

# Generalized Class of Some Novel Estimators under Ranked Set Sampling

**Rajesh Singh and Anamika Kumari** 

Banaras Hindu University, Varanasi

Received 06 March 2023; Revised 05 April 2023; Accepted 14 April 2023

### **SUMMARY**

In this paper, mean estimators under ranked set sampling are reviewed. In this paper, we have also presented some improved novel classes of estimators for estimating the population mean using auxiliary variable under ranked set sampling. We have derived the expressions for bias and mean squared error of the proposed estimators up to the first order of approximation and the proposed classes of estimators are found to be more efficient than the other estimators in this study. In an attempt to verify the efficiencies of proposed estimators, theoretical results are supported by empirical study.

Keywords: Study variable; Auxiliary variable; Bias, Mean square error; Ranked set sampling.

MSC: 62D05

## **1. INTRODUCTION**

Ranked set sampling (RSS) is an improved sampling method over simple random sampling (SRS). McIntyre (1952) was the first to explain RSS for estimating the population mean. McIntyre (1952) showed that the RSS estimator is an unbiased estimator of the population mean. He also showed that the RSS estimator of the population mean is more efficient than the SRS estimator based on the same sample size. Takahasi and Wakimoto (1968) gave the necessary mathematical theory of RSS. Dell and Clutter (1972) considered the case of perfect and imperfect ranking and showed that the mean under RSS is an unbiased estimator of the population mean.

Samawi and Muttlak (1996) suggested ratio estimators of population mean in RSS and showed that the RSS estimators gave improved results over their SRS counterparts. Ganeshand Ganeslingam (2006) compared RSS with SRS for the estimation of the mean and the ratio. He concluded that RSS gives a better estimate for both the mean and the ratio. Singh *et al.*  (2014) suggested a general procedure for estimating the population mean using RSS. Bouza and Al-Omari (2014) and Bouza *et al.* (2018) provided a review of RSS, its modification, and its application. Mandowara and Mehta (2016) introduced modified ratio-cumproduct estimators under RSS. For more recent work interested readers may refer to the works of Bhushan and Kumar (2020a, 2020b, and 2021) and Bhushan *et al.* (2022) for a comprehensive study of RSS.

In RSS, we rank randomly selected units from the population merely by observation or prior experience after which only a few of these sampled units are measured. RSS is more cost-friendly than SRS because fewer samples need to be collected and measured. For example, if we want to estimate the contamination level in an area, which is a costly process. We may rank the extent of defoliation i.e. black spot or deprivation of leaves of trees. Then select sampling units based on the ranking of the extent of defoliation and then measure the contamination level of only selected units after ranking.

Corresponding author: Rajesh Singh

E-mail address: rsinghstat@gmail.com

### 2. SAMPLING METHODOLOGY

RSS takes the following steps.

- 1. Select sampling units from the target population.
- 2. Randomly partitioned sampling units into disjoint subsets each having a pre-assigned size (usually taken to be ≤4, as it is convenient and minimizes ranking error.
- 3. Rank each sub-set.
- 4. Measure one suitable selected unit from each ranked sub-set.

Coming to the mathematical formulation of RSS, if in the RSS scheme, we want to select a sample of size k. We select k random sets each of size k from the target population. Each set is then ranked by observation/ inspection/prior information or a convenient/cheap method.

| Original observation |                 |   |                | After Ranking |                                                                |                   |   |                       |
|----------------------|-----------------|---|----------------|---------------|----------------------------------------------------------------|-------------------|---|-----------------------|
| [x <sub>11</sub>     | $x_{12}$        |   | $x_{1k}$       |               | x1(1)                                                          | x <sub>1(2)</sub> |   | $\chi_{1(k)}$         |
| x <sub>21</sub>      | x <sub>22</sub> | ÷ | $x_{2k}$       | $\rightarrow$ | $\begin{bmatrix} x_{1(1)} \\ x_{2(1)} \\ \vdots \end{bmatrix}$ | x <sub>2(2)</sub> |   | $x_{2(k)}$            |
| :<br>r.,             | :<br>r.a        |   | r              |               | :<br>x <sub>k(1)</sub>                                         | :                 | : | :<br>Y./.)            |
| L~ k1                | $\sim_{R2}$     |   | $\sim kk \Box$ |               | $L^{\infty} k(1)$                                              | $^{n}k(2)$        |   | $\sim \kappa(\kappa)$ |

Here  $x_{ij}$  represents  $j^{th}$  the observation in the  $i^{th}$  set and is the ordered statistic in the set. After Ranking, select the diagonal units and them. We have now  $x_{1(1)}$ ,  $x_{2(2)}$ , ....,  $x_{k(k)}$  by selecting the smallest ranked unit from the first row, the second smallest ranked unit from the second row, and so on until the largest unit from  $k^{th}$  row selected. This will be the Ranked Set Sample (RSS). We can repeat the whole steps r times to obtain an RSS of size n=rk.

$$\bar{X}_{RSS} = \frac{1}{rk} \sum_{l=1}^{r} \sum_{i=1}^{k} x_{i(i)l}$$
(1.1)

$$var\left(\bar{X}_{RSS}\right) = \frac{\sigma^2}{n} - \frac{1}{rk^2} \sum_{i=1}^{k} \left(\mu_{(i)} - \mu\right)^2 \tag{1.2}$$

where  $\mu_{(i)}$  the mean of the  $i^{th}$  is ranked set and is given by

$$\mu_{(i)} = \frac{1}{r} \sum_{l=1}^{r} x_{i(i)l} , \quad i = 1, 2, ..., k$$
 (1.3)

In this paper, we take the situation where we use ranking on an auxiliary variable. Consider a finite population  $U = (U_1, U_2, ..., U_N)$  based on N identifiable units with a study variable Y and auxiliary variables X. We define

$$\bar{y}_{[n]} = \frac{1}{kr} \sum_{i=1}^{k} \sum_{l=1}^{r} y_{[i]l} \text{ and } \bar{x}_{(n)} = \frac{1}{kr} \sum_{i=1}^{k} \sum_{l=1}^{r} x_{(i)l}$$

as the sample means for the study and auxiliary variables.

$$\hat{C}_{y} = \frac{1}{\bar{y}_{[n]}} \sqrt{\frac{1}{rk-1}} \sum_{i=1}^{k} \sum_{l=1}^{r} (y_{[i]l} - \bar{y}_{[n]})^{2} \text{ and}$$
$$\hat{C}_{x} = \frac{1}{\bar{x}_{(n)}} \sqrt{\frac{1}{rk-1}} \sum_{i=1}^{k} \sum_{l=1}^{r} (x_{(i)l} - \bar{x}_{(n)})^{2}$$

As the sample coefficient of variation for the study and auxiliary variables.

$$\hat{C}_{yx} = \frac{1}{(rk-1)\bar{y}_{[n]}\bar{x}_{(n)}} \sum_{i=1}^{\kappa} \sum_{l=1}^{r} (y_{[i]l} - \bar{y}_{[n]})(x_{(i)l} - \bar{x}_{(n)})$$

To obtain bias and MSE of the estimators, we define  $\bar{y}_{[n]} = \bar{Y}(1 + \epsilon_0),$  $\bar{x}_{(n)} = \bar{X}(1 + \epsilon_1),$ 

such that

$$E(\epsilon_{0})=E(\epsilon_{1})=0,$$
  

$$E(\epsilon_{0}^{2})=\eta C_{y}^{2} - D_{y[i]}^{2}=V_{20},$$
  

$$E(\epsilon_{1}^{2})=\eta C_{x}^{2} - D_{x[i]}^{2}=V_{02},$$
  

$$E(\epsilon_{0}\epsilon_{1}) = \eta C_{yx} - D_{yx[i]}=V_{11},$$

where,

$$\begin{split} D_{\mathcal{Y}[i]}^{2} &= \frac{1}{k^{2}r\bar{y}_{[n]}^{2}} \sum_{i=1}^{k} (\mu_{[iy]} - \bar{y}_{[n]})^{2}, \\ D_{x[i]}^{2} &= \frac{1}{k^{2}r\bar{x}_{(n)}^{2}} \sum_{i=1}^{k} (\mu_{(ix)} - \bar{x}_{(n)})^{2}, \\ D_{yx[i]} &= \frac{1}{k^{2}r\bar{y}_{[n]}\bar{x}_{(n)}} \sum_{i=1}^{k} (\mu_{[iy]} - \bar{y}_{[n]}) (\mu_{(ix)} - \bar{x}_{(n)}), \\ \eta &= \frac{1}{kr}. \end{split}$$

where  $\mu_{[iy]}$  and  $\mu_{(ix)}$  are the means of the *i*<sup>th</sup> ranked set and are given by

$$\mu_{[iy]} = \frac{1}{r} \sum_{l=1}^{r} y_{i(l)l}, \, \mu_{(ix)} = \frac{1}{r} \sum_{l=1}^{r} x_{i(l)l}.$$

# 3. EXISTING ESTIMATORS

| Estimators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| usual mean estimator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\operatorname{Var}(t_{RSS}) = \bar{Y}_{0}^{2} (\eta C_{y}^{2} - D_{y[i]}^{2}) = \bar{Y}^{2} V_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $t_{RSS} = \overline{y}_{[n]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\operatorname{var}\left(\iota_{RSS}\right) = I \left( \iota_{RSS}\right) = I \left( \iota_{SSS}\right) = I$ |
| Samawi and Muttlak (1996)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MCE $(t_{1}) = \overline{y}_{2}t_{rr}(c_{1}^{2} - c_{2}^{2} - c_{1}^{2} - D_{2}^{2} - D_{2}^{2} + 2D_{2}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSE $(t_{r,RSS}) = \bar{Y}^2 [\eta(C_{y+}^2 C_x^2 - 2\rho C_y C_x) - D_{y[i]}^2 - D_{x[i]}^2 + 2D_{yx[i]}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $t_{r,RSS} = \frac{y_{[n]}}{\bar{x}_{(n)}} \bar{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Yu and Lam (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{bmatrix} (c - p)^2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $t_{reg,RSS} = \bar{y}_{[n]} + \hat{\beta}(\bar{X} - \bar{x}_{(n)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $MSE(t_{reg,RSS}) = \bar{Y}^{2} \left[ \eta C_{y}^{2} - D_{y[i]}^{2} - \frac{(\eta C_{yx} - D_{yx[i]})^{2}}{(nC_{y}^{2} - D_{yx[i]}^{2})^{2}} \right],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | where $\hat{\beta} = \frac{\hat{R}(\eta \hat{C}_{yx} - \hat{D}_{yx[i]})}{(\eta \hat{C}_x^2 - \hat{D}_{x[2]}^2)}$ and $\hat{R} = \frac{\bar{y}_{[n]}}{\bar{x}_{(n)}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\eta \tilde{c}_x^2 - \tilde{D}_{x[i]}^2) \qquad \tilde{x}_{(n)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Kadilar et al. (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $MSE(t_{kc}) = \bar{Y}^{2}[\eta C_{x}^{2} - D_{x}^{2}[\eta] - 2k(\eta C_{yx} - D_{yx}[\eta]) + k^{2}(\eta C_{y}^{2} - D_{y}^{2}[\eta]) + (k+1)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $t_{kc} = \frac{k \bar{y}_{[n]}}{\bar{x}_{(n)}} \bar{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| xc x(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | where $k = \frac{1 + \eta c_{yx} - D_{yx}[i]}{1 + \eta c_{y}^{2} - D_{y}^{2}[i]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Al-Omari et al. (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $MSE(t_{ai}) = \bar{Y}^{2} \left( \left( \eta C_{y}^{2} - D_{y[i]}^{2} \right) + \theta_{i}^{2} \left( \eta C_{x}^{2} - D_{y[i]}^{2} \right) - 2\theta_{i} \left( \eta C_{xy} - D_{xy[i]} \right) \right), i = 1,3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $t_{ai} = \bar{y}_{[n]} \left( \frac{X + q_i}{\bar{x}_{in} + q_i} \right), i = 1,3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\frac{1}{x_{(n)}} + \frac{1}{x_{(n)}} + \frac{1}{x_{(n)}$ | counterparts. Shiva where $\theta_i = \frac{\bar{X}}{\bar{X} + \alpha_i}$ , $i = 1,3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| where $q_i$ is the ith quartile of variable X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Λ T <i>q</i> i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Al-Hadhrami (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $MGF(t_{x}) = \frac{1}{12} \begin{bmatrix} c_{x}^{2} & p_{x}^{2} \\ c_{yx}^{2} & -D_{yx[i]}^{2} \end{bmatrix}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $t_{sa} = (\bar{y}_{[n]} + \hat{\beta} \ \bar{X} - \bar{x}_{(n)})) \left(\frac{AX + B}{AX_{(n)} + B}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $MSE(t_{sa}) = \bar{Y}^{2} \left[ \eta C_{y}^{2} - D_{y[i]}^{2} - \frac{(\eta C_{yx} - D_{yx[i]})^{2}}{(\eta C_{x}^{2} - D_{x[i]}^{2})} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Where A & B are either constants or functions of some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| known population parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mandowara and Mehta (2013) $(\bar{X} + C_{n})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $MSE(t_{mmi}) = \bar{Y}^{2} \left( \left( \eta C_{y}^{2} - D_{y[i]}^{2} \right) + \theta_{i}^{2} \left( \eta C_{x}^{2} - D_{x[i]}^{2} \right) - 2\theta_{i} \left( \eta C_{xy} - D_{xy[i]} \right) \right) i = 1, 2, 3, 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $t_{mm1} = \bar{y}_{[n]} \left( \frac{X + C_x}{\bar{x}_{(m)} + C_x} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $MSE(t_{mmi}) = \bar{Y}^{2} \left( \left( \eta C_{y}^{2} - D_{y[i]}^{2} \right) + \gamma_{i}^{2} \theta_{i}^{2} \left( \eta C_{x}^{2} - D_{x[i]}^{2} \right) - 2\gamma_{i} \theta_{i} \left( \eta C_{xy} - D_{xy[i]} \right) \right), i = 5,6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $(\overline{X} + \beta_2(x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $t_{mm2} = \bar{y}_{[n]} \left( \frac{X + \beta_2(x)}{\bar{x}_{(n)} + \beta_2(x)} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | where,<br>$\overline{X}$ $\overline{X}$ $\beta_2(x)\overline{X}$ $C_x\overline{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\left( \beta_{2}(x)\overline{X} + C_{x} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\theta_1 = \frac{\overline{X}}{\overline{X} + C_y}, \theta_2 = \frac{\overline{X}}{\overline{X} + \beta_2(x)}, \theta_3 = \theta_5 = \frac{\beta_2(x)\overline{X}}{\beta_2(x)\overline{X} + C_y} \text{ and } \theta_4 = \theta_6 = \frac{C_x\overline{X}}{C_y\overline{X} + \beta_2(x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $t_{mm2} = \bar{y}_{[n]} \left( \frac{\beta_2(x)\bar{x} + C_x}{\beta_2(x)\bar{x}_{(m)} + C_x} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\rho_{vx}C_v$ $\rho_{vx}C_v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\left(\begin{array}{c} C_{x}\overline{X}+\beta_{2}(x) \end{array}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\gamma_5 = \frac{\rho_{yx} C_y}{\theta_5 C_x} \text{ and } \gamma_6 = \frac{\rho_{yx} C_y}{\theta_6 C_x}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $t_{mm4} = \bar{y}_{[n]} \left( \frac{C_x X + \beta_2(x)}{C_x \bar{x}_{(n)} + \beta_2(x)} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(\beta_{2}(x)\overline{X} + C_{-})^{\alpha_{5}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $t_{mm5} = \overline{y}_{[n]} \left( \frac{\beta_2(x)\overline{X} + C_x}{\beta_2(x)\overline{x}_{(m)} + C_x} \right)^{\alpha_5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\left( C_{\mu} \overline{X} + R_{\mu}(x) \right)^{\alpha_{6}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $t_{mm6} = \bar{y}_{[n]} \left( \frac{C_x \bar{X} + \beta_2(x)}{C_x \bar{x}_{(n)} + \beta_2(x)} \right)^{\alpha_6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(\Im_{X^{N}(n)}) \cap P_{2} (\cdots)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| where $\beta_2(x)$ is the coefficient of kurtosis.<br>Singh <i>et al.</i> (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[ (p_{1}, 2Cp_{1}, 4p_{2}^{2})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $MSE(t_{s}) = \bar{Y}^{2} \left[ 1 - \frac{(B - 2CD + AD^{2})}{AB - C^{2}} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $t_s = \lambda_1 \overline{y}_{[n]} + \lambda_2 \overline{y}_{[n]} \left( \frac{\overline{X}^*}{\theta \overline{x}_{(n)}^* + (1 - \theta) \overline{X}^*} \right)^g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{bmatrix} AB - C^2 \end{bmatrix}$ where,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| where g is a real constant assuming values 1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $A=1+V_{20}, \theta = \frac{\alpha R}{\alpha R_{10}}, \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -1, $\lambda_{+}$ and $\lambda_{-}$ are scalars. Also, $\overline{X}^{*} = a\overline{X} + b$ and $\overline{x}_{(n)}^{*} = a\overline{x} + b$ , $a(\neq 0)$ and b symbolize either real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $B^{-1} V_{20} + g (2g^{+1})\theta^2 \alpha^2 V_{02} - 4g \alpha \theta V_{11},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $x_{(n)} = ax + b$ , $a(\neq 0)$ and b symbolize either real values or function of available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C = 1 + V_{20} + \frac{g(g+1)}{2} \theta^2 \alpha^2 V_{02} - 2g\alpha \theta V_{11},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $D = 1 + \frac{g(g+1)}{2} \theta^2 \alpha^2 V_{02} - g \alpha \theta V_{11}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Jeelani et al. (2014)                                                                                                                                          | $\mathbf{v}_{\mathbf{r}}(\mathbf{r}_{1}) = \overline{\mathbf{v}}_{1}^{2} \left( \left( \mathbf{r}_{1}^{2} - \mathbf{p}_{1}^{2} \right) + \mathbf{p}_{1}^{2} \left( \mathbf{r}_{1}^{2} - \mathbf{p}_{1}^{2} \right) + \mathbf{p}_{2}^{2} \left( \mathbf{r}_{1}^{2} - \mathbf{p}_{1}^{2} \right) + \mathbf{p}_{1}^{2} \left( \mathbf{r}_{1}^{2} - \mathbf{p}_{1}^{2} \right) + \mathbf{p}_{2}^{2} \left( \mathbf{r}_{1}^{2} - \mathbf{p}_{1}^{2} \right) + \mathbf{p}_$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $t_{j} = (\bar{y}_{[n]} + \hat{\beta}(\bar{X} - \bar{x}_{(n)})) \left(\frac{A\bar{X} + \bar{B}}{A\bar{X}_{(n)} + \bar{B}}\right)$                              | $MSE(t_{ji}) = \bar{Y}^{2} \left( \left( \eta C_{y}^{2} - D_{y[i]}^{2} \right) + D_{i}^{2} \left( \eta C_{x}^{2} - D_{x[i]}^{2} \right) - 2D_{i} \left( \eta C_{xy} - D_{xy[i]} \right) \right) $ i=1, 2, 3, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                | where $D_i = \frac{B\beta + A\overline{\gamma} + A\beta\overline{\chi}}{A\overline{\chi} + B}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $t_{j1} = (\overline{y}_{[n]} + \hat{\beta}(\overline{X} - \overline{x}_{(n)})) \left(\frac{\overline{x} + Q_d}{\overline{x}_{(n)} + Q_d}\right)$              | Min MSE $(t_{ji}) = \overline{Y}^2 \left[ \eta C_y^2 - D_{y[i]}^2 - \frac{(\eta C_{yx} - D_{yx[i]})^2}{(\eta C_y^2 - D_{z(n)}^2)} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $t_{j1} = (\bar{y}_{[n]} + \hat{\beta}(\bar{X} - \bar{x}_{(n)})) \begin{pmatrix} \underline{x} + M_d \\ \underline{x}_{(n)} + M_d \end{pmatrix}$               | $(\eta c_x^2 - D_x^2[i])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $t_{j2} = (\bar{y}_{[n]} + \hat{\beta}(\bar{X} - \bar{x}_{(n)})) \left(\frac{M_d \bar{X} + Q_d}{M_d \bar{x}_{(n)} + Q_d}\right)$                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $t_{j2} = (\bar{y}_{[n]} + \hat{\beta}(\bar{X} - \bar{x}_{(n)})) \left(\frac{Q_d \bar{X} + M_d}{Q_d \bar{x}_{(n)} + M_d}\right)$                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| where A & B are either constants of function of some<br>known population parameters. $Q_d$ is quartile deviation<br>and $M_d$ is median of auxiliary variable. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Brar and Malik (2014) $(\overline{X} + R)$                                                                                                                     | $MSE(t_{bmi}) = \bar{Y}^{2} \left( \left( \eta C_{y}^{2} - D_{y[i]}^{2} \right) + G_{i}^{2} \left( \eta C_{x}^{2} - D_{x[i]}^{2} \right) - 2G_{i} \left( \eta C_{xy} - D_{xy[i]} \right) \right), i=1,2,3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $t_{bm} = \bar{y}_{[n]} \left( \frac{X+B}{\bar{x}_{(n)}+B} \right)$                                                                                            | Min MSE $(t_{bmi}) = \bar{Y}^2 \left[ \eta C_y^2 - D_{y[i]}^2 - \frac{(\eta C_{yx} - D_{yx[i]})^2}{(\eta C_x^2 - n^2_{yx})} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $t_{bm1} = \bar{y}_{[n]} \left( \frac{\bar{X} + C_x}{\bar{x}_{(n)} + C_x} \right)$                                                                             | $\begin{bmatrix} 1 & \mathbf{y} & \mathbf{y} & \mathbf{z} \\ 1 & \mathbf{z} & \mathbf{z} & \mathbf{z} \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $t_{bm2} = \bar{y}_{[n]} \left( \frac{\bar{X} + \rho}{\bar{x}_{(n)} + \rho} \right)$                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $t_{bm3} = \bar{y}_{[n]} \left( \frac{\bar{X} + q_i}{\bar{x}_{(n)} + q_i} \right)$                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mandowara and Mehta (2016)                                                                                                                                     | $MSE(t_{mm\tau}) = \overline{Y}^2 \left( \eta C_y^2 \left( 1 - \rho_{yx} \right) - \left\{ D_{y[i]} - \frac{(t-g)}{2t} D_{x[i]} \right\}^2 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $t_{mm7} = \bar{y}_{[n]} \left[ \varphi \left( \frac{C_x \bar{X} + \beta_2(x)}{C_x \bar{x}_{(n)} + \beta_2(x)} \right) \right]$                                | where $t = \frac{c_x g}{c_x g + \beta_2(x)}$ and $\phi = \frac{t+g}{2t}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $+ (1 - \emptyset) \left( \frac{C_x \bar{x}_{(n)} + \beta_2(x)}{C_x \bar{x} + \beta_2(x)} \right) \right]$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Saini and Kumar (2016)                                                                                                                                         | $MSE(t_{ski}) = \bar{Y}^{2} \left( \left( \eta C_{y}^{2} - D_{y}^{2}   i \right) + I_{i}^{2} \left( \eta C_{x}^{2} - D_{x}^{2}   i \right) - 2I_{i} (\eta C_{xy} - D_{xy}   i \right) \right), i = 1,3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $t_{ski} = \bar{y}_{[n]} \left( \frac{\bar{X} - \bar{x}_{(n)} + Q_i}{\bar{X} + \bar{x}_{(n)} + Q_i} \right), i = 1,3$                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| where $Q_i$ is the ith quartile of variable X.                                                                                                                 | where $I_i = \frac{X + Q_i}{(\overline{2X} + Q_i)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Khan and Shabbir (2016)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                | $\begin{split} MSE(t_{ks}) &= \bar{Y}^2(k_1 - 1)^2 + k_1^2 A + k_2^2 B + 2k_1(k_1 - 1)C + 2k_2(k_1 - 1)D + 2k_1k_2 E \\ &+ where \ A = \bar{Y}^2 \left( V_{20} + \left(1 - \frac{\alpha}{2}\right)^2 \theta^2 V_{02} - 2\left(1 - \frac{\alpha}{2}\right) \theta V_{11} \right), \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $(1-\alpha)\frac{X}{\bar{x}_{(n)}}$                                                                                                                            | $C = \bar{Y}^{2} \left( \left( 1 - \frac{5\alpha}{8} \right)^{2} \theta^{2} V_{02} - \left( 1 - \frac{\alpha}{2} \right) \theta V_{11} \right),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| where $\alpha$ is a constant and $k_1$ and $k_2$ are duly opted scalars.                                                                                       | $D = \overline{X}\overline{Y}\left(1 - \frac{\alpha}{2}\right)\theta V_{02},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                | $E = \overline{X}\overline{Y}\left[\left(1 - \frac{\alpha}{2}\right)\theta V_{02} - V_{11}\right],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                | $k_{1} = \frac{B(\mathcal{P}^{2}+C) - D(D+E)}{B(\mathcal{P}^{2}+2C+A) - (D+E)^{2}},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                | $k_{2} = \frac{D(A+C) - E(\mathcal{P}+C)}{B(\mathcal{P}+2C+A) - (D+E)^{2}}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Jeelani et al. (2017)                                                                                                                                          | $MSE(t_{bi}) = \overline{Y}^{2} \left( \left( \eta C_{y}^{2} - D_{y}^{2} [i] \right) + \zeta_{i}^{2} \left( \eta C_{x}^{2} - D_{x}^{2} [i] \right) - 2\zeta_{i} \left( \eta C_{xy} - D_{xy} [i] \right) \right) = 1, 29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $t_{bj} = \zeta \frac{\bar{y}[n]}{\bar{x}(n)} \bar{X}$                                                                                                         | $ \text{Min MSE} (t_{bj}) = \overline{Y}^2 \left[ \eta C_y^2 - D_{y[i]}^2 - \frac{(\eta C_{yx} - D_{yx[i]})^2}{(\eta C_x^2 - D_{yx[i]}^2)} \right] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| where, $\zeta = \left(\frac{g}{g+1}\right) D_i$ .                                                                                                              | $\lim \operatorname{roc} (c_{bj}) = \left[ \operatorname{rlc}_y - \mathcal{D}_y[i] - \frac{1}{(\eta c_x^2 - \mathcal{D}_x^2[i])} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

108

| Khan and Ismail (2019)<br>$(A\overline{X} + B)$                                                                                                              | $MSE(t_{ki}) = \bar{Y}^{2} \left( \left( \eta C_{y}^{2} - D_{y[i]}^{2} \right) + G_{i}^{2} \left( \eta C_{x}^{2} - D_{x[i]}^{2} \right) - 2G_{i} \left( \eta C_{xy} - D_{xy[i]} \right) \right)$                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $t_k = \bar{y}_{[n]} \left( \frac{A\bar{X} + B}{A\bar{x}_{(n)} + B} \right)$                                                                                 | Min MSE $(t_{ki}) = \overline{Y}^2 \left[ \eta C_y^2 - D_{y[i]}^2 - \frac{(\eta C_{yx} - D_{yx[i]})^2}{(nC_x^2 - D_{yx[i]})^2} \right]$                                                                                                |
| $t_{k1} = \bar{y}_{[n]} \left( \frac{\bar{X} + \beta_1(x)}{\bar{x}_{(n)} + \beta_1(x)} \right)$                                                              |                                                                                                                                                                                                                                        |
| $t_{k2} = \bar{y}_{[n]} \left( \frac{\beta_2(x)\bar{X} + \beta_1(x)}{\beta_2(x)\bar{x}_{(n)} + \beta_1(x)} \right)$                                          |                                                                                                                                                                                                                                        |
| $t_{k2} = \bar{y}_{[n]} \left( \frac{C_x \bar{X} + \beta_1(x)}{C_x \bar{x}_{(n)} + \beta_1(x)} \right)$                                                      |                                                                                                                                                                                                                                        |
| Bhushan and Kumar (2020a)                                                                                                                                    | MSE $(t_{bi}) = \overline{Y}^2 \left[ 1 - \frac{q_i^2}{p_i} \right]$ i =1, 2, 3                                                                                                                                                        |
| $t_{b1} = \alpha_1 \bar{y}_{[n]} + \beta_1 (\bar{X} - \bar{x}_{(n)})$                                                                                        |                                                                                                                                                                                                                                        |
| $t_{b2} = \alpha_2 \bar{y}_{[n]} \left( \frac{\bar{X}}{\bar{x}_{(n)}} \right)^{\beta_2}$                                                                     | where $P_1 = P_3 = 1 + V_{20} - \frac{V_{11}^2}{V_{02}}$ and $P_2 = 1 + V_{20} + V_{11} - \frac{2V_{11}^2}{V_{02}}$                                                                                                                    |
| $t_{b2} = \alpha_2 \vec{y}_{[n]} \left( \frac{\vec{X}}{\vec{x}_{(n)} + \beta_2 (\vec{X} - \vec{x}_{(n)})} \right)$                                           | $Q_1 = Q_2 = 1$ and $Q_2 = 1 + \frac{v_{11}}{2} - \frac{v_{11}^2}{2v_{02}}$                                                                                                                                                            |
| Bhushan and Kumar (2020b)                                                                                                                                    | MSE $(t_{bi}) = \overline{Y}^2 \left[ \eta C_y^2 - D_{y[i]}^2 - \frac{(\eta C_{yx} - D_{yx[i]})}{(\eta C_{yx}^2 - n_{xx}^2)} \right]$ i=4, 5, 6                                                                                        |
| $t_{b4} = \bar{y}_{[n]} \left( 1 + \log \frac{\bar{X}}{\bar{x}_{(n)}} \right)^{\lambda_1}$                                                                   | $(\eta c_{x}^2 - D_{x}^2[i]) = (\eta c_{x}^2 - D_{x}^2[i])$                                                                                                                                                                            |
| $t_{b5} = \bar{y}_{[n]} \left( 1 + \lambda_2 \log \frac{\bar{X}}{\bar{x}_{(n)}} \right)$                                                                     |                                                                                                                                                                                                                                        |
| $t_{b6} = \left[\overline{y}_{[n]} + \lambda_3 (\overline{X} - \overline{x}_{(n)})\right] \left(1 + \log \frac{\overline{X}}{\overline{x}_{(n)}}\right)$     |                                                                                                                                                                                                                                        |
| $ \begin{array}{ l l l l l l l l l l l l l l l l l l l$                                                                                                      | $MSE(t_m) = \overline{Y}^2 \left[ \eta C_y^2 - D_{y[t]}^2 - \frac{(\eta C_{yx} - D_{yx[t]})^2}{(\eta c_x^2 - D_{x[t]}^2)} \right]$                                                                                                     |
| Bhushan and Kumar (2021)                                                                                                                                     | MSE $(1 ) = \overline{0} 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 7.8$                                                                                                                                                                 |
| $t_{b7} = \alpha_4 \bar{y}_{[n]} \left( 1 + \log \frac{\bar{X}}{\bar{X}_{(n)}} \right)^{\lambda_4}$                                                          | MSE $(t_{bi}) = \overline{Y}^2 \left[ 1 - \frac{Q_i^2}{P_i} \right]$ , i=7, 8<br>where $P_7 = 1 + V_{20} + 2V_{11} - \frac{2V_{11}^2}{V_2}$ and $P_8 = 1 + V_{20} - V_{11} + \frac{5V_{11}^2}{V_2}$                                    |
| $t_{bB} = \alpha_5 \bar{y}_{[n]} \left( 1 + \lambda_5 \log \frac{\bar{X}}{\bar{x}_{(n)}} \right)$                                                            | $Q_{7} = 1 + V_{11} - \frac{V_{11}^{2}}{2V_{02}} and Q_{8} = 1 - V_{11} - \frac{V_{11}^{2}}{V_{02}}$                                                                                                                                   |
| Bhushan et al.(2022)<br>$t_{b9} = \eta_1 [\bar{y}_{[n]} + \beta_4 (\bar{X} - \bar{x}_{(n)})]$                                                                | $\min MSE(t_{bi}) = \overline{Y}^{2} \left[ 1 - \frac{(A_{i}E_{i}^{2} + B_{i}D_{i}^{2} - 2C_{i}D_{i}E_{i})}{A_{i}B_{i} - C_{i}^{2}} \right]$                                                                                           |
| $+\psi_4 \bar{y}_{[n]} \left(1 + \log rac{x}{x_{(n)}} ight)^{\epsilon_4}$                                                                                   | $A_{1} = 1 + V_{20} + \left(\frac{\beta_{4}}{R}\right)^{2} V_{02} + 2\left(\frac{\beta_{4}}{R}\right) V_{11}$                                                                                                                          |
| $t_{b10} = \eta_2 \bar{y}_{[n]} \left(\frac{\bar{X}}{\bar{x}}\right)^{\beta_5} + \psi_5 \bar{y}_{[n]} \left(1 + \log \frac{\bar{X}}{\bar{x}}\right)^{\xi_5}$ | $B_{1} = 1 + V_{20} + (2\xi_{4}^{2} - 2\xi_{4})V_{02} + 4\xi_{4}V_{11},$<br>$C_{1} = 1 + V_{20} + \left(\frac{\xi_{4}^{2}}{2} - \xi_{4} + \frac{\beta_{4}\xi_{4}}{R}\right)V_{02} + \left(\frac{\beta_{4}}{R} + 2\xi_{4}\right)V_{11}$ |
| (*(n)/ (*(n)/                                                                                                                                                |                                                                                                                                                                                                                                        |
|                                                                                                                                                              | $D_1 = 1$ , $\beta_1^2 = \beta_1^2$                                                                                                                                                                                                    |
|                                                                                                                                                              | $E_1 = 1 + V_{20} + \left(\frac{\xi\xi}{2} - \xi_4\right) V_{02} + \xi_4 V_{11},$                                                                                                                                                      |
|                                                                                                                                                              | $A_2 = 1 + V_{20} + (2\beta_5^2 + \beta_4)V_{02} - 4\beta_4V_{11},$                                                                                                                                                                    |
|                                                                                                                                                              | $B_2 = 1 + V_{20} + (2\xi_5^2 - 2\xi_5)V_{02} + 4\xi_5 V_{11},$                                                                                                                                                                        |
|                                                                                                                                                              | $C_{2} = 1 + V_{20} + \left(\frac{\xi_{5}}{2} - \xi_{5} + \frac{\beta_{4}(\beta_{4}+1)}{R} - \beta_{4}\xi_{5}\right)V_{02} + (2\beta_{4} - 2\xi_{5})V_{11},$                                                                           |
|                                                                                                                                                              | $D_2 = 1 + \frac{\beta_4(\beta_4 + 1)}{R} V_{02} - \beta_4 V_{11}$                                                                                                                                                                     |
|                                                                                                                                                              | $E_2 = 1 + \left(\frac{\xi_5^2}{2} - \xi_5\right) V_{02} + \xi_5 V_{11}$                                                                                                                                                               |
|                                                                                                                                                              |                                                                                                                                                                                                                                        |

### 4. PROPOSED CLASSES OF ESTIMATORS

Having studied the estimators in section 3, we proposed two classes of estimators for mean based on information on a single auxiliary variable.

$$t_{p} = \frac{w_{1}\bar{y}_{[n]}}{2} \left( \frac{\bar{X}}{\bar{x}_{(n)}} + \frac{\bar{x}_{(n)}}{\bar{X}} \right) + w_{2}exp\left( \frac{\bar{X} - \bar{x}_{(n)}}{\bar{X} + \bar{x}_{(n)}} \right) \left[ \alpha \left( \frac{\bar{X}}{\bar{x}_{(n)}} \right) + (1 - \alpha) \left( 1 + \log \frac{\bar{x}_{(n)}}{\bar{X}} \right) \right]$$
(4.1)

$$\begin{split} t_g &= w_3 \left[ \frac{\bar{y}_{[n]}}{2} \left( \frac{\bar{X}}{\bar{x}_{(n)}} + \frac{\bar{x}_{(n)}}{\bar{X}} \right) + \beta \left( \bar{X} - \bar{x}_{(n)} \right) \right] \\ &+ w_4 exp \left( \frac{\bar{X} - \bar{x}_{(n)}}{\bar{X} + \bar{x}_{(n)}} \right) \left[ \gamma \left( \frac{\bar{X}}{\bar{x}_{(n)}} \right) + (1 - \gamma) \left( 1 + \log \frac{\bar{x}_{(n)}}{\bar{X}} \right) \right] (4.2) \end{split}$$

Where  $\beta$  (Population regression coefficient of y on x) is assumed to be known.

Expressing the estimator  $t_p$  given in equation (4.1) in terms of  $\epsilon$ 's we get

$$\begin{split} t_p &= w_1 \overline{Y} (1 + \epsilon_0) \left( \frac{\overline{X}}{\overline{X} (1 + \epsilon_1)} + \frac{\overline{X} (1 + \epsilon_1)}{\overline{X}} \right) \\ &+ w_2 \exp\left( \frac{-\epsilon_1}{2 + \epsilon_1} \right) \begin{bmatrix} \alpha \frac{\overline{X}}{\overline{X} (1 + \epsilon_1)} + \\ (1 - \alpha) \left( 1 + \log \frac{\overline{X} (1 + \epsilon_1)}{\overline{X}} \right) \end{bmatrix} \end{split}$$

$$\end{split} \tag{4.3}$$

$$t_{p} = w_{1}\overline{Y}\left(1 + \epsilon_{0} + \frac{\epsilon_{1}^{2}}{2}\right) + w_{2}\left(1 - \frac{\epsilon_{1}}{2} + \frac{3\epsilon_{1}^{2}}{8}\right)\left(1 + \epsilon_{1} - 2\alpha\epsilon_{1} - \frac{\epsilon_{1}^{2}}{2} + \frac{3\alpha\epsilon_{1}^{2}}{2}\right) \quad (4.4)$$

$$t_p - \overline{Y} = (w_1 - 1)\overline{Y} + w_1\overline{Y}(\epsilon_0 + \frac{\epsilon_1^2}{2}) + w_2\left(1 + \frac{\epsilon_1}{2} - 2\alpha\epsilon_1 - \frac{5\epsilon_1^2}{8} + \frac{5\alpha\epsilon_1^2}{2}\right)$$
(4.5)

$$Bias(t_p) = \overline{Y}(w_1 - 1) + w_1 \frac{V_{02}}{2} + w_2 \left[ 1 - \frac{5V_{02}}{8} + \frac{5\alpha V_{02}}{2} \right]$$
(4.6)

Squaring both sides and taking expectations of equation (4.5), we get

$$\begin{split} MSE(t_p) &= \bar{Y}^2 + \bar{Y}^2 w_1^2 \qquad (1 + W_{20} + V_{02}) + \\ MSE(t_p) &= \bar{Y}^2 + \bar{Y}^2 w_1^2 (1 + V_{20} + V_{02}) + \\ w_2^2(1 - V_{02} + 4\alpha^2 V_{02} + 3\alpha V_{02}) - \\ 2w_1 \bar{Y}^2 \left(1 + \frac{V_{02}}{2}\right) - 2w_2 \bar{Y} \left(1 - \frac{5V_{02}}{8} + \frac{5\alpha V_{02}}{2}\right) + \\ 2w_1 w_2 \bar{Y} (1 - \frac{V_{02}}{8} + \frac{5\alpha V_{02}}{2} + \frac{V_{11}}{2} - 2\alpha V_{11}) \qquad (4.7) \\ MSE(t_p) &= A_1 + w_1^2 B_1 + w_2^2 C_1 - 2w_1 D_1 - \\ 2w_2 E_1 + 2w_1 w_2 F_1 \qquad (4.8) \end{split}$$

where 
$$A_1 = \bar{Y}^2$$
,  
 $B_1 = \bar{Y}^2 (1 + V_{20} + V_{02})$ ,  
 $C_1 = 1 - V_{02} + 4\alpha^2 V_{02} + 3\alpha V_{02}$ ,  
 $D_1 = \bar{Y}^2 (1 + \frac{V_{02}}{2})$ ,  
 $E_1 = \bar{Y} \left(1 - \frac{5V_{02}}{8} + \frac{5\alpha V_{02}}{2}\right)$ ,  
 $F_1 = \bar{Y} \left(1 - \frac{V_{02}}{8} + \frac{5\alpha V_{02}}{2} + \frac{V_{11}}{2} - 2\alpha V_{11}\right)$ .

To find out the minimum MSE for the estimator  $t_p$ , we partially differentiate equation (4.8) with respect to  $w_1$  & and  $w_2$  equating to zero we get

$$w_1^* = \frac{C_1 D_1 - E_1 F_1}{F_1^2 - B_1 C_1} \tag{4.9}$$

$$w_2^* = \frac{D_1 F_1 - B_1 C_1}{F_1^2 - B_1 C_1} \tag{4.10}$$

Putting the optimum values of  $w_1 \& w_2$  in the equation (4.8) we get a minimum MSE of the estimator  $t_p$  as

$$\min MSE = \left[A_1 + \frac{C_1 D_1^2 + B_1 E_1^2 - 2D_1 E_1 F_1}{F_1^2 - B_1 C_1}\right]$$
(4.11)

Expressing the estimator  $t_p$  given in equation (4.2) in terms of  $\epsilon$ 's we get

$$t_{g} = w_{3}\overline{Y}(1+\epsilon_{0}) \left[ \left( \frac{\overline{X}}{\overline{X}(1+\epsilon_{1})} + \frac{\overline{X}(1+\epsilon_{1})}{\overline{X}} \right) - \beta \overline{X}\epsilon_{1} \right] + w_{4} \exp\left( \frac{-\epsilon_{1}}{2+\epsilon_{1}} \right) \left[ \begin{array}{c} \gamma \frac{\overline{X}}{\overline{X}(1+\epsilon_{1})} + \\ (1-\gamma) \left( 1 + \log \frac{\overline{X}(1+\epsilon_{1})}{\overline{X}} \right) \right] \right]$$

$$(4.12)$$

$$t_{g} = w_{3}\overline{Y}(1+\epsilon_{0})\left(1+\frac{\epsilon_{1}^{2}}{2}-\beta\overline{X}\epsilon_{1}\right)+$$

$$w_{4}\left(1-\frac{\epsilon_{1}}{2}+\frac{3\epsilon_{1}^{2}}{8}\right)\left(1+\epsilon_{1}-2\gamma\epsilon_{1}-\frac{\epsilon_{1}^{2}}{2}+\frac{3\gamma\epsilon_{1}^{2}}{2}\right)$$

$$(4.13)$$

$$\begin{split} t_g - \bar{Y} &= (w_3 - 1)\bar{Y} + w_3\bar{Y}(\epsilon_0 + \frac{\epsilon_1^2}{2} - \beta\delta\epsilon_1) + \\ & w_4 \left(1 + \frac{\epsilon_1}{2} - 2\gamma\epsilon_1 - \frac{5\epsilon_1^2}{8} + \frac{5\gamma\epsilon_1^2}{2}\right) \\ & (4.14) \end{split}$$

$$Bias(t_g) = \overline{Y}(w_1 - 1) + w_3 \frac{V_{02}}{2} + w_4 \left[ 1 - \frac{5V_{02}}{8} + \frac{5\gamma V_{02}}{2} \right]$$
(4.15)

Squaring on both sides and taking expectations of equation (4.14), we get

where 
$$A_2 = \overline{Y}^2$$
,  $\delta = \frac{\overline{X}}{\overline{Y}}$ ,  
 $B_2 = \overline{Y}^2 \left( 1 + V_{20} + V_{02} + \delta^2 \beta^2 V_{02} - 2\delta\beta V_{11} \right)$ ,  
 $C_2 = 1 - V_{02} + 4\alpha^2 V_{02} + 3\gamma V_{02}$ ,  
 $D_2 = \overline{Y}^2 \left( 1 + \frac{V_{02}}{2} \right)$ ,  
 $E_2 = \overline{Y} \left( 1 - \frac{5V_{02}}{8} + \frac{5\gamma V_{02}}{2} \right)$ ,  
 $F_2 = \overline{Y} \left( 1 - \frac{V_{02}}{8} + \frac{5\gamma V_{02}}{2} + \frac{V_{11}}{2} - 2\gamma V_{11} - \frac{\delta\beta V_{02}}{2} + 2\gamma \delta\beta V_{02} \right)$ .

To find out the minimum MSE for the estimator  $t_g$ , we partially differentiate equation (4.17) wrt  $w_3 \& w_4$ and equating to zero we get

$$w_3^* = \frac{C_2 D_2 - E_2 F_2}{F_2^2 - B_2 C_2}$$
(4.18)

$$w_4^* = \frac{D_2 F_2 - B_2 C_2}{F_2^2 - B_2 C_2}$$
(4.19)

Putting the optimum values of  $w_3 \& w_4$  in the equation (4.17) we get a minimum MSE of the estimator  $t_g$  as

$$\min MSE = \left[ A_2 + \frac{C_2 D_2^2 + B_2 E_2^2 - 2D_2 E_2 F_2}{F_2^2 - B_2 C_2} \right]$$
(4.20)

Proposed class of estimators  $t_p$  reduce into following estimators for suitably chosen values of  $\alpha$  given below

$$t_{p1} = \frac{w_{l}\overline{y}_{[n]}}{2} \left(\frac{\overline{X}}{\overline{x}_{[n]}} + \frac{\overline{x}_{[n]}}{\overline{X}}\right) + w_{2}exp\left(\frac{\overline{X} - \overline{x}_{[n]}}{\overline{X} + \overline{x}_{[n]}}\right) \left(\frac{\overline{X}}{\overline{x}_{[n]}}\right) (4.21)$$

$$t_{p2} = \frac{w_{l}\overline{y}_{[n]}}{2} \left(\frac{\overline{X}}{\overline{x}_{[n]}} + \frac{\overline{x}_{[n]}}{\overline{X}}\right) + w_{2}exp\left(\frac{\overline{X} - \overline{x}_{[n]}}{\overline{X} + \overline{x}_{[n]}}\right) \left(1 + \log\frac{\overline{x}_{[n]}}{\overline{X}}\right) (4.22)$$

Proposed class of estimators  $t_g$  reduce into some estimators for suitably chosen values of  $\gamma$  given below

$$t_{g1} = w_3 \left[ \frac{\overline{y}_{[n]}}{2} \left( \frac{\overline{X}}{\overline{x}_{[n]}} + \frac{\overline{x}_{[n]}}{\overline{X}} \right) + \beta \left( \overline{X} - \overline{x}_{[n]} \right) \right] + w_4 exp \left( \frac{\overline{X} - \overline{x}_{[n]}}{\overline{X} + \overline{x}_{[n]}} \right) \left( \frac{\overline{X}}{\overline{x}_{[n]}} \right)$$
(4.23)

$$t_{g2} = w_3 \left[ \frac{\overline{y}_{[n]}}{2} \left( \frac{\overline{X}}{\overline{x}_{[n]}} + \frac{\overline{x}_{[n]}}{\overline{X}} \right) + \beta \left( \overline{X} - \overline{x}_{[n]} \right) \right] + w_4 exp \left( \frac{\overline{X} - \overline{x}_{[n]}}{\overline{X} + \overline{x}_{[n]}} \right) \left( 1 + \log \frac{\overline{x}_{[n]}}{\overline{X}} \right)$$
(4.24)

### 5. EMPIRICAL STUDY

(4.17)

In this section, we compare the performance of the proposed estimators with the other estimators considered in this paper by considering real population as follows:

Population: Source: Sarjinder Singh (2003)

Y: Real estate farms loans,

X: Non real estate farms loans,

From the above population, we took ranked set samples with size k=3 and number of cycles r=4, 5,6,10. For these samples, we have calculated MSE and PRE for different estimators.

| Estimators           | K=3, r=4,  | K=3, r=5,  | K=3, r=6,   | K=3, r=10, |  |
|----------------------|------------|------------|-------------|------------|--|
|                      | n=rk=12    | n=rk=15    | n=rk=18     | N=rk=30    |  |
| t <sub>RSS</sub>     | 11552.3791 | 19752.407  | 11065.05554 | 5748.64008 |  |
|                      | (100.00)   | (100.00)   | (100.00)    | (100.00)   |  |
| $t_{r,RSS}$          | 7301.3221  | 7170.007   | 6329.035581 | 4647.76857 |  |
|                      | (158.2231) | (275.48)   | (174.83)    | (123.68)   |  |
| t <sub>reg,RSS</sub> | 5992.717   | 5631.803   | 6323.455597 | 3157.62779 |  |
|                      | (192.7736) | (350.72)   | (174.98)    | (182.05)   |  |
| t <sub>kc,RSS</sub>  | 7259.53    | 7167.836   | 6205.87     | 4641.274   |  |
|                      | (159.1339) | (275.57)   | (178.29)    | (123.85)   |  |
| t <sub>a1</sub>      | 6817.129   | 6448.028   | 6329.395    | 4218.503   |  |
|                      | (169.4610) | (306.3325) | (174.8201)  | (136.2720) |  |
| t <sub>a2</sub>      | 6735.218   | 8263.605   | 7800.237    | 3317.904   |  |
|                      | (171.5219) | (239.0289) | (141.8553)  | (173.2611) |  |
| t <sub>sa</sub>      | 5992.717   | 5631.803   | 6323.455597 | 3157.62779 |  |
|                      | (192.7736) | (350.72)   | (174.98)    | (182.05)   |  |
| t <sub>mm1</sub>     | 12414.7    | 11703.5    | 11171.5     | 10293.4    |  |
|                      | (93.0540)  | (168.77)   | (99.04)     | (55.84)    |  |
| t <sub>mm2</sub>     | 12400.0    | 11671.2    | 11164.6     | 10286.5    |  |
|                      | (93.1643)  | (169.24)   | (99.10)     | (55.88)    |  |
| t <sub>mm3</sub>     | 12476.7    | 11780.9    | 11226.8     | 10348.6    |  |
|                      | (92.5916)  | (167.66)   | (98.55)     | (55.54)    |  |
| t <sub>mm4</sub>     | 12408.1    | 11688.1    | 11168.8     | 10290.7    |  |
|                      | (93.1035)  | (168.99)   | (99.07)     | (55.86)    |  |
| t <sub>mm5</sub>     | 10075.5    | 9056.6     | 7036.4      | 6141.9     |  |
|                      | (114.6581) | (218.09)   | (157.25)    | (93.59)    |  |
| t <sub>mm6</sub>     | 10075.5    | 9056.6     | 7036.4      | 6141.9     |  |
|                      | (114.6581) | (218.09)   | (157.25)    | (93.59)    |  |
| t <sub>s</sub>       | 5751.964   | 5465.116   | 6204.521    | 3057.791   |  |
|                      | (200.8423) | (361.4270) | (178.3385)  | (187.9997) |  |
| $t_j$                | 5992.717   | 5631.803   | 6323.455597 | 3157.62779 |  |
|                      | (192.7736) | (350.72)   | (174.98)    | (182.05)   |  |
| t <sub>bm</sub>      | 5992.717   | 5631.803   | 6323.455597 | 3157.62779 |  |
|                      | (192.7736) | (350.72)   | (174.98)    | (182.05)   |  |
| t <sub>mm7</sub>     | 10075.45   | 9022.914   | 7035.19     | 6139.934   |  |
|                      | (114.6586) | (218.91)   | (157.28)    | (93.62)    |  |
| $t_{ks}$             | 5762.58    | 5439.48    | 6161.571    | 3074.605   |  |
|                      | (200.47)   | (363.1304) | (179.5817)  | (186.9716) |  |
| t <sub>sk1</sub>     | 11547.68   | 19741.73   | 11062.27    | 5746.05    |  |
|                      | (100.0406) | (100.0540) | (100.0251)  | (100.0450) |  |
| t <sub>sk2</sub>     | 11548.44   | 19743.44   | 11062.71    | 5746.464   |  |
|                      | (100.0341) | (100.0454) | (100.0212)  | (100.0378) |  |
| t <sub>bj</sub>      | 5992.717   | 5631.803   | 6323.455597 | 3157.62779 |  |
|                      | (192.7736) | (350.72)   | (174.98)    | (182.05)   |  |
| $t_k$                | 5992.717   | 5631.803   | 6323.455597 | 3157.62779 |  |
|                      | (192.7736) | (350.72)   | (174.98)    | (182.05)   |  |
| t <sub>m</sub>       | 5992.717   | 5631.803   | 6323.455597 | 3157.62779 |  |
|                      | (192.7736) | (350.72)   | (174.98)    | (182.05)   |  |
| t <sub>b1</sub>      | 5851.507   | 5556.58    | 6191.674    | 3111.565   |  |
|                      | (197.4257) | (355.4777) | (178.7086)  | (184.75)   |  |
| t <sub>b2</sub>      | 5782.112   | 5645.19    | 6188.335    | 3079.154   |  |
|                      | (199.7951) | (349.8980) | (178.8050)  | (186.6954) |  |

| Table 1. The Mean Square Errors (MSE) and Percentage Relative |
|---------------------------------------------------------------|
| Efficiencies(PRE) of the Estimators                           |

| Estimators              | K=3, r=4,  | K=3, r=5,   | K=3, r=6,   | K=3, r=10, |  |
|-------------------------|------------|-------------|-------------|------------|--|
|                         | n=rk=12    | n=rk=15     | n=rk=18     | N=rk=30    |  |
| <i>t</i> <sub>b3</sub>  | 5851.507   | 5556.58     | 6191.674    | 3111.565   |  |
|                         | (197.4257) | (355.4777)  | (178.7086)  | (184.7507) |  |
| t <sub>b4</sub>         | 5992.717   | 5631.803    | 6323.455597 | 3157.62779 |  |
|                         | (192.7736) | (350.72)    | (174.98)    | (182.05)   |  |
| t <sub>b5</sub>         | 5992.717   | 5631.803    | 6323.455597 | 3157.62779 |  |
|                         | (192.7736) | (350.72)    | (174.98)    | (182.05)   |  |
| t <sub>b6</sub>         | 5992.717   | 5631.803    | 6323.455597 | 3157.62779 |  |
|                         | (192.7736) | (350.72)    | (174.98)    | (182.05)   |  |
| t <sub>b7</sub>         | 5496.791   | 4955.27     | 6069.172    | 2972.893   |  |
|                         | (210.1658) | (398.6141)  | (182.3157)  | (193.3685) |  |
| <i>t</i> <sub>b8</sub>  | 5401.93    | 4975.83     | 6435.81     | 2936.17    |  |
|                         | (213.8565) | (396.9670)  | (171.9294)  | (195.7870) |  |
| t <sub>b9</sub>         | 5494.257   | 4951.552    | 6068.893    | 2972.039   |  |
|                         | (210.2628) | (398.9134)  | (182.3241)  | (193.4241) |  |
| <i>t</i> <sub>b10</sub> | 5992.717   | 4955.27     | 6068.975    | 2972.675   |  |
|                         | (192.7736) | (398.6141)  | (182.3216)  | (193.3827) |  |
| t <sub>pl</sub>         | 1754.144   | 1767.1517   | 1047.9041   | 1145.029   |  |
|                         | (658.5764) | (1117.7538) | (1055.9225) | (502.0519) |  |
| t <sub>p2</sub>         | 2639.148   | 3492.449    | 1737.42     | 1897.889   |  |
|                         | (437.7313) | (565.5746)  | (636.8670)  | (302.8965) |  |
| t <sub>g1</sub>         | 4171.549   | 4126.412    | 3801.043    | 2373.397   |  |
|                         | (276.9325) | (478.6823)  | (291.1057)  | (242.2114) |  |
| t <sub>g2</sub>         | 2023.974   | 2948.397    | 1051.637    | 1225.071   |  |
|                         | (570.7770) | (669.9371)  | (1052.1744) | (469.2495) |  |

The formula for Percent Relative Efficiency (PRE)

PRE (estimators) = 
$$\frac{MSE(t_{RSS})}{MSE(estimator)} \times 100$$

From Table 1, we can conclude that the proposed estimators performs better than existing estimators.

#### 6. CONCLUSION

is

In this article estimators of population mean under ranked set sampling are investigated. Bias and Mean square error equations are derived. We have proposed estimators for the population mean in Ranked set sampling using the information of auxiliary variables. The expressions for Bias and MSE of the suggested estimators have been derived up to the first order of approximation. Empirical study for comparing the efficiency of the proposed estimators with other estimators have been used.

The results have been shown in the Tables 1. The Table shows that the proposed estimators turn out to be more efficient as compared to the other estimators. The proposed estimators are found to be rather improved in terms of lesser MSE and greater PRE as compared to the existing estimators. It is also observed from the empirical study that the MSE of the proposed estimators decreases as the values of the sample size increase whereas the PRE of the suggested estimators increases as the values of the sample size increase. The

estimator  $t_{p1}$  is found to be most efficient among the suggested estimators.

Based on our empirical study, we can conclude that our proposed estimators can be preferred over the other estimators taken in this paper in several real situations like agriculture sciences, mathematical sciences, biological sciences, poultry, business, economics, commerce, social sciences etc.

### REFERENCES

- Al-Hadhrami, S.A. (2009). Ratio type estimators of the population mean based on ranked set sampling, *Int. J. Math. Comput. Phys. Electr. Comput. Eng.* 3(11), 896-900.
- Al-Omari, A.I., Jemain, A.A. and Ibrahim, K. (2009). New ratio estimators of the mean using simple random sampling and ranked set sampling methods, *Revista Investig. Oper.* **30**(2) (2009), 97-108.
- Bhushan, S. and Kumar, A. (2020a). On optimal classes of estimators under ranked set sampling, *Commun. Stat. Theory Methods*, 51:8, 2610-2639.
- Bhushan, S. and Kumar, A. (2020b). Log type estimators of population mean under ranked set sampling, Predictive Analyt. Statist. Big Data: *Concepts Model.* 28, 47-74.
- Bhushan, S. and Kumar, A. (2021). Novel log type class of estimators under ranked set sampling, Sankhya B (2021), https://doi. org/10.1007/s13571-021-00265-y.
- Bhushan, S., Kumar, A. and Lone, S.A (2022). On some novel classes of estimators using RSS. *Alexandria Engineering Journal*, 61, 5465-5474.
- Brar, S.S. and Malik, S.C. (2014). Generalized ratio type estimator of population mean under ranked set sampling, *Int. J. Stat. Reliab. Eng.* 1(2), 179-193.
- Bouza, C.N. and Al-Omari, A.B. (2014). Review of Ranked Set Sampling: Modifications and Applications. *Revista Investigacion* operacional, Vol. 35, No. 3, 215-240.
- Bouza, C.N., Singh, P., and Singh, R. (2018). Ranked set sampling and optional scrambling randomized response modeling. *Revista Investigacion Operacional.* 39(1), 100-107.
- Dell, T.R. and Clutter, J.L. (1972). Ranked set sampling theory with order statistics background, *Biometrics* 28 (1972), 545-555.

- Ganesh, S., and Ganeslingam, S. (2006). Ranked set sampling vs simple random sampling in the estimation of the mean and the ratio. *Journal of Statistics and Management Systems*, Vol. 9, No. 2, 459-472.
- Jeelani, M.I., Mir, S.A. and Pukhta, M.S. (2014). A class of modified ratio estimators using linear combination of quartile deviation and median of auxiliary variable under ranked set sampling, *Univ. J. Appl. Math.* 2(6), 245-249.
- Jeelani, M.I., Bouza, C.N. and Sharma, M. (2017). Modified ratio estimator under ranked set sampling, *Revista Investig. Oper.* 38(1), 103-106.
- Kadilar, C., Unyazici. Y. and Cingi, H. (2009). Ratio estimator for the population mean using ranked set sampling, *Stat. Pap.* 50, 301-309.
- Khan, L. and Shabbir, J. (2016). An efficient class of estimators of finite population mean under ranked set sampling, *Open J. Stat.* 6, 426-435.
- Khan, Z. and Ismail, M. (2019). Ratio-type estimator of population mean based on ranked set sampling, *Pakistan J. Stat. Oper. Res.* 15(2), 445-449.
- McIntyre, G.A. (1952). A method of unbiased selective sampling using ranked sets. *Australian Journal of Agricultural Research*, 3, 385-390.
- Mandowara, V.L. and Mehta, N. (2013). Efficient generalized ratio-product type estimators for finite population mean with ranked set sampling, *Austr. J. Stat.* 42(3), 137-148.
- Mehta, N. and Mandowara, V.L. (2016). A modified ratio-cum-product estimator of finite population mean using ranked set sampling, *Commun. Stat. Theory Methods*, 45(2), 267-276.
- Mehta, V., Singh, H.P. and Pal, S.K. (2020). A general procedure for estimating finite population mean using ranked set sampling, *Revista Investig. Opera.* 41(1), 80-92.
- Saini, M. and Kumar, A. (2016). Ratio estimators for the finite population mean under simple random sampling and ranked set sampling, *Int. J. Syst. Assur. Eng. Manage.* 8(2), 488-492.
- Samawi, H.M. and Muttlak, H.A. (1996). Estimation of ratio using ranked set sampling, *Biometr. J.* 38, 753–764.
- Singh, H.P., Tailor, R. and Singh, S. (2014). General procedure for estimating the population mean using ranked set sampling, J. Stat. Comput. Simul. 84(5) (2014), 931-945.
- Takahasi, K. and Wakimoto, K. (1968). On unbiased estimates of the population mean based on the sample stratified using ordering. *Annals of Institute of Statistical Mathematics*, 20, 1-31.
- Yu, L.H. and Lam, K. (1997). Regression estimator in ranked set sampling, *Biometrics*, 53, 1070-1080.