
1.	 INTRODUCTION
Two stage sampling is the simplest case of  

multistage sampling which is widely used in large 
scale surveys since at most of the situations either 
the sampling frame is unavailable or it could be too 
expensive to construct such frames. Under two stage 
sampling, at the first stage, clusters are selected which 
are referred to as primary stage units or psu’s and, at 
the second stage, a sample of basic elements are drawn 
from the selected psu’s which are called as secondary 
stage units or ssu’s. For example, in consumer 
expenditure surveys, villages can be considered as 
psu’s and households can be considered as ssu’s. Under 
two-stage sampling design, use of auxiliary information 
usually improves the estimator of population total 
(Sukhatme et al., 1984). Calibration is a widely used 
approach in sample surveys to produce efficient 
estimators of population parameters at the estimation 
stage by incorporating axillary information (Deville 

and Särndal, 1992). Aditya et  al. (2016) applied 
calibration approach for estimation of population total 
in two-stage sampling under the assumption that the 
population level auxiliary information is available at 
psu level. Mourya et al. (2016) developed calibration 
estimator for finite population total under two-stage 
sampling when the auxiliary information is available at 
the element level for the selected first-stage units in the 
random sample. Calibration estimation of regression 
coefficient under two-stage sampling design for 
different cases of availability of auxiliary information 
at psu and ssu level has been carried out by Basak et al. 
(2016, 2017, 2018). Biswas et  al. (2020) developed 
calibration estimators of the finite population total under 
two stage sampling design assuming study variable is 
inversely related to the auxiliary variable. One of the 
assumptions of calibration approach is that population 
aggregates are available for the auxiliary variable that 
is linearly related with the study variable.
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Many often under two-stage design, such population 
aggregates of auxiliary variable, i.e., population mean 
or total are unavailable at the population level and 
under such situations, estimation of population total 
has been limited to the use of two phase sampling, 
see for example, Saini and Bahl (2012), Saini (2013) 
and references therein. Under such circumstances, it 
may be assumed that there is availability of additional 
auxiliary variable which is less closely related to the 
study variable but its population aggregates are known. 
Estevao and Särndal (2002) developed estimators of 
population total under two phase sampling using the 
information on additional auxiliary variable through 
two step calibration approach. Guha and Chandra (2020) 
developed chain ratio type and chain product type 
estimator of population total under two phase sampling 
using two step calibration approach assuming that 
auxiliary information is available for the first variable 
and unavailable for the second variable. Therefore, 
the present study considers the problem of estimating 
the population total under two-stage sampling design 
when population aggregates of auxiliary variables are 
unavailable for the selected psu’s and develops efficient 
estimator of population total using the information on 
known population aggregates of additional auxiliary 
variable through two step calibration approach.

The rest of this paper is organized as follows. 
Next Section describes the general notations used for 
the development of estimators. Section 3 presents 
the proposed estimators developed using two step 
calibration approach along with its approximate 
variance and variance estimator. Section 4 presents the 
results of the simulation studies to assess the empirical 
performance of the developed estimators. Finally, 
Section 5 provides the concluding remarks.

2.	 NOTATIONS
Let us consider a finite population U of size N 

which is group into NI clusters each of size Ni such that 
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= ∑ . These clusters are 

called psu’s. At the first stage, nI clusters are selected 
from NI clusters using a probability sampling design 
(‌ Is ) such that first and second order inclusion 
probabilities at the psu level are ( )Ii IP i s= ∈π  and 

( , )Iij IP i j s= ∈π . The sampling units within the 
psu’s are called ssu’s. At the second stage, ni units are 

selected from Ni, Ii s∀ ∈  using a probability sampling 

design ( is ) such that 
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first and second order inclusion probabilities at the ssu 
level are / ( / )k i i IP k s i s= ∈ ∈π  and 

/ ( , / )kl i i IP k l s i s= ∈ ∈π . Let y and x be the study 
and auxiliary variable respectively. Here, it is assumed 
that there is availability of additional auxiliary variable 
z which is less linearly related to the study variable y 
but its population totals are available for the selected 
psu’s. Let, iky , ikx  and ikz , Ii s∀ ∈ , ik s∈  be values 
of the variables corresponding to the kth unit of ith 
selected psu. The population total of y is given by, 
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psu total of y. Similarly, population total of x is given 

by 
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ith psu total of x, and population total of z is, 
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psu total of z. Here, it is assumed that population totals 
of auxiliary variable x is unavailable for the selected 
psu’s, i.e., iX  is unknown ∀  1,2,..., Ii n= , whereas 
for additional auxiliary variable z, this information is 
available, i.e., iZ  is known ∀  1,2,..., Ii n= . With this, 

our aim is to estimate the population total, yt . Following 
Särndal et  al. (1992), the π-estimator of population 
total yt  under two-stage sampling design is given by

/
1 1

ˆ
iI nn

y Ii k i ik
i k

t a a yπ
= =

= ∑ ∑ , � (1)

where, 1/Ii Iia π=  and / /1/k i k ia π=  .

3.	 PROPOSED CALIBRATION ESTIMATOR

Here, in the first stage, In  psus are selected. In the 
second stage, in′  units are selected out of iN  units at 
first phase to observe x and z, from each of the In  
selected psus and then at second phase in  units are 
drawn from in′  units.



31Pradip Basak et al. / Journal of the Indian Society of Agricultural Statistics 78(1) 2024  29–35

At first stage:	 ( )I IU N  
			     ↓

	 	 	 ( )I Is n

At second stage:	   ( )i i IU N i s∀ ∈

			         ↓

First phase:	 ( )    observe ,i i ik iks n x z′ ′

			         ↓

Second phase:	 ( )     observe i i iks n y

Let, Iia  denotes the design weight at the first stage, 
where 1/Ii Iia π= . Let, 1 /k ia  denotes the design weight 
at the first phase at ssu level and 2 /k ia  denotes the 
conditional design weight at the second phase at ssu 
level. Thus, 1 / 1 / 2 / 2 /1/  and 1/k i k i k i k ia aπ π= = , where 

1 /k iπ  is the inclusion probability at first phase and 

2 /k iπ  is the conditional inclusion probability at second 
phase. Overall design weight corresponding to the kth 
unit of ith selected psu at the ssu level is given by 

/ 1 / 2 /k i k i k ia a a= . Let, 1 /k iw  denotes the first phase 
calibrated weight corresponding to 1 /k ia  at the ssu 
level and /k iw  denotes the overall calibrated weight 
corresponding to the overall design weight at ssu level, 

/k ia .

First Step Calibration
In the first step calibration, the chi-square distance 

function measuring the distance between 1 /k iw  and 

1 /k ia  is given by

( )2
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Here the calibration constraints are,
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First phase calibrated weight, 1 /k iw  are obtained by 
minimising this objective function subject to the 
calibration constraints using Lagrangian multiplier 
approach. The objective function for minimization is 
given by
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The first step calibrated weights are obtained as
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Here, 1 /k iq  is an unknown positive constant. For 
the particular case when 1 / 1,k iq =  the first step 
calibrated weights are obtained as, 

[ ]1 / 1 / 1/ 2/1k i k i i ik iw a zλ λ′ ′= + + . The weights, 1 /k iw  
obtained in the first step calibration are used to estimate 
the psu totals of x for the ith selected psu’s as 

1 /
1
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k

X w x
′

∗

=

= ∑ , ∀  i=1, 2, …, In , which are required 

as a constraint in the second step calibration.

Second Step Calibration
In the second step calibration, overall calibration 

weight at the ssu level, /k iw  are obtained. Thus, the chi-
square distance function between /k iw  and /k ia  is 

given by ( )2
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The objective function for minimization in the second 
step calibration is given by
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Finally, the calibrated weights are obtained as
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Here, /k iq  is an unknown positive constant. For the 
particular case when / 1,k iq =  the weights are obtained 

as, [ ]/ / 1/ 2/ 3/1k i k i i ik i ik iw a z xλ λ λ= + + + . Finally, the 
calibrated estimator of population total of y, is given by
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ratio and regression estimator of population total is 
given by
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4.	 VARIANCE ESTIMATION
The developed calibrated estimators of population 

total are non-linear in nature. There are two approaches 
for variance estimation of nonlinear estimator: (i) 
Analytical approach using the Taylor series linearization 
and (ii) Resampling approach. In this study, Taylor 
series linearization technique is used to derive an 
approximate variance of the estimator as well as the 
variance estimator. The approximate variance of the 
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calibrated estimator ˆc
yt π  using Taylor series linearization 

method is obtained as
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The variance estimator is obtained as,
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5.	 SIMULATION STUDY
Design based simulation study is conducted to 

evaluate the empirical performance of the developed 
estimators. Here, a real survey dataset is considered as 
a finite population. From this fixed population, repeated 
random samples are drawn using two-stage sampling 
design. The survey dataset of 284 municipalities of 
Sweden popularly referred to as ‘MU284 population’ is 
used for the simulation study (Särndal et al., 1992). The 
284 municipalities are grouped into 50 clusters and the 
sizes of the clusters varies from 5 to 9 municipalities. 
These 50 clusters are psu’s and municipalities within 
the clusters are referred to as ssu’s. The dataset contains 
multiple variables among which three variables are 
selected for the present study. Here, the variable 
revenues from the 1985 Municipal taxation (RMT85, 
measured in millions of kronor, y) is used as study 
variable. The aim is to estimate total revenues from the 
1985 Municipal taxation. Here, 1985 population (P85, 
in thousands, x) is used as the auxiliary variable and 
number of seats in the municipal council (S82, z) is used 
as the additional auxiliary variable. The correlation 
between study variable, y and additional auxiliary 
variable, z is found to be 0.58. Therefore, number of 
Social-Democratic seats in municipal council (SS82) is 
used as another additional auxiliary variable such that 
correlation between y and z is 0.40. The correlations 
among the variables in the population are presented in 
Table 1.
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Table 1. Correlation between variables in MU284 data

Variables RMT85 (y) P85 (x) S82 (z) SS82 (z)

RMT85 (y) 1 0.96 0.58 0.40

P85 (x) 0.96 1 0.69 0.48

S82 (z) 0.58 0.69 1 -

From this population, a two-stage sample is drawn. 
At the first stage, 20 psu’s are drawn and in the second 
stage, at first phase, 8 units are drawn from each of the 
selected psu’s to observe x only and at second phase, 4 
units are drawn. Sample are drawn using simple random 
sampling without replacement (SRSWOR) at the both 
stages. The values of different estimators are computed 
using these sample data. The following estimators of 
population total under two-stage sampling design are 
considered in the simulation study.
i)	 π-estimator, 

ŷt π
 (denoted as Est- π and given in 

(1)),

ii)	 Double sampling ratio estimator, ˆratio
yt π  (denoted as 

RAT and given in (3)),

iii)	 Double sampling regression estimator, ˆreg
yt π  

(denoted as REG and given in (4)),

iv)	 Developed calibrated estimator, ˆc
yt π  using S82 as 

additional auxiliary variable z (denoted as CAL1 
and given in (2)).

v)	 Developed calibrated estimator, ˆc
yt π  using SS82 as 

additional auxiliary variable z (denoted as CAL2 
and given in (2)).
The simulation is repeated to a total number of 

M=5000 times. The performance of the estimators are 
evaluated by percentage absolute relative bias (ARB, 
%) and percentage relative root mean squared error 
(RRMSE, %), defined by

1

ˆ1ˆ( ) 100M i
i

T TARB T
M T=

−
= ×∑  and

2

1
1

ˆˆ( ) 100M i
i

T TRRMSE T M
T

−
=

 −
= × 

 
∑ ,

where îT  denotes the estimated value of population 
total at simulation run i, with true value T and M denotes 
the number of simulations run. The values of percentage 
absolute relative bias and percentage relative root mean 

square error of different estimators are reported in Table 
2.

Table 2. Percentage absolute relative bias (ARB, %) and 
percentage relative root mean square error (RRMSE, %) of 

different estimators in design based simulation

Estimator ARB, % RRMSE, %

Est- π 27.63 33.40

RAT 16.57 19.68

REG 16.25 18.74

CAL1 13.36 15.59

CAL2 16.53 19.31

The results in Table 2 show that the values of both 
percentage absolute relative bias and relative root mean 
square error are higher for π-estimator as compared 
to the other estimators. The developed calibrated 
estimator has minimum percentage absolute relative 
bias and relative root mean square error among all the 
estimators when correlation between y and z is high. 
However, for moderate level of correlation between 
y and z, percentage absolute relative bias and relative 
root mean square error of the developed calibrated 
estimator is lower than double sampling ratio estimator 
but higher than double sampling regression estimator.

6.	 CONCLUSIONS
Calibration estimators of the population total have 

been developed under two-stage sampling design based 
on the unavailability of auxiliary information for the 
selected psu’s. Monte Carlo simulations based on both 
simulated and real dataset show the superiority of 
the proposed calibration estimators of the population 
total in comparison to the existing estimators such 
as Horvitz-Thompson, double sampling ratio and 
regression estimators. Therefore, the developed 
calibration estimators will produce reliable estimate 
of population parameters from the two-stage survey 
data in the situations of unavailability of auxiliary 
information for the selected psu’s.
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