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SUMMARY
A new family of bimodal distributions is introduced in this paper with an objective of using them for modelling error data sets. A new class of statistics 
arising from a symmetric distribution is proved to have distributions belonging to the family of the bimodal distributions introduced in this work. The 
information matrix is derived after addressing the problem of obtaining maximum-likelihood estimates for the parameters of generalized bimodal 
distribution. A simulation study is conducted to evaluate the properties of maximum likelihood estimators. The applications of the results in building 
bimodal distributions for some real life data sets are also illustrated.
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1. INTRODUCTION
Symmetry is one class of patterns occurring in 

nature wherein we could observe near repetition of 
the pattern, either by reflection or by rotation. The 
body of most of the multi-cellular organisms exhibit 
some form of symmetry. Similarly, measurements 
made on several biological variables follow statistical 
distributions which are symmetric in form. This 
makes “Symmetry in Biology” a largely discussed and 
studied subject of interest. The distribution of errors 
observed on measurements of orbit of heavenly bodies 
was observed as normal by Gauss (1857). Recently, 
Rao and Gupta (1989) have narrated how normal 
distribution is derived by Hersched’s hypothesis on 
errors. They also described how normal distribution 
can be derived using Hagen’s hypothesis on errors. The 
third Hagen’s hypothesis states that each component of 
error has an equal chance of being positive or negative. 
This makes a deduction that the class A of all error 
models satisfying third Hagen’s hypothesis must be 
symmetrically distributed about zero. It is to be noted 
that, if X is a random variable with expected value µ, 

then observations on X − µ for known value of µ also 
constitute an error data. If the third hypothesis due to 
Hagen is seen satisfied on the above data, then in the 
problem of modelling a distribution to this data, we 
can limit our search for choosing an appropriate model 
from the family A. Though all models belonging to A 
are symmetrically distributed about zero, they need 
not have a unique mode. In a recent investigation, the 
authors come across data sets on errors which have two 
modes, of which one is positive and other is negative, 
whereas they are equidistant from the centre. This 
motivates the authors of this paper to deal with new 
bimodal distributions and to illustrate their applications 
to real life problems.

Eisenberger (1964) discussed about a variety of 
bimodal distributions arising out of a mixture of two 
normal distributions. Prasad (1954) as well as Sarma 
et al. (1990) discussed about bimodal distributions 
whose densities are similar to that of mixture of 
normal distributions. For a discussion on bimodal 
exponential power distribution see, Hassan and Hijazi 
(2010) and for details on bimodal skew-symmetric 
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normal distribution see, Hassan and El-Bassiouni 
(2013). However, for many of newly emerging error 
data sets, the above mentioned bimodal distributions 
fail to provide the desired level of suitability. This 
makes it necessary to develop more and more new 
families of bimodal distributions which are capable of 
providing better suitability as models to error data sets 
arising from wide range of conditions. We organize the 
presentation of results as given below.

We introduced a new family of bimodal 
distributions that are symmetric about zero and can be 
used to model error datasets in section 2. A new class 
of statistics named “Ordered Density Value Induced 
Statistics” arising from symmetric distributions 
and follows the generalized bimodal distribution is 
discussed in section 3. In section 4, the estimation of 
parameters in the generalized bimodal distribution 
with a symmetric baseline distribution by the method 
of maximum likelihood is illustrated. A simulation 
study to describe the closeness between the estimates 
used for modelling bimodal distribution with the true 
values of the parameters is also carried out in section 5. 
Section 6 is devoted to illustrate the applications of the 
newly generated bimodal distributions in modelling 
some real life data sets.

2. ABOUT A GENERALIZED BIMODAL 
DISTRIBUTION WITH SYMMETRIC 
PROPERTY
Suppose F(y) is an absolutely continuous 

cumulative distribution function (cdf) with probability 
density function (pdf) ( ) .f y  Throughout this paper 
we assume that ( )f y  is symmetric about zero with 
the property that ( )f y  is monotone increasing over 
(−∞, 0) and monotone decreasing over [0, ∞). We may 
write $ to denote the above set of assumptions on the 
considered distribution. Now for α ≥ 0, β > 0, consider 
the function
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negative in their respective regions. Further, we can 
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This proves that 1, ( )f y dyα β

∞

−∞
=∫  and hence it 

follows that , ( )f yα β  is a pdf. From the formulated 
assumptions $ on ( ) ,f y  one can easily verify that 
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0
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y y
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for all 0.y−∞ < <  These properties of 1( )

, ( )f yα β  
make us to find a mode for 1( )

, ( )f yα β  in the interval 
0,(−∞ )  . Similarly, the properties of 2( )

, ( )f yα β  given 
by 2 2

0
0( ) ( )

, ,lim ( ) lim ( )
y y

f y f yα β α β→ →∞
= =  and 2 0( )

, ( )f yα β >  
for the interior points of 0,[ ∞)  make us to find another 
mode of , ( )f yα β  in the interval 0 .y≤ < ∞  From (1) 
we can easily verify that for any 0, ,y∈( ∞)  we have 

0,y− ∈(−∞ )  and further , ,( ) ( ).f y f yα β α β− =  Clearly 
the above properties of the pdf , ( )f yα β  make us to 
conclude that , ( )f yα β  is a bimodal symmetric density 
function generated from the basic distribution with cdf 

( )F y  and pdf ( )f y . Thus, the probability distribution 
defined by the pdf , ( )f yα β  as given in (1) is called a 
generalized bimodal symmetric distribution (GBSD) 
determined by the baseline symmetric distribution with 
cdf ( )F y  and pdf ( )f y . The proof as given above on 

, ( )f yα β  as a bimodal distribution makes us to state the 
following theorem.

Theorem 2.1. Suppose F(x) is the cdf satisfying 
the set of assumptions $, then for real constants α ≥ 0, β 
> 0 the following function
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represents the pdf of a bimodal symmetric 

distribution in which F(x) is the cdf and f (x) is the 
corresponding pdf of the baseline distribution used for 
defining the bimodal density.

Note 2.1. One can verify that (1) is a pdf even 
for −1 < α < 0 and −1 < β ≤ 0. But in those ranges 
of α and β, , ( )f yα β  need not be bimodal. For 
example if −1 < β ≤ 0, then all functions ( )2  ,F y

α
    

( )1  2  F y
β

−   and ( ) f y  in the range [−∞, 0) are 
individually increasing so that the function 1( )

, ( )f yα β  
formed through the product of three such functions is 
again increasing. Hence no mode exists for , ( )f yα β  in 
the interval (−∞, 0). Similarly, the condition −1 < α < 0 
also does not guarantee for the existence for two 
modes for , ( ).f yα β  It is further trivial to note that 

, ( ) ( )f y f yα β =  for α = β = 0, which is only unimodal.
There is extensive literature available in generating 

new distributions from a given baseline distribution. 
Some varieties of such distributions are: (1) Marshall 
and Olkin (1997) family of distributions, (2) T−X 
family of distributions as defined in Alzaatreh et al. 
(2013), (3) T-transmuted X family of distributions 
as defined in Jayakumar and Babu (2017) and so on. 
A family of distributions defined from any baseline 
distribution whose pdf is similar in form to the 
pdf of the distribution defined in (1) is called beta 
generalized family of distributions. In particular if 
F(x) and ( )f x  are the cdf and pdf respectively of 
a baseline distribution, then for a>0, b>0 the pdf 

, ( )a bg x  of the beta generalized distribution is given by 
1 11,
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Some recently discussed distributions belonging 
to beta generalized family of distributions are beta-
logistic distribution (see, Thomas and Priya, 2015) 
and symmetric beta-Cauchy distribution (see, Thomas 
and Priya, 2016) and so on. More specifically any beta 
generalized distribution with a symmetric baseline 
distribution having identically same value for the shape 
parameters a and b is again a symmetric distribution. 

All these symmetric distributions can serve as baseline 
distributions to define different varieties of GBSD.

Thus, unlike the existing bimodal distributions 
available in the present literature which are usable as 
error models, the GBSD as given in (3) is so extensive, 
that diverse and broad types of error data sets arising 
from many real life problems are capable of being 
modelled by GBSD with comparatively good fitness 
measures.

We can easily observe that a more general form of 
bimodal distribution incorporating a scale parameter in 
(1) is given by the pdf
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where 0α ≥  and 0β >  are the shape parameters 

and σ  is a scale parameter. Clearly, ( ; , , )f x α β σ  
also belongs to the family A of error distributions 
corresponding to the baseline distribution with cdf 

( )xF σ  and pdf 1 ( )xfσ σ .
Corresponding to the following baseline 

distribution with pdf
2

22
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1
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−
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 (4)
for convenience we may also write 

1
1 1( , ) ( ) ( , )xf x g N xσ σσ σ= = . Similarly, if we have

Fig. 1. Generalized bimodal densities with standard normal as the baseline 
distribution for parameter values: α =2, σ=1 and β =0.5, 1.5 and 3
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then the above density may also be written 

as 1
2 2( , ) ( ) ( , )xf x g L xσ σσ σ= = . For the baseline 

distribution with pdf
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1

( , ) , ( ),
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σ

σ
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an equivalent representation is 

1
3 3( , ) ( ) ( , )xf x g C xσ σσ σ= = . For some specified values 

of α and β with σ=1, the graphical representation of 
the respective bimodal distributions as defined in (3) 
generated using MATHEMATICA (ver. 11.3) software 
are given in figures 1, 2 and 3 respectively.

Fig. 3. Generalized bimodal densities with Cauchy as the baseline 
distribution for parameter values: β=2, σ=1 and α=0.5, 1.5 and 3

Fig. 2. Generalized bimodal densities with logistic as the baseline 
distribution for parameter values: β=2, σ=1 and α=0.5, 1.5 and 3

3. SOME STATISTICS WHICH ARE 
DISTRIBUTED AS GBSD
Suppose F(x) is an absolutely continuous cdf 

having a pdf ( )f x  which is symmetric about zero. 
Let ( )f x  be such that ( )f x  is monotone increasing 
and decreasing in the intervals (−∞, 0) and [0, ∞) 
respectively. We assume that for any random sample 

1 2   , , ..., nX X X  of observations drawn from the 
distribution with pdf ( )f x , an ordered arrangement 
of the density values ( ) ( ) ( )1 2, , ..., nXfX f Xf  can be 
made without any ambiguity. Some examples of pdfs 
satisfying the above assumptions are the pdfs defined 
in (4), (5) and (6) for known or unknown values of 
σ. We may call the assumptions stated above by the 
symbol $. Under the conditions $, if we arrange the 
observations of the sample as 1 2      ! ! !, , · · · ,n n n nX X X  
such that ( ) ( ) ( )1 2       ! ! ! · · ·n n n nf X f X f X≤ ≤ ≤ , 
then this newly arranged observations are known as 
“Ordered Density Value Induced” (ODVI) statistics. In 
particular !r nX  is called the rth ODVI statistic. Now we 
can prove the following theorem.

Theorem 3.1. Let 1 2      ! ! !, , · · · ,n n n nX X X  be the 
ODVI statistics of a random sample of size n drawn 
from a distribution satisfying the conditions $ with pdf 
( )f x  and cdf F(x). Then for positive integer r such 

that 1 ≤ r ≤ n, the pdf ( )!r nf x  of !r nX  is given by
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Proof: By the definition of the pdf of !r nX , we 
have

0

!
!

( )
( ) lim .r n

r n x

P x X x x
f x

x∆ →

< ≤ + ∆
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∆
 (8)

But the event      !  r nx X x x< ≤ + ∆  for the case when 
  0x <  makes a partition of R , the real line into three sets 

( ] ( ) ( ] ( ]1 2 3                , , , , , ,E x x E x x x E x x x= −∞ ∪ − ∞ = + ∆ = + ∆ −  
and assign on them r − 1, 1, n − r observations, 
respectively. The probability that an observation lies 
in the above partition sets in the limit as ∆x → 0 are 
2F(x), ( )f x dx  and 1 − 2F(x) respectively. Then using 
multinomial probability law on the numerator of (8) 
and applying limit as ∆x → 0, we obtain
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Let Z = |X|. Then the distribution of Z is known as 
half-GBSD or folded GBSD about x = 0. In this case, 
the pdf of Z is given by

22 0( )( ; , , ) ( ; , , ), .g z f x xα β σ α β σ= ≥  (12)
Now from the given observations 1   , ..., nX X , set 

apart the negative values. Let there be n1 negative 
values which are denoted 

111 12 1, , ..., nX X X . Similarly, set 
apart the non-negative observations as 
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such that n = n1 + n2. Then the likelihood is written as
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Since ( ); , ,f x α β σ  is the pdf which 
is symmetric about zero, we have
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It is well known that, if 1 2   , , ..., nX X X  is a 
random sample of size n arising from the symmetric 
density ( )   ; , ,if x α β σ , then    1  2  , , , ...,i iZ X i n= =  
can be regarded as a random sample of size n 
drawn from the half-GBSD with pdf given by 
( ) ( ) ( )2  2; , , ; , ,g z f zα β σ α β σ=  for z ≥ 0. Let L1(α, 

β, σ) denote the likelihood based on the independent 
random variables 1 2   , , ..., .nZ Z Z  Then we have
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Similar portraying of (8) for 0 ≤ x < ∞ and applying 

limit as ∆x → 0, lead us to obtain
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Clearly (9) and (10) together establishes the 

theorem.
If we put  1rα = −  and n rβ = −  for r n≠ , then 

the pdfs ( )!r nf x  for 1 2 1, , ...,r n= −  are all members 
of GBSD as given in (1). Clearly, for ,r n=  ( )!r nf x  
becomes unimodal. Thus, we conclude that there is 
close connection between GBSD and the sampling 
distributions of ODVI statistics.

4. ESTIMATION OF PARAMETERS OF 
GBSD
Let 1 2   , , ..., nX X X  be a random sample of size n 

drawn from the distribution with pdf ( )   ; , ,f x α β σ  
which is as given in (3). Then writing the associated 
likelihood and dealing with the likelihood equations 
for getting the maximum likelihood estimates 
(MLE’s) of α, β and σ is somewhat different from 
familiar likelihoods as the form of the density of the 
observations which are negative is different from those 
of positive observations. However, in the following 
theorem we establish that the MLE’s of α, β and σ can 
be determined just by attempting on the MLE’s of the 
parameters α, β and σ of the folded form of GBSD 
about zero.

Theorem 4.1.  Let 1 2   , , ..., nX X X  be a 
random sample of size n drawn from the GBSD 
with pdf ( )   ; , ,f x α β σ  defined in (3). Let 

 1  2   , , , ..., .i iZ X i n= =  Then the MLE’s of the 
parameters α, β and σ involved in (3) are the same as 
the MLE’s of those parameters based on independent 
random variables 1 2   , , ..., nZ Z Z  each distributed 
identically as the distribution with pdf obtained by 
folding f (x; α, β, σ) about x = 0.

Proof. Let X be a random variable which has a 
GBSD with pdf f (x; α, β, σ) as defined in (3). Let
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Clearly (14) and (15) attains maximum at same 
values of α, β and σ. This proves the theorem.

Note 4.1. For more theoretical discussion in support 
of the above theorem one may also see, Thomas and 
Anjana (2021).

As a consequence of the above theorem, we 
need to proceed in the following way to determine 
the MLE’s of α, β and σ involved in GBSD with pdf 
( )   ; , ,f x α β σ . If 1 2   , , ..., nX X X  are the given sample 

of observations from ( ); , ,f x α β σ , then we write 
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The maximum likelihood (ML) equations are
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where (.)Ψ  is the usual di-gamma function defined 

by 
( )
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d t
dtt

t

Γ
Ψ =

Γ
. With respect to any cdf ( )xF σ

and ( )xf σ , the above equations can be solved for the 
MLE’s ˆˆ ,α β  and σ̂  of α, β and σ respectively. As 
explicit solutions are not readily available for ˆˆ ,α β  
and σ̂ , they are solved by Newton-Raphson numerical 
method.

The asymptotic variance-covariance matrix of the 
estimates ˆˆ ,α β  and σ̂  can be obtained by taking the 

inverse of the Fisher information matrix. For large 
n, it is appropriate that we approximate the expected 
values of the second-order derivatives of logarithms of 
likelihood function by just replacing the parameters in 
(16) to (18) by their respective estimates (see, Cohen 
1965). Thus, the Hessian matrix can be written as,
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From the asymptotic properties of ML estimators 
under regularity conditions and by using the 
multivariate central limit theorem, we state the 
asymptotic normality results of maximum likelihood 
estimators of α, β and σ as given below.



37Anjana V. et al. / Journal of the Indian Society of Agricultural Statistics 76(1) 2022 31–41

1
3 0ˆ( ) ~ ( , ( )) .nn N I as nξ ξ ξ−− → ∞

Since the parameters are unknown, 1( )nI ξ−  is 
estimated by 1 ˆ( )nI ξ− . The asymptotic normality result 
stated above can be used to obtain the asymptotic 
confidence intervals for the parameters of GBSD.

5. SIMULATION STUDY
A simulation study is conducted to assess the 

properties of the maximum likelihood estimators 
of the parameters of the newly proposed bimodal 
distribution (GBSD) with pdf given in (3). To illustrate 
the closeness of the estimated values of α, β and σ 
with their true values we have used MATHEMATICA 
(ver 11.3) software to simulate 100 independent 
observations from the generalized bimodal distribution 
(GBSD) with normal and logistic distributions as 
baseline distributions.

We have simulated 100 independent observations 
from the generalized bimodal distribution with normal 
(N(x,σ)) baseline distribution denoted by GBSD-
N(x, σ) for each of the following choice of parameters: 
(1) α = 1.5, β = 1.5, σ = 1 and (2) α = 2, β = 3, σ = 
4, obtained the maximum likelihood estimates ˆˆ ,α β  

and σ̂  for each of the two cases, using the method 
described in section 4 and repeated it 100 times. The 
mean of the estimates and RMSE are given in Table 1. 
Again, we have similarly simulated 300 independent 
observations from GBSD-N(x,σ) for the already 
assumed values of the parameters and then estimated 

ˆˆ ,α β  and σ̂ . This process is again repeated 100 times 
and the mean of the estimates and their RMSE are also 
given in Table 1. We noticed that the estimates of the 
parameters are very close to the assumed values of the 
parameters of GBSD-N(x,σ).

Similarly, we have also carried out the same 
schemes of simulation for the generalized bimodal 
distribution with logistic(L(x,σ)) baseline distribution 
denoted by GBSD-L(x,σ) for n=100 and 300 and 
each repeated 100 times and for the assumed values 
of parameters. The means of the estimates with the 
RMSE are also given in Table 1. From the table, we 
observed that the estimates obtained are very close to 
the assumed values of the parameters. The table also 
shows that the biases and RMSEs of the estimates 
of the model parameters diminish as the sample size 
increases.

6. REAL LIFE APPLICATIONS
In this section we consider two data sets: (i) the 

annual soybean productivity data (kg/ha) of some 
important municipalities in Parana, Brazil and (ii) the 
data on seasonal rainfall of Kerala as available in 
Kothawale and Rajeevan (2017). In both of the above 
data sets, we have obtained the deviations of each 
observation from the respective median of the data 
sets and those deviations are reproduced as such in 
Appendix-I. Clearly, each data set exhibit two peaks 
on their histograms. We now illustrate the modelling 
on those data sets by bimodal distributions which we 
developed in this paper.

6.1 Soybean Productivity Data
Duarte et al. (2018) used the annual soybean 

production data in Kilogram per hectare in a 
municipality area of Parana, Brazil, which were 
recorded during 1975 to 2013 to construct a suitable 
distribution of yields so as to apply it to a crop insurance 
problem. As two peakedness of the histograms is 
observed in the data, a bimodal distribution seems to 
be an ideal model to contain the data. We take the data 

Table 1. Estimated parameters and RMSE’s obtained  
in the simulation study

Baseline
Distribution

Sample
Size

Actual 
Parameters

Estimated Parameters (RMSE)

α β σ

Normal 100 1.5 1.5 1 1.4926 1.4912 0.9647

(0.0346) (0.0288) (0.0977)

300 1.5 1.5 1 1.4961 1.4927 0.9759

(0.0239) (0.0263) (0.0965)

100 2 3 4 1.9853 2.9812 3.9352

(0.0254) (0.0289) (0.0728)

300 2 3 4 1.9869 2.9852 3.9542

(0.0212) (0.0257) (0.0653)

Logistic 100 1.5 1.5 1 1.4824 1.4851 0.9752

(0.0427) (0.0323) (0.0989)

300 1.5 1.5 1 1.4895 1.4886 0.9867

(0.0359) (0.0256) (0.0973)

100 2 3 4 1.9654 2.8721 3.8512

(0.0418) (0.0675) (0.0942)

300 2 3 4 1.9775 2.9982 3.9612

(0.0385) (0.0552) (0.0872)



38 Anjana V. et al. / Journal of the Indian Society of Agricultural Statistics 76(1) 2022 31–41

as such and observe the value of the sample median 
m as 2.5535. We have transformed now the original 
data into the deviations of those observations from 
the median m = 2.5535. The transformed data set is 
provided as the 1st data set and is presented as Data 1 
in Appendix-I.

Fig. 4. Histograms of the transformed annual production of soybeans data 
with fitted density curve of generalized bimodal distributions with N(y, σ), 

L( y, σ), C(y, σ) and D(y, σ) baseline distributions

From the transformed data as given in 1 of 
Appendix-I, one can observe that there are exactly 
23 observations with positive and the same number 
of observations with negative sign. To test the null 
hypothesis 0H  that the median of the population 
from which the above data (data in 1 of Appendix-I) 

is obtained is equal to zero against the alternative H1 : 
It is 0≠  by assuming n as large, we consider the test 
statistic of a sign test (see, Rohatgi and Saleh, 2015),

23
2

4

.

n

Z
n

−
=

Since n=46, we have Z=0. For a two sided test the 
p-value is 1. Similarly, if we use Wilcoxon signed-
rank test, then we rank the absolute values of the 
observations in 1 of Appendix-I and write T+ and 
T− as the sum of the ranks of positive and negative 
observations respectively. If ( ), ,T Min T T= + −  then

1
4

( )( ) ,n nE T +
=  1 2 1

24
( )( )( ) n n nVar T + +

= . Then 

assuming n large, we use the statistic ( )
( )

T E TZ
V T
−

=  

and in this case we have T=533 and Z=0.0878 with a 
p value 0.9346. Thus from both of the above tests, we 
have reasons to believe that the data set given in 1 of 
Appendix-I arises from a distribution belonging to A.

Suppose the pdf of the baseline distribution 
is 1

1 1( , ) ( )yf y gσ σσ =  as defined in (4) with the 
corresponding cdf 1( )yG σ , then on replacing ( )f y  and 
F(y) in (2) by 1

1( )ygσ σ  and 1( )yG σ  respectively, then we 
obtain the pdf of GBSD with normal distribution (say 
N (y, σ)) as the baseline distribution and is denoted as 
GBSD-N(y,σ). Similarly on replacing ( )f y  by 1

2 ( )ygσ σ  
and F(y) by the cdf 2 ( )yG σ  derived from ( )2  ,f y σ  
in the equation (2), we obtain the pdf of GBSD with 
logistics baseline distribution (say L(y,σ)) and is 
denoted as GBSD-L(y,σ). Likewise on using Cauchy 
distribution (say C(y,σ)) with 1

3( )ygσ σ  defined in (6) 
and its cdf 3( )yG σ  in (2), we obtain the pdf of GBSD 
with Cauchy distribution as the baseline distribution 
and is denoted by GBSD-C(y,σ). Another well known 
distribution belonging to the family A. of distributions 
is double exponential distribution (denoted by D(y,σ)) 
with pdf

4
1

2
 ( , ) , .

y

f y e yσσ
σ

−
= −∞ < < ∞  (25)

We may also write the above density as 
1

4 4( , ) ( )yf y gσ σσ = . If we use D(y,σ) with pdf 1
4 ( )ygσ σ  

and cdf 4 ( )yG σ  in (2), then we obtain the pdf of GBSD 

Table 2. Estimated parameters and model comparison  
statistics obtained on modelling the transformed soybean 

production data by GBSD models with N(y,σ), L(y,σ),  
C(y,σ) and D(y,σ) baseline distributions

Model Estimated
Parameters

K-S distance 
between EDF 
and fitted cdf

(p- value)

AIC BIC

GBSD-N(y,σ) 0 6421
1 0960

1 7820

ˆ .
ˆ .
ˆ .

σ
α

β

=
=

=

0.1125 (0.5795) 131.603 137.089

GBSD-L(y,σ) 0 6071
1 6961

1 0673

ˆ .
ˆ .
ˆ .

σ
α

β

=
=

=

0.0962 (0.7515) 110.999 116.485

GBSD-C(y,σ) 4 5797
19 5903

0 9329

ˆ .
ˆ .
ˆ .

σ
α

β

=
=

=

0.0849 (0.8667) 108.499 113.985

GBSD-D(y,σ) 24 4716
95 1934

1 5673

ˆ .
ˆ .
ˆ .

σ
α

β

=
=

=

0.0989 (0.7340) 116.738 122.224
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with D(y,σ) as the baseline distribution and is denoted 
by GBSD-D(y,σ). We have used the data given in 1 
of Appendix-I to construct the models GBSD-N(y,σ), 
GBSD-L(y,σ), GBSD-C(y,σ) and GBSD-D(y,σ) by 
applying maximum likelihood method of estimation to 
estimate the parameters α, β and σ involved in each of 
the above models. The estimates ˆˆ ,α β  and σ̂  of each 
of the GBSD models are presented in Table 2.

Also, we have obtained the K-S distance between 
empirical distribution function (EDF) and the cdfs of 
the constructed GBSD models together with p-values 
and are given in Table 2. The AIC and BIC values 
corresponding to each of the fitted model as well have 
been computed and given in Table 2. The graph of 
densities of the constructed models GBSD- N(y,σ), 
GBSD-L(y,σ), GBSD-C(y,σ) and GBSD-D(y,σ) are 
displayed in Fig. 4 along with the histograms of the 
transformed annual production Soybean data. From 
Table 2 and Fig. 4, we conclude that among the four 
bimodal distributions constructed GBSD-C(y,σ) is 
the best bimodal distribution that can be picked up to 
represent the data given in 1 of Appendix-I. Thus, the 
most suitable bimodal density to represent the soybean 
production data is given below

3 3 3

3

3 3 3

1 2 1 2 0

1 2 1 2 1 0

ˆˆ
ˆ ˆ ˆ

ˆˆ
ˆ ˆ ˆ

ˆˆ( , ) [ ( )] [ ( )] ( ), ,
ˆˆˆ ˆ( ; , , )

ˆˆ( , ) [ ( ( ))] [ ( ) ] ( ), ,
ˆ

y y y

y y y

d G G g y
f y

d G G g y

α β
σ σ σ

α β
σ σ σ

α β
σα β σ

α β
σ

 − −∞ < <= 
 − − ≤ < ∞


 (26)

where 2
1 1

ˆˆ( )ˆˆ( , ) ˆˆ( ) ( )
d α βα β

α β
Γ + +

=
Γ + Γ +

, 19 5903ˆ .α = , 

0 9329ˆ .β =  and 4 5797ˆ .σ = . If the original data from 
which data given in 1 of Appendix-I is constructed, then 
the model which is suitable for that data maybe obtained 

from (26) by replacing y in it by 2 5535.x −  where the 
range of the first part of the density is −∞ < x < 2.5535 
and that of the second part is 2.5535 ≤ x < ∞.

6.2 Annual Rainfall in Kerala Subdivision 
(1871-2016)
Researchers, Policy makers and Government 

agencies are very interested in the information of 
regional and sub-divisional rainfall in India. Statistical 
characteristics and long-term variability of Annual 
rainfall data (in millimeter) for the period from 1871 
to 2016 of Kerala reported in Kothawale and Rajeevan 
(2017). If we use the histogram representation of this 
data, then we observe two peaks and hence we suggest 
a bimodal distribution for modelling it. Now we take 
the Indian Institute of Meteorology data as reported in 
Kothawale and Rajeevan (2017) and find the value of 
the sample median m as 2801.6. As did in section 6.1, 
here again we transform the original data into deviation 
of the observations from the median 2801 6.m =  . 
The transformed data is presented as dataset 2 of 
Appendix-I.

From the transformed data as given in 2 of 
Appendix-I, one can observe that there are exactly 
73 observations with positive and the same number 
of observations with negative sign. To test the null 

Fig. 5. Histograms of the transformed annual rainfall data with fitted 
density curve of generalized bimodal distributions with N(y, σ), L(y, σ), 

C(y, σ) and D(y, σ) baseline distributions

Table 3. Estimated parameters and model comparison statistics 
obtained on modelling the transformed annual rainfall data by 
GBSD models with N(y,σ), L(y,σ), C(y,σ) and D(y,σ) baseline 

distributions

Model Estimated
Parameters

K-S distance 
between EDF 
and fitted cdf

(p- value)

AIC BIC

GBSD-N(y,σ) 574 9670
0 9047

0 3174

ˆ .
ˆ .
ˆ .

σ
α

β

=
=

=

0.0377 
(0.9805)

2176.39 2185.34

GBSD-L(y,σ) 299 9760
0 7380

0 3883

ˆ .
ˆ .
ˆ .

σ
α

β

=
=

=

0.0442 
(0.9257)

2177.01 2185.96

GBSD-C(y,σ) 2235 36
14 8809

1 0736

ˆ .
ˆ .
ˆ .

σ
α

β

=
=

=

0.0781 
(0.3192)

2196.93 2205.96

GBSD-D(y,σ) 2737 3969
12 1650

1 1508

ˆ .
ˆ .
ˆ .

σ
α

β

=
=

=

0.0891 
(0.2940)

2195.88 2204.84
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hypothesis 0H  that the median of the population from 
which the above data (data in 2 of Appendix- I) is 
obtained is equal to zero against the alternative 1H : 
It is 0≠  by assuming n as large, we consider the test 
statistic of a sign test (see, Rohatgi and Saleh, 2015),

73
2

4

n

Z
n

−
=

Since n=146, we have Z=0. For a two sided test the 
p-value is 1.

Similarly, if we use Wilcoxon signed-rank test, 
then we rank the absolute values of the observations 
in 2 of Appendix-I and write T+ and T- as the sum 
of the ranks of positive and negative observations 

respectively. If T=Min (T+, T-), then 1
4

( )( ) n nE T +
=  

and 1 2 1
24

( )( )( ) n n nVar T + +
= . Then assuming n large 

we use the statistic ( )
( )

T E TZ
V T
−

=  and in this case we 

have T=5485 and Z=0.2335 with a p value 0.8154. 
Thus from both of the above tests, we have reasons to 
believe that the data set given in 2 of Appendix-I arises 
from a distribution belonging to A .

We have used the data given in 2 of Appendix-I 
to construct the models GBSD-N(y,σ), GBSD-
L(y,σ), GBSD-C(y,σ) and GBSD-D(y,σ) by applying 
maximum likelihood method of estimation to estimate 
the parameters α, β and σ involved in each of the above 
models. The estimates ˆˆ ,α β  and σ̂  of each of the 
GBSD models are presented in Table 3.

Also, we have obtained the K-S distance between 
empirical distribution function (EDF) and the cdfs of 
the constructed GBSD models together with p-values 
and are given in Table 3. The AIC and BIC values 
corresponding to each of the fitted model as well have 
been computed and given in Table 3. The graph of 
densities of the constructed models GBSD- N(y,σ), 
GBSD-L(y,σ), GBSD-C(y,σ) and GBSD-D(y,σ) are 
displayed in Fig. 5 along with the histograms of the 
transformed annual rainfall data. From Table 3 and 
Fig. 5, we conclude that among the four bimodal 

distributions constructed GBSD-N(y,σ) is the best 
bimodal distribution that can be picked up to represent 
the data given in 2 of Appendix-I. Thus the most 
suitable bimodal density to represent the annual rainfall 
data is given below
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1 1 1
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where 2
1 1

ˆˆ( )ˆˆ( , ) ˆˆ( ) ( )
d α βα β

α β
Γ + +

=
Γ + Γ +

, 0 9047ˆ . ,α =  

0 3174ˆ .β =  and 574 9670ˆ . .σ =  If the original data from 
which data given in 2 of Appendix-I is constructed then 
the model which is suitable for that data may be obtained 
from (27) by replacing y in it by 2801 6.x −  where the 
range of the first part of the density is −∞ < x < 2801.6 
and that of the second part is 2801.6 ≤ x < ∞.

7. CONCLUSIONS
There are several error datasets collected from real 

life problems appears to have two modes. Existing 
bimodal distributions fail to represent those data sets as 
reasonable models. In this paper, an extensively large 
class of bimodal distributions corresponding to each of 
the symmetric baseline distribution is explored to model 
such error data sets. A new statistic based on the density 
value computed at the value of an observation and its 
rank among those values computed for all observations 
is named as ODVI statistics is also introduced. The 
relationship between the sampling distributions of 
ODVI statistics and GBSD is further established. 
Maximum likelihood estimation and inference on the 
parameters of GBSD have been discussed. Application 
of the GBSD to model real data sets is also illustrated 
to show the importance of this model. The application 
of GBSD with different baseline distributions to model 
more agricultural, medical and economic data will be 
carried out in our future investigations. Also, there is 
large scope for conducting theoretical as well as applied 
studies on GBS distribution and ODVI statistics.
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APPENDIX-I
Data Set-1 and Data Set-2 used for the real life 

application in this study is given here.

1. Transformed soybean productivity data
-0.4535, -0.5965, -0.3565, -1.1035, -0.9135, 

-0.8045, -0.8035, -0.9425, -0.9615, -0.8535 ,  -0.6335, 
-0.6935, -0.6725, -0.3335, -0.6535, -0.6035, -0.6635, 
-0.2535, -0.0535, 0.0335, 0.2365, 0.1765, -0.0335, 
0.2265, 0.1265, -0.0345, 0.4755, 0.2715, 0.4465, 
0.2465, 0.0465, 0.4165, 0.4465, 0.2955, -0.0555, 
0.6495, 0.8905, 0.4955, 0.9575, 0.9755, 0.9455, 
1.0465, 1.5665, 1.2565, 1.2465, -0.4535

2. Transformed annual rainfall data
389.35, 78.95, -63.05, 544.75, -412.35, -815.25, 

202.35, 915.35, -129.35, -369.35, -945.85,684.45, 
-81.65, -474.65, 329.25, -456.35, -363.05, 188.35, 
-25.35, -648.35, -48.25, 334.85,-267.15, -434.85, 
-510.35, 33.25, 420.45, -434.55, -670.15, -130.75, 
140.45, 254.25, 232.65,145.45, -317.75, -349.25, 
615.05, -102.85, 62.55, -69.55, -209.05, 609.15, 
-329.05, 124.35,359.65, 64.35, 9.35, -227.45, 248.35, 
631.65, -143.35, 538.35, 397.05, 1143.35, 265.95, 
150.15,73.05, -450.05, 502.95, 120.25, 241.15, 458.55, 
1082.45, -493.95, -466.85, 241.35, 9.85, -300.85,93.45, 
300.05, 232.05, 174.85, 638.65, -384.45, -391.65, 
840.95, 233.85, 168.85, 153.25, 338.35,-195.15, 
-488.35, -317.15, 123.25, 356.25, -44.65, 276.95, 
-97.65, 498.05, 526.65, 1105.65,342.65, -300.35, 
-220.15, -583.35, -413.85, -106.55, 497.55, -85.05, 
-64.05, 257.05, 30.35,-394.35, 144.25, 792.35, 
-629.55, 352.15, 367.95, -102.25, -9.35, 582.75, 
-412.35, -285.55,-268.05, -272.05, -654.45, 
-494.85, -175.55, -286.45, -195.55, 212.45, 349.15, 
-142.65, 566.95,-72.65, -230.55, 505.75, 269.15, 
172.65, -582.55,-172.65,-201.55,-489.85, -81.85,-
500.85,354.25,326.65,-406.05, -217.55, 283.45, 
-17.15, -723.15, 386.95, 166.65, -243.95, -964.15


