , , ,i i k i k t
i i k i k t

T T T
< < <

− ∑ + ∑∑ +…∑ ∑ ∑
where Ti = Number of UUs induced by RUi, Ti,k = 
number of UUs simultaneously induced by both RUi 
and RUk, and so on.

Proof It is a matter of summing over all j for which 
I(j) = 1. The rest follows upon simplification.

Remark 4: To find an unbiased estimator for N, 
we now go for term by term estimation. If the sample 
size is m < M, term-by-term estimation will terminate 
after m terms. So we need a condition on the nature of 
the population network : No Ultimate unit is incident 
on more than m Reference Units. Our choice of the 
sample size m for random selection of RUs must be 
determined by this pre-condition. In applications, this 
is not hard to meet with by an appropriate choice of m. 
This point is already mentioned above. Here we have 
reemphasized it.

Those of us familiar with the unified theory of 
sampling and inference will find it a routine exercise to 
go for term-by-term unbiased estimation by using what 
are called ’joint inclusion probabilities’. When dealing 
with a term involving exactly one RU, say RUi, we will 
consider dividing by πi; for two RUs, say RUi and RUk, 
we will divide by πi,k and so on. So technically, we 
also need one necessary condition and this is to ensure 
positivity of all joint inclusion probabilities, upto and 
including the mth order ! Note that sampling is taking 
place involving only the RUs and hence all these joint 
inclusion probabilities refer to the M RUs only. In order 
that all m-ples involving the RUs do possess positive 
joint inclusion probabilities, it is usually assumed that 
we are undertaking SRSWOR(M, m) sampling scheme 
on the population of M RUs ! Of course, there are many 
other choices and also we have varying probability 
sampling schemes, such as Midzuno Sampling 
Schemes, for example. We refer to Hedayat and Sinha 
(1991) for this aspect of sampling and inference.

Under SRSWOR(M, m) sampling scheme, we know
πi = m/M ; πi,k = m(m − 1)/M (M − 1) = m(2)/M (2);

πi,k,t = m(m − 1)(m − 2)/M (M − 1)(M − 2) = m(3)/M 
(3); . . .

Under SRSWOR(M, m) sampling scheme, an 
expression for N̂  can now be deduced slowly and 
carefully. We refer to Sinha et al. (2006) for this task 
and simply reproduce the final expression here.

N̂  = ( ) ( );
f

n f A f∑

( ) 1 ( 1) fA f = − −  [(M−m+f−1)!(m−f)!]/[(M−m− 
1)!m!], f = 1, 2, . . . .
where n(f ) = number of UUs, each with incidence 
number f in the sample network on m RUs and the 
induced UUs. The underlying simplification is not at 
all obvious. The students / researchers have to work 
around the formula quite carefully and with much 
attention.

Example 5 In the example that we have considered 
above, we have M = 5, m = 3 and [RU1, RU3, RU4] are 
the sampled RUs and these altogether lead to a total of 
5 induced UUs. Their frequencies are again reproduced 
below—without probing.

(1, 2, 2, 1, 1)
We find
f = 1, n(1) = 3, A(1) = 1 + 2!2!/3! = 5/3;
f = 2, n(2) = 2, A(2) = 1 − 3!1!/1!3! = 1 − 1 = 0.
Therefore,

N̂  = ( ) ( )
f

n f A f∑  = 3 × 5/3 − 2 × 0 = 5.

Remark 5 Sinha et al.(2006) considered different 
parameter values of M and N and an underlying network 
as a Bipartite Di-Graph. Next a value of m was taken and 
SRSWOR(M, m) was adopted. For all possible samples, 
the estimated value of N̂  was computed, according to 
the formula shown above. It was hopelessly observed 
that for some samples, negative values for the estimate 
of unknown size (N ) were realized and for some other 
samples, abnormally low values for the estimate were 
achieved !

There are primarily two reasons for this. We are 
taking recourse to indirect viz., network sampling via 
the selection and use of RUs. And, further, we require 
the estimator to be unbiased. Sinha and Padmawar 
(2015) have made a systematic and detailed study of 
such conseqences. They considered an example of 
a population network involving M = 6, m = 3) and 
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computed numerical values of all possible estimators 
of N based on a totality of 20 possible samples, each of 
size 3 under SRSWOR(6, 3) sampling. They observed 
that though the estimator is unbiased, 6 of the estimators 
were low/abnormally low. As against the actual value 
of N = 10, there are estimates as low as 1, 2 ! One can 
also end up with negative values !!

These are realities while we are dealing with 
unbiased estimation of N . That is why, Sinha and 
Padmawar (2015) made a systematic study of the 
problem in considerable details - with the whole 
objective of generating meaningful estimates. We 
will not enter into details of the heuristic principle 
developed by them.
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