
1. INTRODUCTION
Among vegetables, tomatoes hold a prominent 

place as one of the most consumed worldwide, 
trailing only behind potatoes and ahead of onions. It 
is also one of the important cash crops in the state of 
Karnataka. As per 3rd advanced estimate of 2021-22, 
area under tomato in Karnataka was 70.10 thousand 
hectares which contributes to 8.3% of India’s total 
area coverage and it’s production was 2104.68 
thousand tons which contributes to 10% of India’s total 
production (Anonymous, 2022).The perishable nature 
of tomatoes makes them a high-risk crop for farmers, 
as unpredictable price changes can lead to financial 
instability. However, a significant challenge with 
vegetable crop like Tomato, is their high perishability 
and the price volatility resulting from fluctuations in 
demand and production (Paul et al. 2023). Growers 
invest substantial time, effort, and resources into their 
tomato crops, and a sudden drop in tomato prices can 
result in significant losses. On the flip side, when tomato 
prices increase, consumers may experience price 
shocks that affect their household budgets and dietary 
preferences. Therefore, understanding the factors 

driving these price fluctuations is crucial for developing 
effective strategies to mitigate their impact and 
promote stability in the tomato market. Consequently, 
there is a growing demand for reliable price forecast 
models that can provide valuable insights into future 
price trends, helping to address these challenges 
and uncertainties. Dragan et al. (2015) analyzed 
changes and future tendencies of price parameters of 
tomato with descriptive statistics and found that the 
Autoregressive Integrated Moving Average (ARIMA) 
model was suitable for price forecasting. Boateng et al.
(2007) formulated a model for tomato prices and found 
that predictability of the model increases with seasonal-
ARIMA (SARIMA). Meena et al.(2022) used different 
arrival and price forecasting models like Moving 
Average, Weighted Moving Average, Exponential 
Smoothing (Simple Exponential Smoothing, Trend 
Analysis or Simple Linear Regression Model) to 
analyze the trends and ARIMA model to forecast the 
prices and arrivals. Seasonal patterns are common in 
most of the time series data, say for example, an hourly 
time series can exhibit a daily, weekly, monthly and 
yearly seasonality. The majority of time series models, 
such as Exponential Smoothing models, ARIMA, and 
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SARIMA are developed to deal with simple seasonal 
patterns with a small integer-valued periodicity, such 
as 12 for monthly data or 4 for quarterly data. Many 
time series data exhibit complex seasonal patterns. 
For example, an hourly time series can exhibit a daily, 
weekly, monthly and yearly seasonality. To model such 
complex seasonal patterns, De Livera et al. (2011)
introduced the BATS (Box-Cox transformation, ARMA 
errors, Trend, and Seasonal components) model as an 
alternative to traditional exponential smoothing. BATS 
extends homoscedastic ETS (E-Error, T-Trend and 
S-Seasonal) models to handle multiple seasonality 
by integrating a Box-Cox transformation for non-
linearities and a residual ARMA adjustment for 
autocorrelation. This framework overcomes key 
limitations of traditional exponential smoothing, 
particularly for non-negative and non-linear time series, 
where the ETS framework often fails. Unlike ETS 
models, BATS can capture residual autocorrelation, 
providing more robust forecasts. A few time series 
models like BATS and TBATS were introduced to 
solve all of the aforementioned seasonal complexity. 
Kozuch (2023) analysed quarterly timber net prices of 
round wood species (Oak, Pine, Beech, Birch, Alder 
and Spruce) for the years 2005 to 2021 using ARIMA, 
exponential smoothing, BATS, TBATS, the Prophet 
model, ANN with RBF and ANN with MLP neural 
networks, based on accuracy measures they found that 
BATS and TBATS are efficient models for forecasting 
beech, birch and alder price of round wood species. 
Therefore, in this article application of BATS model 
have been considered to forecast the volatile tomato 
prices in Kolar market of Karnataka state.

2. MATERIALS AND METHODS
Time series data on monthly Tomato price (Rs/

Quintal) in Kolar market of Karnataka were collected 
from AGMARKNET portal (https://agmarknet.gov.in/) 
from January, 2010 to December, 2022. Different time 
series models such as Simple Exponential Smoothing 
(SES), Double Exponential Smoothing (DES), Triple 
Exponential Smoothing (TES), ARIMA, SARIMA, 
BATS and TBATS were applied in this price data.

2.1 Models

2.1.1 Simple Exponential Smoothing (SES)
The method of simple exponential forecasting 

takes the forecast for the previous period and adjusts it 
using the forecast error (𝑌𝑡 − 𝐹𝑡) (Brown, 1956).

𝐹𝑡+1 = 𝐹𝑡 + 𝛼 (𝑌𝑡 − 𝐹𝑡)or𝐹𝑡+1 = 𝛼𝑌𝑡 + (1 − 𝛼) 𝐹𝑡
where, 𝑌𝑡 is the actual value and 𝐹𝑡 is the forecasted 

value at time t, 𝛼 is the smoothing parameter ranges 
from 0 to 1.

2.1.2 Double Exponential Smoothing (DES) or 
Holt’s linear method
This method involves a forecast equation and two 

smoothing equations (one for the level and one for the 
trend) (Holt, 1957). The equations for the models are 
given as follows:

𝐿𝑡=𝛼𝑌𝑡+(1−𝛼) (𝐿𝑡−1 +𝑏𝑡−1)
𝑏𝑡=𝛽[𝐿𝑡−𝐿𝑡−1]+(1−𝛽) 𝑏𝑡−1

𝐹𝑡+h=𝐿𝑡+h𝑏𝑡
where, 𝐿𝑡 is the Level and 𝑏𝑡 is the trend at time t, 

𝐹𝑡+h is the forecast value for h period ahead, and 𝛼, 𝛽 
are smoothing parameters ranging from 0 to 1.

2.1.3 Triple Exponential Smoothing (TES) or Holt-
Winter’s Exponential Smoothing (H-WES)
Holt-Winter’s Exponential Smoothing (H-WES) 

methods are widely used when the data shows trend 
and seasonality (Winter, 1960). The Holt-Winter’s 
method depends on three smoothing equations: one for 
level, one for trend, and one for seasonality. The model 
equations are given as

tL =𝛼 (𝑌𝑡 −𝑆𝑡)+(1−𝛼) (𝐿𝑡−1+𝑏𝑡−1)

tb =𝛽 (𝐿𝑡−𝐿𝑡−1)+(1−𝛽) 𝑏𝑡−1

tS =𝛾 (𝑌𝑡 −𝐿𝑡)+(1−𝛾) 𝑆𝑡−𝑠
t h t t t s hF L hb S+ − += + +

where, 𝑠 is the length of seasonality, 𝑆𝑡 is the 
seasonal component at time t, and 𝛼, 𝛽 and 𝛾 are level, 
trend and seasonal smoothing constants or the weights 
respectively, which lies between 0 and 1.

2.1.4 ARIMA
In an autoregressive integrated moving average 

model, the future value of a variable is assumed to be a 
linear function of several past observations and random 
errors (Box and Jenkins, 1976), it can be expressed as;

( )( ) ( )1 d
p t q tB B y Bϕ θ ε− =  where, ty  and tε  are 

the actual value and random error at time period t, d 
denotes the order of differencing, ( )  p Bϕ  and ( )q Bθ
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are the autoregressive operator (p) and moving average 
operator (q).

2.1.5 SARIMA
When time series data have seasonal component, 

SARIMA model is employed. SARIMA model is 
characterized by SARIMA (p, d, q) ( ), ,

s
P D Q  and it is 

given by

( )( )( )( )
( )( )

1 1 1 1

1 1

s s
p P t

s
q Q t

B B B B y

B B

ϕ

θ ε

− −Φ − − =

− −Θ

where, B is the backshift operator, sis seasonal lag, 
tε  is sequence of independent normal error with mean 

0 and variance 2σ , ’sΦ  and ’sϕ  are respectively the 
seasonal and non-seasonal autoregressive parameters 
and ’sΘ  and ’sθ  are respectively the seasonal and 
non-seasonal moving average parameters. Here, p and 
q are orders of non-seasonal autoregressive and moving 
average parameters respectively, whereas P and Q are 
the seasonal autoregressive and moving average 
parameters respectively. Also ‘d’ and ‘D’ denote non-
seasonal and seasonal differences respectively 
(Makridakis et al.1998).

2.1.6 BATS (B: Box-Cox transformation A:ARIMA 
errors T: Trend S: Seasonal components) model
Box-Cox transformation is a power transformation 

that helps make the series stationary, by stabilizing the 
variance and mean over time. BATS model is developed 
by extension of Double-Seasonal Holt-Winter’s 
(DSHW) method with Box-Cox transformation, 
ARMA errors, Trend, and multiple seasonal patterns 
(De Livera, 2012).
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where, ( )
ty ω  represents Box-Cox transformed 

observations with a parameter ω  at time t, m1, …, mT 
denote the seasonal periods, tl is the local level at time 
t, b is the long-run trend and tb  is the short-runtrend at 

time t, ( )i
ts  indicates the ith seasonal component at time 

t, dt represents an ARMA (p, q) process, tε  is a Gaussian 
white-noiseprocesswithzeromeanandconstantvarianc
eσ2, and the smoothing parameters are given by α, β, 
and iγ  for i=1, ..., T. The model was represented by 
BATS ( ,ω  (p, q),  ∅ , m1, m2, …, mT), where,  ω  is the 
Box–Cox transformed value, (p, q) is ARMA 
components,  ∅  dampening parameter, mi represents 
ith seasons.

2.1.7 TBATS (T: Trigonometric B: Box-Cox 
transformation A: ARIMA errors T: Trend S: 
Seasonal components) model
For high frequency and non-integer seasonality 

BATS model are not efficient, therefore, to overcome 
this problem, TBATS was introduced as an extension 
of BATS model by adapting the following equations 
(De Livera et al. 2011):

( ) ( )

1
,

ik
i i

t j t
j

s s
=

=∑

( ) ( ) ( ) ( ) ( ) ( )*
, , 1 , 1 1cos sini i i i i i

j t j t j j t j ts s s dλ λ γ− −= + +

( ) ( ) ( ) ( ) ( )* *
, , 1 , 1 2sin cosi i i i i

j t j t j j t j ts s s dλ λ γ− −= − + +

where, ( )
1

iγ  and ( )
2

iγ ,are the smoothing parameters, 
( ) 2i
j

i

j
m
πλ = , ( )

,
i

j ts  describe the stochastic level of the ith 

seasonal component, ( )*
,
i

j ts  describe the stochastic 
growth of the ith seasonal component, ik  is the number 
of harmonics required for the ith seasonal component, 

2
i

i
mk =  for even values of mi, and 

( )1
2

i
i

m
k

−
=  for odd 

values of mi.

2.2 Model evaluation criteria
The model performance was assessed based on the 

following criteria: Root Mean Square Error (RMSE) 
and Mean Absolute Percentage Error (MAPE).

RMSE ( )2

1

1 ˆ
n

t t
t

Y Y
n =

= −∑  and
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MAPE 
1

1 100
ˆ

*
n

t t

t t

Y Y
n Y=

−
= ∑

where, n is number of observations, tY  and t̂Y  are 
the actual and forecasted price at time t. The 
measurements like RMSE and MAPE are employed to 
gauge how accurate the model’s predictions are; a 
lower value for these metrics denotes a more accurate 
prediction from the model.

3. RESULTS AND DISCUSSION
The monthly price data from January, 2010 to 

December, 2022 is split into training and testing set as 
80:20. The training dataset is used to build the SES, 
DES, TES, ARIMA, SARIMA, BATS, and TBATS 
models and testing data set is used set for evaluating 
forecasting performance of these models. Based on 
model evaluation criteria i.e., RMSE and MAPE, the 
best fitted model has been used for the forecasting of 
monthly tomato price for the year 2023 in Kolar market 
of Karnataka. The complete methodology of this study 
is depicted in the Fig. 1.

 

Monthly Tomato price data (From 2010 To 2022) of Karnataka 

Preprocessing Step 

80% of data from 2010 To 2020 used as Training set 

Time 
Series 

Models 

Accuracy for training data 

MAPE RMSE 

20% of data from 2021 To 2022 used as Testing set 

 

Forecasting Monthly Tomato price for 2023  

BATS 

SES  DES  TES ARIMA SARIM
A 

BATS TBATS 

Accuracy for testing data 

MAPE RMSE 

Fig. 1. Schema of the best model for forecasting

3.1 Descriptive statistics and seasonal indices
The descriptive statistics of tomato prices in the 

Kolar market is presented in Table 1. According to 
Table 1, the average tomato price in Kolar market is 
Rs.1058 /quintal. Since the CV is greater than 50%, we 
can deduce that the price variability is slightly higher. 
The time series is positively skewed and leptokurtic. 
The monthly seasonal index values are shown in Table 
2. Seasonal indices have greater values from May to 
August and October to December. Time plot of the 
average monthly tomato price for the original series is 
depicted in Fig. 2.
Table 1. Descriptive Statistics of Tomato prices in Kolar market of 

Karnataka

Statistics Price

Observations 156

Mean (Rs/quintal) 1058

Minimum
Median

214
830

Maximum 4114

Standard Deviation 696

Coefficient of Variation 65

Skewness 1.72

Kurtosis 3.37

Table 2. Seasonal Indices for tomato prices

Months Seasonal Index

January 0.92

February 0.62

March 0.59

April 0.69

May 1.16

June 1.29

July 1.44

August 1.08

September 0.99

October 1.05

November 1.16

December 1.01
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Fig. 2. Monthly average wholesale price of Tomato in Kolar market, 
Karnataka

3.2 Fitting of Exponential Smoothing models
Different combination of smoothing parameters 𝛼, 

𝛽 and 𝛾 are tried by grid search method to get suitable 
Exponential Smoothing parameters. The estimates of 
model parameter and its standard error are given in 
Table 3.

Table 3. Parameter estimates of SES, DES and TES model

Models Parameters Estimates AIC

SES Alpha (Level) 0.9999 2325.906

DES Alpha (Level) 0.9999 2330.059

Beta (Trend) 0.00001

TES Alpha (Level) 0.9999 2307.802

Beta (Trend) 0.0246

Gamma (Seasonal) 0.00001

3.3 Fitting of ARIMA model
The data was checked for stationarity by using 

ADF test, first differencing is used to transform the 
data from non-stationary to stationary and the results 
was presented in Table 4. ARIMA (0, 1, 3) is found to 
be the best fit model by using “auto. arima” function 
in R software. The parameter estimates of fitted 
ARIMA model are furnished in Table 5 along with their 
significance level.

Table 4. Results of Augmented Dicky Fuller test

Data ADF test Lag order P-value

Original -3.03 11 0.149

Differenced -6.23 11 0.010

Table 5. Parameter estimates of ARIMA (0, 1, 3) model

Parameters Estimate S.E. p-value

MA1 -0.09 0.08 0.317

MA2 -0.46 0.07 0.000 ***

MA3 -0.38 0.08 0.000***

***: Significant at 0.1%

3.4 Test for Seasonality
To assess the seasonal variation in data, Kruskal-

Wallis Seasonality test is applied. The test statistics 
value is 20.38 which corresponds to p-value of 0.04 
indicating that there is seasonality in the data.

3.5 Fitting of SARIMA model
SARIMA (0, 1, 3) (0, 0, 2)[12] is chosen as the best 

fit model based on the lowest AIC and BIC values while 
keeping the maximum orders for p, q, P, and Q at three. 
The parameter estimates of fitted SARIMA model are 
furnished in Table 6 along with their significance level.

Table 6. Parameter estimates of the SARIMA (0, 1, 3)  
(0, 0, 2) [12] model

Parameters Estimate S.E.  p-value

MA1 -0.07 0.08  0.409

MA2 -0.46 0.07  0.000***

MA3 -0.39 0.08  0.000***

SMA1 -0.05 0.09  0.575

SMA2 0.15 0.09  0.091

***: Significant at 0.1%

3.6 Fitting of BATS model
The grid search approach is adopted to test several 

combinations of smoothing parameters, and Box-Cox 
transformed value, and finally, BATS (0.001, {3, 1}, -, 
{12}) model is chosen on the basis of lowest AIC value. 
The Box-Cox transformation (ω ) is found to be 0.001 
that means a slight transformation is used to convert the 
data into stationary, ARMA(3, 1) model with the lowest 
AIC value of 2189.23 is determined to be the best, as 
shown in Table 7.

Table 7. Parameter estimates of BATS model

Model *Box-Cox 
transformation (Omega)

Smoothing parameter Phi ARMA coefficients Prediction error

Alpha Beta Gamma AR coefficients MA coefficients Sigma AIC

BATS (0.001, {3, 1}, 
-, {12})

0.001 0.058 - -0.123 - 1.144 (AR1) -0.230 (MA1) 0.335 2189.23

-0.776 (AR2)

0.358 (AR3)
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3.7 Fitting of TBATS model
The grid search method is used to evaluate various 

combinations of smoothing parameters, damping 
parameter, and Box-Cox transformed value, and finally, 
TBATS (0.009, {3, 0}, 0.908, {12, 2}) model with the 
lowest AIC value is chosen. The parameter estimates of 
the model are presented in Table 8.

3.8 Forecasting performance evaluation
BATS model performed better than the other six 

models, with the minimum RMSE of 384.35 and 
MAPE of 26.31% under training set as presented in 
Table 9. Similarly, in the testing set, BATS is found to 
be the best fitted model on the basis of lowest RMSE of 
233.06 and MAPE of 30.06%, and the results are given 
in Table 9. Therefore, BATS model is used to forecast 
the monthly wholesale prices of tomato for the year 
2023. The plot of observed vs fitted values from BATS 
model is presented in Fig. 3.

Table 9. Model accuracy evaluation

Models
Training set Testing set

RMSE MAPE (%) RMSE MAPE (%)

SES 570.28 39.97 348.39 52.07

DES 570.61 40.77 363.37 51.05

TES 493.49 37.20 355.34 38.45

ARIMA 479.17 34.51 305.40 42.59

SARIMA 479.12 34.47 305.31 42.49

BATS 384.35 26.31 233.29 30.06

TBATS 430.13 30.56 256.01 33.54

3.9 Residual diagnostics
Residual diagnostics were conducted on the best-

fitted model (BATS model). The Box-Ljung test results 
indicate that the residuals are random in nature. To 
test the normality, Shapiro-Wilk test has been applied 
and from the results depicted in Table 10, it can be 
concluded that the null hypothesis is accepted, as the p 
value is more than 0.05, indicating that the residuals are 

normally distributed. To check the presence of ARCH 
(Autoregressive Conditional Heteroskedasticity) effect, 
ARCH-LM test has been carried out and from the 
results it is confirmed that there is no existing ARCH 
effect in residuals, i.e., residuals are homoscedastic in 
nature.

Table 10. Residual diagnostics

Diagnostic test Test statistic p-value

Box-Ljung 0.002 0.968

Shapiro-Wilk 0.994 0.896

ARCH-LM 15.35 0.223

3.10 Forecasting monthly wholesale price of 
Tomato
Forecasted values of monthly wholesale prices of 

tomato for the year 2023 based on BATS model are 
presented in Table 11 and the results revealed that in the 
month of July, 2023 the price of Tomato is expected to 
be maximum followed June, 2023.

4. CONCLUSIONS
In this article, monthly wholesale prices of tomato 

are modelled by fitting Exponential smoothing, ARIMA, 
SARIMA, BATS, and TBATS models. It is found that 
the BATS model outperforms the other models in terms 

Fig. 3. Plot showing observed vs fitted values by BATS model

Table 8. Parameter estimates of TBATS model

Model Omega
Smoothing parameter

Phi
ARMA coefficients Prediction error

Alpha Beta Gamma-1 Gamma-2 AR 
coefficients

MA 
coefficients Sigma AIC

TBATS 
(0.009, {3, 0}, 

0.908,
{<12, 2>})

0.009 -0.109 0.023 -0.0001 0.0001 0.908 0.987 (AR1) - 0.395 2206.33

-0.509 (AR2)

0.290 (AR3)
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of model evaluation criteria such as RMSE and MAPE. 
Monthly wholesale prices of tomato are forecasted by 
using BATS model for the year 2023 and it is found 
that the price of tomato is expected to be higher in the 
month of July followed by June. Therefore, with the 
help of this study, farmers of Karnataka state may be 
advised when to plan their crops such that they can 
maximize profits from tomato farming.
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