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1.	 INTRODUCTION
A survey plays a crucial role in gathering 

information from a population. Sample surveys are 
conducted with the aim of drawing conclusions about 
an entire population based on data collected from 
a selected sample. These conclusions often involve 
making estimates, such as predicting the average yield 
of a crop or the percentage of individuals affected by 
a certain disease. When it comes to sample surveys, 
researchers typically prefer using single-stage sampling 
designs with equal probabilities, as these designs aid 
in creating new and effective estimation methods. 
However, real-world surveys tend to be more complex 
and often involve multiple stages of sampling. Among 
the various sampling designs, the most widely adopted 
method for survey estimation worldwide is the stratified 
multi-stage sampling design. In many practical survey 
scenarios, a simplified version known as two-stage 
sampling is commonly employed due to its practicality 
and ease of implementation.

Auxiliary information is frequently employed 
to enhance the accuracy of survey estimates. 
The fundamental method of integrating auxiliary 

information into survey estimation involves using 
traditional ratio or regression estimators (Hansen et al., 
1953). The Calibration Approach (Deville et al., 1992) 
stands out as one of the frequently utilized methods for 
effectively leveraging auxiliary information in survey 
estimates. This method achieves this by generating a 
new set of weights through the adjustment of sampling 
design weights using auxiliary data. Calibration 
weights were initially introduced by Huang and Fuller 
(1978) and were referred to as regression weights. 
What sets calibration estimators apart is their ability 
to operate without presuming any specific model that 
links the study and auxiliary variables. In the context 
of single-stage sampling designs, there exists a group 
of researchers, including Singh et al. (1998), Wu et al. 
(2001), Singh et al. (2003, 2004), Tracy et al. (2003), 
Singh et al. (2011), Koyuncu et al. (2014), Sud et al. 
(2014), Clement et al. (2014, 2017), Nidhi et al. (2017), 
and Özgül (2018, 2020), Alam et al. (2020, 2021), who 
have embraced the calibration approach for estimating 
population parameters during the estimation phase.

Moreover, the utilization of auxiliary information 
further enhances the accuracy of estimating the total 
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population in scenarios involving two-stage designs 
(Sukhatme et  al., 1984). In a two-stage sampling 
framework with varying probabilities, Sahoo et  al. 
(1999) introduced a comprehensive set of estimators for 
calculating the total population of a finite group. These 
estimators rely on two auxiliary variables, assuming 
the availability of auxiliary information at the cluster 
level. Within this context, they proposed a regression-
type estimator that achieves an asymptotic minimum 
variance bound (MVB) under the two-stage sampling 
design, capitalizing on the two auxiliary information 
variables accessible at the cluster level of selection. 
In the presence of two auxiliary information variables 
solely at the unit level for the selected Primary Sampling 
Units (PSUs), Sahoo et al. (2011) presented a broader 
category of MVB ratio estimators within a two-stage 
sampling setup. Additionally, alongside this expanded 
array of estimators, several researchers have explored 
the implementation of the calibration approach under 
a two-stage design, where auxiliary information is 
accessible. Notable instances include Aditya et  al. 
(2014, 2016a, 2016b), Mourya et  al. (2016), Aditya 
et al. (2017), Aditya et al. (2019), Biswas et al. (2020, 
2023), and Basak et al. (2021). These endeavors aim to 
enhance estimators within a two-stage sampling design 
through the integration of auxiliary information using 
the calibration approach.

To further enhance the performance of the 
calibration estimator, Singh et  al. (2003) introduced 
a connection between the generalized regression 
(GREG) estimator, obtained through Deville et  al.’s 
(1992) calibration technique, and the linear regression 
estimator as presented by Hansen et  al. (1953). This 
linkage was developed in line with Singh et  al.’s 
observations (2003, 2004) that the cumulative 
calibrated weights must align with the sum of the 
design weights. In addition, they presented the concept 
of a multi-auxiliary calibration estimator that employs 
multiple auxiliary variables (Singh et al., 2011) within a 
single-stage sampling design. Given that contemporary 
surveys often encompass multiple auxiliary information 
variables, Rao et al. (2012) introduced the notion of a 
multi-auxiliary calibration estimator for the population 
mean within a stratified single-stage sampling design. 
This concept employed information from two auxiliary 
variables and addressed the challenge of determining 
optimal calibration weights under various calibration 
conditions through a Mathematical Programming 
Problem (MPP). Clement et  al. (2014) further 

advanced the field by devising an analytical technique 
to create a multi-auxiliary calibration estimator using 
MPP with a Chi-square-type loss function, subject 
to various calibration constraints. Ozgul (2018) then 
contributed a new calibration estimator for population 
mean estimation under stratified sampling, utilizing 
two auxiliary variables. This novel theory described the 
estimator and optimized calibration weights through 
nonlinear constraints involving the two auxiliary 
variables. In the context of estimating population mean 
using stratified uni-stage random sampling design, Alam 
et  al. (2021) proposed a multi-auxiliary calibration 
estimator. They incorporated multiple constraints 
derived from auxiliary variables and introduced a new 
variance function for the study variable, replacing 
traditional distance functions. This approach assumed 
knowledge of the population variance, particularly 
under Neyman allocation.

Most literature in this field has primarily focused 
on single-stage selection scenarios, although real-
world surveys usually involve multistage structures. 
Multistage sampling introduces complexity due to 
selection occurring at multiple stages. Addressing 
this gap, this paper introduces a calibration estimator 
utilizing two auxiliaries to estimate the population 
total under a two-stage sampling design. This proposal 
aligns with the concept pioneered by Ozgul et  al. 
(2018), assuming accurate knowledge of cluster-level 
totals for the two auxiliary variables at the population 
level. Furthermore, the paper introduces a nonlinear 
constraint to incorporate cluster-level auxiliary 
information into the proposed calibration estimator.

The subsequent segments of this paper are 
structured as follows. The following section outlines 
the standard notations adopted for the discussion of 
current calibration estimators within the framework of 
a two-stage sampling design. This discussion assumes 
the presence of population-level auxiliary information 
at the cluster level, in the context of the two-stage 
sampling design. Section 3 outlines the evolution of 
two auxiliary calibration estimators under a two-stage 
sampling design. This development considers the 
availability of population-level auxiliary information 
at the cluster level and accommodates instances where 
the sizes of the Primary Sampling Units (PSUs) are 
unknown. In Section 4, the outcomes from Monte 
Carlo simulation studies are detailed. These results 
serve to evaluate the empirical efficacy of the proposed 
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estimator relative to existing methodologies. Lastly, 
Section 5 encapsulates the primary concluding remarks 
drawn from the research.

2.	 METHODOLOGY

2.1	 Notations
Under the two-stage sample design framework, the 

estimator was created with the presumption that 
population level auxiliary information is available at 
the cluster level and the cluster sizes were unknown. 
Let’s divide the population of components U= {1,…, 
k,…, NI} into the clusters U1, U2,…, Ui,…, INU . When 
there are two stages of selection, the units are referred 
to as primary stage units (psus) at cluster level and 
secondary stage units (ssus) at ultimate stage unit level. 
Ni is used to represent Ui's size.

We have, 1
IN

ii
U U

=
=


 and 1
IN

ii
N N

=
= ∑ .

Stage one includes selecting a sample of psus, sI 
from UI in accordance with the design pI(.) and the 
inclusion probability  Iiπ  and  Iijπ  at the psu level. The 
size of sI was nI psus. The population components with 
the labels k= 1,…, N are the ssus.

A sample si of size ni units is drawn from the psu Ui 
given that Ui was chosen at the psu level, according to 
a specified design pi(.) with inclusion probabilities /k iπ  
and /kl iπ . There is an invariance and independence 
property for the second stage sample. The inclusion 
probabilities at the first stage of selection were given 
as,

( )i IPr i sπ = ∈

Iijπ  = 
( )  ,       

  
,        .

I

Ii

Pr i and j s i and j belongs to
different psus
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


The inclusion probabilities for the second stage of 
selection were given as,

/ ( | )k l i IPr k s k sπ = ∈ ∈
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/

 and  |i ,   
     

,  and  are same.
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kl i

k i
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Let the study variable be ky  which was observed 
for k s∈ . The parameter to estimate was the population 
total 1 1

IN N
y k yii i

t y t
= =

= =∑ ∑  where  1
iN

yi ki
t y

=
= ∑  i-th psu 

total.

2.2	 Existing estimators under two stage sampling 
design
The central premise of the study involved the 

formulation of a novel two auxiliary calibration 
estimator within a two-stage sampling design. This 
estimator was designed considering scenarios where 
population-level auxiliary information is accessible at 
the cluster or Primary Sampling Unit (PSU) level, and 
the sizes of the clusters remained unknown, adhering to 
the bridge constraint established by Singh et al. (2011). 
Given these assumptions, only a limited number of 
estimators have been developed. Noteworthy among 
them are the calibration regression-type estimator 
proposed by Aditya et al. (2016), which utilizes single 
auxiliary information available at the PSU level, and 
the asymptotic Minimum Variance Bound (MVB) 
regression-type estimator introduced by Sahoo et  al. 
(1999). The latter estimator employs two auxiliary 
pieces of information accessible at the PSU level. 
A detailed overview of these existing estimators is 
presented below.

Estimator 1 (Aditya et al., 2016)
In the context of a two-stage sampling design, a 

calibration regression-type estimator was introduced. 
This estimator was developed with the premise that 
population-level auxiliary information is accessible 
at the cluster level, and accurate knowledge of the 
cluster total of the auxiliary information is available. 
The estimator is governed by two distinct constraints, 
with one of them being the bridge criteria as defined by 
Singh et al. (2011).

The estimator was given as follows, the Horvitz-
Thompson estimator within a two-stage sampling design 
is considered, with the assumption that population-level 
auxiliary information (x1i) is accessible at the cluster 
level. This auxiliary information (x1i) is observed for 
all the sampled clusters, and the accurate value of 
the summation 1  1

IN
ii

x
=∑  is available, while the cluster 

size remains unknown (in accordance with the bridge 
constraint established by Singh et  al. (2011)). The 
formulation of this estimator is provided as follows:

ĤTt  = 1 1 1 1
/

ˆ
ˆI I I in n n nyi k

Ii yi Iii i i k
Ii k i

t y
a t aπ

ππ π= = = =

 
= =  

 
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where, ŷit π  be the estimator of the cluster total and 
1

Ii
Ii

a
π

=  is the design weight. After calibration, the 

proposed estimator will be,

1
ˆ ˆInc

y Ii yii
t w tπ π=

= ∑
For this purpose, the following chi-square type 

distance function was minimized

( )2

1
In Ii Ii

i
Ii Ii

w a
a q=

−
∑

subject to the constraints

1  1  1 1
I In N

Ii i ii i
w x x

= =
=∑ ∑  and 1 1

I In n
Ii Iii i

w a
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The objective function which was minimized using 

Lagrange multiplier was given as,

( ) ( )2
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2
1 1

, I I I

I I

n n NIi Ii
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The new calibration weights were found as,
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Using the above mentioned calibrated weight, the 
estimator of the population totalwhen 1,Iiq =  was given 
as,
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Under SRSWOR the expression takes the form,
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Estimator 2 (Sahoo et al., 1999)
In 1999, Sahoo et al. introduced a comprehensive 

category of estimators within a two-stage sampling 
design, leveraging information from two auxiliary 
variables. Their proposed methodology involved 
an asymptotic Minimum Variance Bound (MVB) 
regression-type estimator. This estimation approach was 
built on the assumption of positive correlation between 
the two auxiliary variables and their availability at the 
cluster level of selection.

Let Y, X1and X2 be study and auxiliary variables of 
interest respectively. The asymptotic MVB regression 
estimator was given as,

( ) ( )1 1

2 2
ˆ i i i i

RG i i
Ii

Y X X
Y X X
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π
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( )1 2 1 2, ix x i iCov X Xσ =    and ( )1 1, iyx i iCov Y Xσ =   .
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Under simple random sampling whout replacement 
the estimator will be given as,

( ) ( )1 1 2 2
ˆ I
RG i i i i i i
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NY Y X X X X
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γ γ = − − − − 
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All the variance and the covariance term follows the 
standard form under two stage sampling design when 
selection at various stages were done using SRSWOR 
as given in Sukhatme et al. (1984).

3.	 PROPOSED ESTIMATOR
In this research, we examine the parameters Y, X1 

and X2, which stand for the primary focus of the study and 
two additional supporting variables, respectively. The 
specific observed values of these variables are labeled 
as y, x1and x2. Instead of adopting the conventional 
linear methods proposed by Clement et al. (2014) for 
the limiting equation, we embrace the methodology 
introduced by Ozgul (2018). In this approach, we 
utilize the ratio of cumulative values or averages from 
the auxiliary variables as a nonlinear restriction. This 
strategy assumes the existence of accurate population-
level cumulative values or averages for the ratio of the 
supplementary variable.

To illustrate this, let’s consider an example where a 
surveyor needs to estimate the agricultural stock price. 
In this case, the surveyor may decide to use the price/
earnings ratio of the farmers as an auxiliary variable, as 
the ratio of these two variables is sufficient to provide 
the required information. By using the ratio instead 
of using the variables separately, we can simplify 
the estimator compared to the approach proposed by 
Clement et  al. (2014) while minimizing a chi-square 
type loss function.

Furthermore, we bring forth an additional 
limitation referred to as the “bridge constraint,” 
following the proposal of Singh et  al. (2011). This 
constraint is implemented to enhance the performance 
of the estimator and acts as a connection between the 
conventional linear regression estimator and the GREG 
(Generalized Regression) estimator. Let the proposed 
estimator be,

1
ˆ ˆIncp

y Ii yii
t w tπ π=

= ∑
For estimating the calibrated weight first the chi-

square type loss function was minimized. Let the chi-
square type distance function be,

( )2
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The above function will be minimized subject to 
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1

 ˆ
In

Ii Ii Ii
i

w R R
=

=∑  and 
1 1

I In n

Ii Ii
i i

w a
= =

=∑ ∑ .

where, 11

21

ˆ
I

I

n
ii

Ii n
ii

x
R

x
=

=

= ∑
∑

 and 11

21

I

I

N
ii

Ii N
ii

X
R

X
=

=

= ∑
∑

 are sample 

and population ratios of two auxiliary variables 
respectively.

The objective function be defined as,
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which was minimized by using the method of 
Lagrange multiplier to obtain the calibrated weight 
 Iiw  . After minimization the new weight was found as,

( )1 2
ˆ

Ii Ii Ii Ii Iiw a a q R= + λ + λ � (1)
Now taking summation on both sides for equation 

(1),

1 2
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Now multiplying equation (1) with ˆ
IiR  and then 

taking summation and putting in the constraint equation 
gives,

2
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From equation (2) and (3) we can write,

1 1 1
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Now by solving eq. (4) using system of linear 
equations, the values of 1λ  and 2λ  are obtained as 

1
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After solving the above equations, the new 
calibrated weight will be given as,
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Using the new calibrated weight, the proposed 
estimator will be given as,
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The expression of the proposed estimator under 
simple random sampling without replacement sampling 
scheme will be given as,
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3.1	 Variance of variance of proposed estimator
The approximate variance of proposed estimator, 

derived using the Taylor series linearization technique 
following Sarndal et al. (1992)was given as,
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For determining the approximate estimator of 
variance of the proposed estimator suitable re-sampling 
technique can be employed in future studies.

4.	 EMPIRICAL EVALUATIONS
In this section, we present the findings from a 

simulation study designed to assess the practical 
efficacy of the recommended estimator in comparison 
to two alternative estimators. The first alternative is the 
calibration regression estimator introduced by Aditya 
et al. (2016), while the second is the regression estimator 
proposed by Sahoo et al. (1999). This evaluation was 
conducted within a two-stage sampling framework, 
assuming that auxiliary information at the cluster stage 
is available. To gauge the performance of the suggested 
estimator, we generated an artificial population using 
model-based Monte Carlo simulation. Subsequently, 
we drew a total of 5000 samples from this synthetic 
population to thoroughly evaluate the performance of 
the proposed estimator. Previous scholarly work has 
consistently demonstrated that the incorporation of 
auxiliary information notably enhances the accuracy 
of estimators, yielding superior outcomes compared 
to estimators that lack such supplementary variables. 
Consequently, we compared our proposed estimator to 
the existing methods introduced by Aditya et al. (2016), 
which utilize two constraint equations and a single 
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auxiliary variable at the cluster level, and by Sahoo 
et al. (1999), which employ two auxiliary variables at 
the PSU level.

This comparative analysis was based on two 
primary criteria: the percentage relative bias (%RB) 
and the percentage root mean square error (%RMSE).

The performance measures used for efficiency 
comparison were,

( )
1

1% 100
r̂R

r

T T
RB

R T=

−
= ×∑

( )2

1

1% 100
r̂R

r

T T
RRMSE

R T=

−
= ×∑

where, T is the actual value of the population total, 
r̂T  is the calculated value of the estimator for the rth run 

and R is total the number of simulations.
A population of size N=5000 was generated. Under 

two stage sampling case, population is divided into 
primary stage units (psus) and secondary stage units 
(ssus). In simulation study, we fixed the number of psus 
as 100IN =  and with each psus of size ( )50 1,..,100iN i= =

. Here out of NI psus we have selected a sample nI psus 
with varying sizes i.e.10, 15, 20 and 25. Within each 
psus, out of Ni units we have selected samples of 
( )1,..,i In i n=  units. For each value of In , we considered 

three choices for ssus  in  as, i in p N= × , where p 
represents the proportion of ssus selected in the sample 
from each sample psu. We choose three values of p  as 
0.20, 0.30 and 0.40. This led three values for in  as 10, 
15 and 20. So, we have total twelve combinations of 
sample sizes. For each case, a simple random sample 
without replacement (SRSWOR) sample of size In  
psus were first drawn and then from sample psus a 
sample of in  ssus were drawn by SRSWOR. 
Subsequently, the estimation of population total was 
carried out. In particular, we repeated the simulation 
process R= 10000 times and calculated the estimates of 
population total. First the auxiliary variable x1 and x2 is 
generated independently from a normal distribution 
with mean 5 and variance 2

xσ (1) i.e., ( )1 5,1x N∼  and 
( )2 3,1 .x N∼  After generating both x1and x2, variable 

under study y was generated from the model

0 1 1 2 2 ; 1, 2,...,i i i iy x x e i Nα α α= + + + = ,

where, errors ei ( )1,2,...,i N=  are generated from 
standard normal distribution with mean 0 and variance 

2
 eσ  i.e. ( )2 0,i ee N σ∼  where 2

eσ  is considered as 1. 
Here, the values of 0 70 α =  and 1 24, 5 α α= =  has been 
chosen randomly and fixed throughout the simulations. 
The value of the correlation coefficient considered 
between x1and x2 were in the tune of around 0.71 and 
the correlation between the study variable and the 
auxiliary variables were considered to be around 0.81 
and 0.87 respectively. The proposed estimator is 
compared with the existing estimators based on %RB 
and %RRMSE. Table 1 presents the various 
combinations of psu and ssu sample sizes which are 
used for simulation studies. Table 2 represents the 
various estimators that were considered for comparison. 
Table 3 and Table 4 presents %RB and %RRMSE of 
the proposed and existing estimators respectively.
Table 1. Different combinations of sample sizes used in simulation 

studies

Set In in Total Sample 
size

1 10 10 100

2 10 15 150

3 10 20 200

4 15 10 150

5 15 15 225

6 15 20 300

7 20 10 200

8 20 15 300

9 20 20 400

10 25 10 250

11 25 15 375

12 25 20 500

Table 2. Estimators considered under simulation study

SI. No. Estimators Form of the Estimators

1. ( )1T̂ ( )1  1  1 1
ˆˆ ˆ I IN nc

y HT i Ii ii i
t t b x a xπ = =

= + −∑ ∑
2. ( )2T̂ ( ) ( )1 1

2 2
ˆ i i i i

RG i i
Ii

Y X X
Y X X

γ
γ

π

 − − = − −
 



3. ( )3T̂
1

ˆ ˆˆ ˆ Inc I
y HT Ii Iii

I

Nt t R R
nπ β

=

 
= + − 

 
∑

Table 3 and Table 4 presents %RB and %RRMSE 
of the proposed and existing estimators respectively.
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Table 3. Values of % RB of the proposed ( ( )3T̂ ) and existing 

estimators ( ( )1T̂ &
( )2

 T )

No. of PSUS
Selected ( In )

No. of SSUS
Selected ( in )

( )1T̂ ( )2T̂ ( )3T̂

10

10 0.222 0.170 0.163

15 0.116 0.109 0.107

20 0.152 0.141 0.133

15

10 0.117 0.112 0.097

15 0.136 0.125 0.122

20 0.104 0.099 0.095

20

10 0.145 0.132 0.129

15 0.103 0.097 0.095

20 0.088 0.081 0.080

25

10 0.136 0.123 0.118

15 0.086 0.080 0.079

20 0.059 0.053 0.053

Table 4. Values of % RRMSE of the proposed ( ( )3T̂ ) and existing 
estimators ( ( )1T̂ & ( )2T̂ )

No. of PSUS
Selected ( In )

No. of SSUS
Selected ( in )

( )1T̂ ( )2T̂ ( )3T̂

10

10 1.199 1.150 1.136

15 0.962 0.651 0.645

20 0.664 0.446 0.435

15

10 1.241 0.585 0.567

15 0.668 0.480 0.469

20 0.752 0.521 0.509

20

10 0.661 0.522 0.505

15 0.664 0.506 0.499

20 0.539 0.501 0.493

25

10 0.646 0.428 0.421

15 0.552 0.422 0.419

20 0.435 0.301 0.299

Upon careful examination of Table 3, it is evident 
that the proposed estimator exhibits a lower percentage 
relative bias (%RB) compared to the existing estimators 
under a two-stage sampling design, considering various 
combinations of PSU and SSU sample sizes. The 
highest %RB value of 0.163 is observed for In  =10 and 

In =10 (overall sample size of 100), while the lowest 
%RB value of 0.053 is observed for In =25 and in =20 
(overall sample size of 500). The proposed estimator 
demonstrates an improved precision in terms of relative 
bias compared to the existing estimators as the sample 
size increases.

Furthermore, it is apparent that the proposed 
estimator outperforms the Sahoo et al. (1999) regression 
type estimator with two auxiliary variables under a 
two-stage sampling design when population-level 
auxiliary information is available at the PSU level. This 
superiority of the proposed estimator is consistent 
across various sample sizes of In , ranging from 10 to 
20, with lower %RB values compared to both existing 
estimators.

Additionally, it can be observed that the proposed 
estimator performs better than the Sahoo et al. (1999) 
regression type estimator with two auxiliary variables 
under a two-stage sampling design when population-
level auxiliary information is available at the PSU level 
in most sample sizes. For sample sizes of In ≥25 and in
≥20, both estimators with two auxiliary variables 
exhibit similar performance in terms of %RB. Since 
sample sizes typically range around 15-20% of the 
population, it can be concluded that the proposed 
estimator is superior to the Sahoo et  al. (1999) 
regression type estimator in terms of %RB.

Moreover, the proposed estimator also 
demonstrates better performance than the Aditya 
et al. (2016) calibration estimator with two constraint 
equations, similar to the proposed estimators that 
include the bridge constraint of Singh et  al. (2011). 
This implies that the proposed estimator outperforms 
both the existing calibration regression type estimator 
and the MVB regression type estimator under a two-
stage sampling design when population-level auxiliary 
information is available at the cluster level, considering 
the criterion of %RB.

From table 4, it can be seen that, the % RRMSE of 
the proposed estimator is less than the existing 
estimators under two stage sampling design for various 
combinations of psu as well as ssu sample sizes. It is 
observed that the value of the percentage relative root 
mean squared error is highest 1.136 for In =10 and 

in  =10 (overall sample size of 100) and it is lowest 
0.299 for In = 25 and in  = 20 (overall sample size of 
500). With increase in the sample size there is significant 
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gain in precision from the point of view of %RRMSE 
of the proposed estimator. Also, it is observed that there 
is decrease in percentage relative root mean squared 
error with increase in the number of ssus for selected 
psus. From the above results, it is clear that the 
%RRMSE for selected psus, decreases with increase in 
number of ssus selected under each psus for both the 
proposed and existing estimators. Further, it can also be 
seen across various sample sizes of In , when in  varies 
between 10 to 20, the proposed estimator shows lesser 
%RRMSE w.r.t. the existing estimators. Further, with 
increase in sample sizes beyond 25 and 20,I in n≥ ≥  
both the Sahoo et al. (1999) regression type estimator 
and proposed calibration estimator with two auxiliary 
information were found to be performing at per w.r.t. 
%RRMSE with little improvement in the results from 
the proposed estimator. Hence, it can be concluded that 
the proposed estimator is performing better than both 
the existing estimators under two stage sampling design 
when population level auxiliary information was 
available at the cluster level.

Table 4 provides further insights into the 
performance of the proposed estimator by examining 
the percentage relative root mean squared error 
(%RRMSE) in comparison to the existing estimators 
under a two-stage sampling design, considering various 
combinations of PSU and SSU sample sizes. The 
highest % RRMSE value is 1.136, observed for In  =10 
and in =10 (overall sample size of 100), while the 
lowest % RRMSE value is 0.299, observed for In = 25 
and in  = 20 (overall sample size of 500). As the sample 
size increases, there is a significant improvement in 
precision in terms of % RRMSE for the proposed 
estimator.

Additionally, the % RRMSE decreases with an 
increase in the number of SSUs selected for each PSU, 
indicating that increased SSU selection leads to 
decreased percentage relative root mean squared error 
for both the proposed and existing estimators. Across 
various sample sizes of In , when in  varies between 10 
to 20, the proposed estimator consistently exhibits a 
lower % RRMSE compared to the existing estimators.

Furthermore, for sample sizes beyond 
25 and 20I in n≥ ≥ , both the Sahoo et  al. (1999) 

regression type estimator and the proposed calibration 
estimator with two auxiliary variables demonstrate 
similar performance in terms of % RRMSE, with a 

slight improvement in the results from the proposed 
estimator. Consequently, it can be concluded that the 
proposed estimator outperforms both the existing 
estimators under a two-stage sampling design when 
population-level auxiliary information is available at 
the cluster level, considering the criterion of % RRMSE.

5.	 CONCLUSIONS
In this study a new type of calibration estimator was 

introduced which employs two auxiliary variables to 
estimate the population total within a two-stage sampling 
design context. The estimator employs a non-linear 
constraint function, leveraging auxiliary information at 
the cluster level from the population. Additionally, the 
estimator integrates the bridge constraint methodology 
introduced by Singh et  al. (2011) in its formulation. 
Through extensive Monte Carlo simulations conducted 
on synthetic datasets, the proposed estimator exhibited 
remarkable performance when contrasted with the 
existing methods: the Aditya et al. (2016) calibration 
estimator incorporating two constraint equations and 
the Sahoo et  al. (1999) regression-type estimator 
using two auxiliary variables. This assessment was 
conducted using the evaluation criteria of percentage 
relative bias (% RB) and percentage root mean square 
error (% RRMSE).

Moreover, the incorporation of the bridge 
constraint from Singh et  al. (2011) facilitated the 
asymptotic convergence of the proposed estimator to 
the classical linear regression estimator developed by 
Hansen et  al. (1953). The performance of the newly 
proposed estimator showcased improvement with 
increasing sample sizes at both the Primary Sampling 
Unit (PSU) and Secondary Sampling Unit (SSU) levels. 
Furthermore, the proposed estimator consistently 
outperformed the existing estimators in terms of %RB 
and %RRMSE, especially as the overall sample size 
(combining PSU and SSU) expanded.

Based on the findings, it can be concluded that the 
proposed two-auxiliary calibration estimator, designed 
for a two-stage sampling design scenario with available 
population-level auxiliary information at the cluster 
level and unknown cluster sizes, presents a robust 
approach for accurately estimating the population total.
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