
1.	 INTRODUCTION
Rainfall forecasting is an important problem faced 

by scientists throughout the world. The dynamic nature 
of the weather phenomenon makes forecasting rainfall 
a cumbersome procedure. Extreme variations in rainfall 
predictions are largely a result of climate change. 
Rainfall is one of the important weather phenomena that 
have a direct and indirect influence on the daily lives 
of human beings. Exact information regarding rainfall 
is required to guarantee proper management of water 
resources. Compared to other weather parameters, 
rainfall shows the most variations due to unpredictable 
sudden changes and the complexity of atmospheric 
processes. Thus, modeling and forecasting rainfall 
with maximum accuracy is one of the main challenges 
faced by scientists all over the world, even though 
there has been a huge development in strategies for 
weather forecasting in recent decades. The forecasting 
of rainfall with maximum accuracy can help reduce the 

damage and also ensure proper catchment management. 
Qualitative and quantitative management strategies can 
reduce the impacts of sudden uneven rainfall, droughts, 
and floods and also minimize the damage caused by 
them.

The forecasting of rainfall directly influences 
agriculture and allied sectors, especially in tropical 
countries like India, with an annual rainfall of 1194mm. 
The management of irrigation strategies for various 
crops heavily depends on it. In India, the southwest 
monsoon, which lasts from June to September, is 
responsible for more than 75% of the country’s yearly 
rainfall. The growth and development of India’s Kharif 
crops depend heavily on the south-west monsoon. 
More than half of the crops cultivated in India are 
directly or indirectly affected by unexpected changes in 
rainfall. Kerala is one of the states that depends on both 
the south-west (June to September) and north-west 
monsoon (October to November) for various purposes, 
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including basic necessities and agriculture activities. 
When compared to the north-west monsoon, the south-
west monsoon contributes the most rainfall to Kerala. 
The variation or fluctuations in monsoon rainfall could 
disturb or affect people’s livelihoods. Thus, rainfall 
forecasting is crucial because it enables us to take the 
necessary precautions to limit the negative impacts of 
fluctuations in rainfall.

Anctil et  al. (2004) investigated the performance 
of artificial neural network (ANN) with validation of 
multi-layer perceptrons (MLPs) and compared it to 
other parsimonious models employed for rainfall-runoff 
prediction and the results obtained from the conceptual 
rainfall-runoff model were consistent, such that for 
shorter periods of time, conceptual models showed 
better results, whereas for longer periods of time, MLPs 
were more beneficial. For a period of five years (1997–
2002), Ramirez et al. (2005) undertook a study about 
forecasting daily rainfall using MLP in six different sites 
in the Sao Paulo region during summer and winter and 
the results indicated that ANN forecasted models for 
different weather parameters were superior and more 
accurate than the multiple linear regression and regional 
ETA models specified for the same. The ANN model 
was used by Hung et al. (2009) to conduct a study on 
rainfall prediction in Bangkok, Thailand. Comparing 
the generalized feed-forward ANN model to the MLP 
neural network model, the results revealed that the 
generalized feed-forward ANN model demonstrated 
more accuracy in the prediction of rainfall. Tripathy 
et al. (2011) undertook a study on weather forecasting 
using ANN and particle swarm optimization (PSO). 
The basic weather parameters, including rainfall, 
humidity, and minimum and maximum temperatures, 
were forecasted using the MLP-NN and PSO methods 
for understanding and interpreting the future weather 
conditions. The experimental results concluded that the 
method used was appropriate and provided meaningful 
results. Islam et  al. (2016) conducted a study on 
monthly weather forecasting of heavy rainfall through 
an ANN model with a feed-forward MLP network 
using the monthly rainfall data of Barisal, Bangladesh, 
and also applied the mean square error (MSE) function 
to ascertain whether the projected model was validated.

Dash et  al. (2017) underwent a study about the 
prediction of rainfall using single-layer feed-forward 
neural networks (SLFN) and extreme learning machines 
(ELM) and the results indicated that the mean absolute 

error for the ELM (3.87%) model was comparatively 
smaller than the SLFN (6.39%). Deo et  al. (2017) 
conducted a study on the wavelet extreme learning 
machine (W-ELM) model for predicting drought 
index and the results suggested that the W-ELM 
model showed better performance compared to ELM, 
LSSVR (least squares support vector regression), 
ANN, and their wavelet-equivalent counterparts 
(W-ANN, W-LSSVR). Cholissodin and Sutrisno 
(2018) investigated the use of simplified deep learning 
techniques based on ELM for forecasting rainfall. The 
forecasting of rainfall is important for planning the 
agriculture activities of every country in the world. But 
due to sudden changes in atmospheric processes, the 
accuracy of predicted results using different models 
was less than optimal. In this study, an ELM-based 
simplified machine learning model was used to predict 
rainfall with maximum accuracy. The results suggested 
that simplified deep learning techniques based on 
extreme learning machines produced more accurate 
results compared to the ELM model. Dash et al. (2018) 
conducted a study about forecasting rainfall in Kerala, 
India, using K-nearest neighbour (KNN), ANN and 
ELM and the results advocated that ELM gives more 
accurate results compared to ANN and KNN models 
and the best ELM architecture selected for modeling 
the rainfall was 8-15-1. Yaseen et  al. (2021) used 
data intelligence models for projecting a standardized 
precipitation index in Bangladesh and findings showed 
that for all four different meteorological stations, the 
ELM model produced the most precise prediction 
when compared to other models employed in the study.

Scientists all over the world have developed 
different methods for forecasting time series data over 
the years. The forecasting methodologies include both 
statistical and machine-language approaches. For 
forecasting, especially weather parameters, stochastic 
processes such as SARIMA (seasonal autoregressive 
integrated moving average), ETS (exponential 
smoothing), GARCH (generalized autoregressive 
conditional heteroscedasticity), SMA (simple moving 
average), and MLR (multiple linear regression) have 
been used in recent years. The machine-language 
approach using neural networks is the most advanced 
method developed for forecasting weather parameters. 
Neural networks have a good ability to model complex 
data structures. The different types of neural network 
models employed for forecasting weather parameters 
are ANN and WNN (wavelet neural networks) (Paul 
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et  al., 2013). Hybrid models, including ARIMAX-
GARCH (Paul et al., 2014), SARIMA-ANN (Mukaram 
and Yusof, 2017), ETS-ANN (Panigrahi and Behera, 
2017), SARIMA-GARCH (Pandey et al. 2019), etc., are 
also used for forecasting time series data. In this study, 
a comparison of machine language approaches using 
ANN, MLP feed-forward neural networks, and ELM 
neural network methods is employed for modeling and 
forecasting rainfall in different zones of Kerala.

2.	 MATERIALS AND METHODS

2.1	 Study area and data collection
The present study is mainly focused on modelling 

and forecasting the monthly rainfall in different parts of 
Kerala using artificial neural network (both MLP and 
ELM). R software was the tool used for undertaking 
analysis of monthly rainfall data (Crone and Kourentzes, 
2010; Kourentzes et al., 2014; Ord et al., 2017). The 
data was taken from three different parts of Kerala, 
such as the northern, central and southern zones. The 
monthly rainfall data for the northern zone of Kerala 
was collected from RARS Pilicode in Kasaragod 
district, which is the north-most district of Kerala, over 
a period of 39 (1982–2020) years. The geographical 
location of Pilicode is latitude and longitude and has a 
15-metre elevation. The average total rainfall received 
in a year at Pilicode is 3379 mm, and most of the rainfall 
was received in the month of June.

The monthly rainfall data for the central zone 
of Kerala was collected from RARS Pattambi in 
Palakkad, which is the centre-most district of Kerala, 
over a period of 39 years (1982–2020). The location of 
Pattambi is represented by the coordinates 10.8057 N 
latitude and 76.1957 E longitude. The Pattambi region 
within the central zone of Kerala has an average annual 
rainfall of 1838 mm, and over the month of July, it 
showed maximum rainfall.

The monthly rainfall data for the southern zone 
of Kerala was collected from RARS Vellayani in 
Trivandrum, the southernmost district of Kerala, over 
a period of 35 years (1985–2020). Trivandrum is also 
known as the capital city of Kerala. The geographical 
location of Vellayani is at 8.4316N latitude and 76.986E 
longitude, with an elevation of 8m above mean sea 
level. The mean annual rainfall of Vellayani was 1704 
mm, and over the years, June received the maximum 
amount of rainfall. The three different locations from 

which monthly rainfall data is taken are indicated in 
Fig. 1.

Fig. 1. Study area map for northern, central and southern zones of Kerala

3.	 METHODOLOGY

3.1	 Artificial Neural Network (ANN)
The ANN is one among the highly advanced 

computation models applied to identify particular 
patterns that exist among input and output (Shukla 
et al., 2021). Human brains are used as inspiration while 
creating ANNs, which are made up of interconnected 
nodes of input, hidden layer, and output (Lippmann, 
1987). Neural networks are employed in different fields 
like forecasting, speech processing, robotic control, 
image recognition, machine vision, state estimation, 
etc. (Rosenblatt, 1962). The patterns of data consisting 
of complex structures with high dimensions are easily 
identified with the help of artificial neural networks 
(Nalcaci et al., 2019). ANN has been successfully used 
in the forecasting of weather parameters, especially 
rainfall, over the last two decades (Sahai et al., 2000; 
Bodri and Cermak, 2000; El-Shafie et  al., 2011; 
Krishnan et  al., 2022; Krishnan et  al., 2023). The 
estimation algorithm employed in ANN is a well-
known back propagation algorithm (Rumelhart et al., 
1986). The ANN is competent to regulate or investigate 
a specific study and derive facts using analogous 
dispensation (Venkatesh and Bind, 2022).

3.1.1 Multi-layer Perceptron (MLP) Feed Forward 
Neural Network
A feed-forward neural network is used for 

forecasting weather parameters, which can transform 
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real-valued inputs into outputs (Ramirez et al., 2005). 
Multi-layer perceptron (MLP) is one of the most 
accepted methods used for modeling and forecasting 
different weather parameters using ANN. A multi-layer 
perceptron is a feed-forward, back-propagation neural 
network consisting of all the properties of a neural 
network such that all the input values depend on the 
output values (Özmen and Weber, 2014).

The MLP feed-forward neural network model with 
a single hidden layer is mathematically expressed as 
(Haykin, 1999):

0 0
1 1

ˆ ,
q p

t j j ij t i t
j i

z f zβ β γ γ ε−
= =

 
= + + + 

 
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where, t iz − ( )1 2, , ...,i p=  represents the p  inputs, 
ˆtz  denotes the output, jβ ( )0 1 2, , , ...,j q=  and ijγ

( )0 1 2 0 1 2, , , ..., ; , , , ...,i p j q= =  indicates connection 

weights and tε  is the error term. The letters p  and q  
indicate number of inputs and hidden nodes, 
respectively, 0β  and tjγ  are constant terms and f  is 
the activation function (Waciko and Ismail, 2020). An 
architecture of multi-layer perceptron feed forward 
neural network is depicted in Fig. 2.

Fig. 2. Architecture of MLP feed forward neural network

3.1.2 Extreme Learning Machine (ELM) Neural 
Network
Huang et al. (2006) created another sort of neural 

network called ELM consisting of a single hidden layer 
and a feed-forward neural network such that it does 

not demand tuning of the hidden layers and retains 
extremely high learning speed (Wang et al. 2015). The 
specialty of ELM is that there is a random selection of 
input weights and hidden biases (Dash et  al., 2017). 
The usage of ELM in forecasting showed much better 
performance compared to MLP since it has time-saving 
and tuning-tree benefits and also extracts non-linear 
information from the data.

The mathematical formula for the ELM-NN model 
for output is expressed as:

( ) ( ) ,f x h x β= �  (2)

where ( )f x  indicates an output vector and ( )h x  
is the hidden layer of the output vector

( ) ( ) ( )1 2, , ...,
T

nh x h x h x   and ( )h x  is playing a crucial 
role by mapping the input set with n . -dimension into 
the space of the hidden layer with L -dimension. The 
coefficient [ ]1 2, , ..., T

Lβ β β β=  expresses the weight 
vector, which connects the hidden layer with the output 
layer. The architecture of an extreme learning machine 
neural network is presented in Fig. 3.

Fig. 3. Architecture of ELM feed forward neural network

3.2	 Comparison and Evaluation of the predicted 
model
The efficacy of the model is validated using 

different methods like mean square error (MSE), root 
mean square error (RMSE) and mean absolute error 
(MAE).
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3.2.1 Mean square error
The MSE can be defined as the mean of the square 

of the disparity among actual iy  and predicted iy

values.

( )2

1

1 n

i i
i

MSE y y
n =

= −∑  � (3)

3.2.2 Root mean square error
The RMSE is defined as the square root of the 

MSE.
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3.2.3 Mean absolute error
The MSE can be easily defined as the mean of the 

absolute disparity among actual iy  and predicted iy

values.

1

1 n

i i
i

MAE y y
n =

= −∑  � (5)

The model with least value for MSE, RMSE and 
MAE is selected as the best performing model.

4.	 RESULTS AND DISCUSSION
The current research work focuses on modelling 

and forecasting rainfall in the northern, central and 
southern zones of Kerala, ANN with multi-layer 
perceptron feed-forward networks and extreme learning 
machine neural networks are employed, and results are 
compared to determine which model performs better in 
the respective zones. The rainfall data is split into two 
parts: training and testing data sets. The testing data for 
northern and central Kerala consists of data from 1982 
to 2015 (34 years), whereas for southern Kerala, the 
testing data is from 1985 to 2015 (31 years). The testing 
set consists of data from 2016 to 2020. The time series 
plots of rainfall for three different zones of Kerala are 
given in Fig. 4.

a)	 Northern Zone

0

500

1000

1500

2000

19
82

19
83

19
84

19
86

19
87

19
88

19
90

19
91

19
92

19
94

19
95

19
96

19
98

19
99

20
00

20
02

20
03

20
04

20
06

20
07

20
08

20
10

20
11

20
12

20
14

20
15

20
16

20
18

20
19

20
20

R
ai

nf
al

l

Monthly Data over the Years

Monthly Rainfall in the Northern Zone of Kerala

b)	 Central Zone
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c)	 Southern Zone

0
100
200
300
400
500
600
700
800

19
85

19
86

19
87

19
88

19
89

19
90

19
92

19
93

19
94

19
95

19
96

19
97

19
99

20
00

20
01

20
02

20
03

20
04

20
06

20
07

20
08

20
09

20
10

20
11

20
13

20
14

20
15

20
16

20
17

20
18

20
20

R
ai

nf
al

l

Monthly Data over the Years

Monthly Rainfall in the Southern zone of Kerala

Fig. 4. Time series plot for monthly rainfall for northern, central and 
southern zones of Kerala

The time series plots for rainfall clearly depict that 
the northern zone of Kerala is receiving the maximum 
amount of rainfall compared to the central and southern 
zones of Kerala. The rainfall in the southern zone is 
the least, and it shows a different seasonal pattern 
throughout the year, whereas the seasonal patterns in 
the northern and central zones are slightly similar. The 
neural network models MLP and ELM are applied 
to the testing data using R software. The best model 
architecture selected for the rainfall using MLP and 
ELM in the northern, central and southern zones is 
described in Table 1.

Table 1. Best selected architecture for MLP and ELM in each 
zones of Kerala

Zone Model Architecture*

Northern MLP 22-5-1

ELM 22-100-1

Central MLP 23-5-1

ELM 23-100-1

Southern MLP 23-5-1

ELM 23-100-1

 *No. of Input nodes-No. of Hidden Layers-No. of Output Nodes

The next step is the determination of the best 
method for modeling the rainfall. The rainfall for 
the following five years is projected using both MLP 
and ELM models and compared with the testing data 
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to ascertain the most effective way of modeling the 
precipitation.

The comparison between actual rainfall and 
predicted rainfall using MLP and ELM is illustrated in 
Fig. 5.

a)	 Northern Zone

b)	 Central Zone

c)	 Southern Zone

Fig. 5. Comparison of forecasted monthly rainfall using MLP and ELM 
models with actual observations

The comparison of rainfall predictions between 
MLP and ELM is displayed in Fig. 5. But in order to 
confirm which model performs better in forecasting 
rainfall in the respective zones of Kerala, the error 
values MSE, RMSE and MAE are calculated using 
observed and predicted values, which are presented in 
Table 2.

Table 2. Validation and Evaluation of MPL and ELM for each 
zones of Kerala

Zone Model MSE RMSE MAE

Northern MLP 17004.85 130.40 84.76

ELM 18692.03 136.71 79.81

Central MLP 15910.49 126.13 90.92

ELM 28039.67 167.45 145.10

Southern MLP 29273.07 171.09 145.58

ELM 31734.40 178.14 158.50

The results shown in Table 2 clearly suggest that 
the MLP method is outperforming the ELM method 
in modeling and forecasting rainfall in the northern, 
central and southern zones of Kerala. It is noted that 
for the central and southern zones, the MSE, RMSE 
and MAE values of the MLP model showed the least 
error values, whereas for the northern zone, MAE 
showed the least value for the ELM method, but MSE 
and RMSE were the lowest for the MLP method. This 
clearly indicated that the MLP method is showing the 
best performance in three different zones of Kerala. 
It is to be noted that the forecasting of rainfall using 
MLP and ELM is not very accurate in the southern 
zone because the fluctuations in the seasonal pattern 
of rainfall over the years are higher compared to the 
northern and central zones of Kerala. Using the MLP 
model, the predicted rainfall for Kerala’s various zones 
for the subsequent five years is displayed and validated 
in Fig. 6.

Fig. 6. Comparison of monthly rainfall forecasted for next 5 years using 
MLP for northern, central and southern zones of Kerala

Fig. 6 clearly shows that for the next 5 years, the 
highest rainfall will be received in the northern zone 
of Kerala, whereas the least rainfall will occur in the 
central zone of Kerala. Fig. 6 also claims that the 
southern zone will get constant rainfall throughout the 
months for the next 5 years (2021-2025). The results of 
forecasting the rainfall also suggested there will be an 
increase in rainfall in the northern zone of Kerala, and 
maximum rainfall will be observed in June and July. 
The study also indicated that for the central zone of 
Kerala, there will be almost similar rainfall compared 
to previous years. The southern zone also showed an 
increasing tendency for rainfall, with the maximum 
amount of rainfall predicted in June and October. The 
study urges farmers to take the necessary precautionary 
measures to cope with increasing amounts of rainfall 
in different zones of Kerala so that crop loss can be 
avoided. The study also suggested that necessary 
measures should be taken to avoid water stagnation 
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in heavy rainfall-predicted zones and to maintain the 
availability of water throughout the year in each zone 
of Kerala.

5.	 CONCLUSION
The modeling and forecasting of rainfall with 

maximum precision is one of the most important 
problems faced by researchers, even though there 
has been much development in strategies related to 
the forecasting of weather parameters. Rainfall is 
an important weather parameter that directly and 
indirectly affects agriculture and allied sectors. Sudden 
changes and uneven rainfall can adversely affect crop 
yield and may result in crop loss, such that prediction 
of rainfall with maximum accuracy is needed to take 
control measures to avoid such problems. In this study, 
for modeling and forecasting rainfall with maximum 
precision, ANN with MLP feed forward neural 
networks and ELM neural networks were used in three 
different zones of Kerala. The monthly rainfall data 
was collected for a period of 39 years (1982–2020) 
from regional agricultural research stations (RARS), 
Pilicode and Pattambi, for the northern and central 
zones of Kerala, whereas for the southern zone of 
Kerala, data was collected from RARS, Vellayani, for a 
period of 36 years (1985–2020).

The models for rainfall are fitted using MLP and 
ELM, and in order to validate the model, forecasting 
of rainfall was carried out. Based on MSE, RMSE, 
and MAE values, the model’s validity was determined. 
In terms of predicting rainfall, the results showed 
that the MLP model performed better than the ELM 
model. The MLP and ELM models showed much 
accuracy in forecasting rainfall in the northern and 
central zones, whereas in the southern zone the error 
values are comparatively higher, which indicates the 
fluctuations in seasonal patterns are higher. However, 
an outperforming MLP model was employed to project 
future rainfall in different zones of Kerala. The predicted 
rainfall showed maximum rainfall in the northern zone 
and minimum rainfall in the central zone, whereas 
steady rainfall throughout the months was predicted in 
the southern zone of Kerala for the next 5 years (2021-
2025). The study also suggested that there will be an 
increase in rainfall in the northern and southern zones 
of Kerala, whereas almost similar rainfall is predicted in 
the central zone of Kerala compared to earlier periods. 
Necessary measures should be taken to avoid problems 
of water stagnation in high rainfall zones and also to 

maintain the availability of water throughout the year 
in each zone of Kerala.
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